On the EL-Shellability of the Cambrian Lattices

Myrto Kallipoliti and Henri Mühle

September 10, 2012

Motivation

- it is well-known that the Hasse diagram of the Tamari lattice corresponds to the 1-skeleton of the classical associahedron
- the Tamari lattice \mathcal{T}_{n} can be realized as a lattice quotient of the weak order lattice of the Coxeter group A_{n}
- the bottom elements of each congruence class are precisely the 312-avoiding permutations
- Nathan Reading has generalized this construction to all finite Coxeter groups W and all Coxeter elements $\gamma \in W$
- he called the resulting lattices Cambrian lattices, denoted by C_{γ}
- this construction yields a generalized associahedron for all finite Coxeter groups

Motivation

- Björner and Wachs showed that \mathcal{T}_{n} is EL-shellable and that each open interval of \mathcal{T}_{n} is either contractible or spherical
- it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical

Motivation

- Björner and Wachs showed that \mathcal{T}_{n} is EL-shellable and that each open interval of \mathcal{T}_{n} is either contractible or spherical
- it follows from a result by Hugh Thomas and Colin Ingalls that C_{γ} is EL-shellable
- it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical

Motivation

- Björner and Wachs showed that \mathcal{T}_{n} is EL-shellable and that each open interval of \mathcal{T}_{n} is either contractible or spherical
- it follows from a result by Hugh Thomas and Colin Ingalls that C_{γ} is EL-shellable
- it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical
- however,
- Thomas and Ingalls utilize the representation theory of Coxeter groups
- Reading utilizes the fact that C_{γ} is the fan lattice of the Coxeter arrangement

Motivation

- Björner and Wachs showed that \mathcal{T}_{n} is EL-shellable and that each open interval of \mathcal{T}_{n} is either contractible or spherical
- it follows from a result by Hugh Thomas and Colin Ingalls that C_{γ} is EL-shellable
- it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical
- however,
- Thomas and Ingalls utilize the representation theory of Coxeter groups
- Reading utilizes the fact that C_{γ} is the fan lattice of the Coxeter arrangement
- we give a direct, case-free proof of these properties, using the realization of C_{γ} in terms of γ-sortable elements

Outline

(1) Preliminaries

Cambrian Lattices
EL-Shellability of Posets
(2) EL-Shellability of C_{γ}

The Labeling
Main Result
(3) Applications

Topology of C_{γ}
Subword Complexes

Outline

(1) Preliminaries

Cambrian Lattices EL-Shellability of Posets
(2) EL-Shellability of C_{γ}

The Labeling
Main Result
(3) Applications

Topology of C
Subword Complexes

γ-Sorting Words

- let W be a finite Coxeter group of rank n, with simple generators $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
- consider the Coxeter element $\gamma=s_{1} s_{2} \cdots s_{n}$ and the half-infinite word $\gamma^{\infty}=s_{1} s_{2} \cdots s_{n}\left|s_{1} s_{2} \cdots s_{n}\right| s_{1} \cdots$
- γ-sorting word of w : the reduced decomposition of $w \in W$ which is lexicographically first as a subword of γ^{∞} among all reduced decompositions of w

γ-Sorting Words - Example

- let $W=A_{4}$ with $s_{i}=(i, i+1)$, and $\gamma=s_{1} s_{2} s_{3} s_{4}$
- consider $w=s_{1} s_{4} s_{3} s_{4}$
- there are eight reduced decompositions of w, namely

$S_{1} S_{4} S_{3} S_{4}$,	$S_{4} S_{1} S_{3} S_{4}$,	$S_{4} S_{3} S_{1} S_{4}$,	$S_{4} S_{3} S_{4} S_{1}$,
$S_{1} S_{3} S_{4} S_{3}$,	$S_{3} S_{1} S_{4} S_{3}$,	$S_{3} S_{4} S_{1} S_{3}$,	$S_{3} S_{4} S_{3} S_{1}$

- the decomposition $s_{1} s_{3} s_{4} s_{3}$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ-sorting word of w

γ-Sorting Words - Example

- let $W=A_{4}$ with $s_{i}=(i, i+1)$, and $\gamma=s_{1} s_{2} s_{3} s_{4}$
- consider $w=s_{1} s_{4} s_{3} s_{4}$
- there are eight reduced decompositions of w, namely

$S_{1} S_{4} S_{3} S_{4}$,	$S_{4} S_{1} S_{3} S_{4}$,	$S_{4} S_{3} S_{1} S_{4}$,	$S_{4} S_{3} S_{4} S_{1}$,
$S_{1} S_{3} S_{4} S_{3}$,	$S_{3} S_{1} S_{4} S_{3}$,	$S_{3} S_{4} S_{1} S_{3}$,	$S_{3} S_{4} S_{3} S_{1}$

- the decomposition $s_{1} s_{3} s_{4} s_{3}$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ-sorting word of w

$$
s_{1} s_{2} s_{3} s_{4}\left|s_{1} s_{2} s_{3} s_{4}\right| s_{1} s_{2} s_{3} s_{4}
$$

γ-Sorting Words - Example

- let $W=A_{4}$ with $s_{i}=(i, i+1)$, and $\gamma=s_{1} s_{2} s_{3} s_{4}$
- consider $w=s_{1} s_{4} s_{3} s_{4}$
- there are eight reduced decompositions of w, namely

$S_{1} S_{4} S_{3} S_{4}$,	$S_{4} S_{1} S_{3} S_{4}$,	$S_{4} S_{3} S_{1} S_{4}$,	$S_{4} S_{3} S_{4} S_{1}$,
$S_{1} S_{3} S_{4} S_{3}$,	$S_{3} S_{1} S_{4} S_{3}$,	$S_{3} S_{4} S_{1} S_{3}$,	$S_{3} S_{4} S_{3} S_{1}$

- the decomposition $s_{1} s_{3} s_{4} s_{3}$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ-sorting word of w

$$
\mathbf{s}_{1} s_{2} s_{3} s_{4}\left|s_{1} s_{2} \mathbf{s}_{3} s_{4}\right| s_{1} s_{2} s_{3} s_{4}
$$

γ-Sorting Words - Example

- let $W=A_{4}$ with $s_{i}=(i, i+1)$, and $\gamma=s_{1} s_{2} s_{3} s_{4}$
- consider $w=s_{1} s_{4} s_{3} s_{4}$
- there are eight reduced decompositions of w, namely

$$
\begin{array}{lll}
S_{1} S_{4} S_{3} S_{4}, & S_{4} S_{1} S_{3} S_{4}, & S_{4} S_{3} S_{1} S_{4},
\end{array} S_{4} S_{3} S_{4} S_{1}, ~ 子 S_{3} S_{4} S_{1} S_{3}, \quad S_{3} S_{4} S_{3} S_{1}
$$

- the decomposition $s_{1} s_{3} s_{4} s_{3}$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ-sorting word of w

$$
s_{1} s_{2} s_{3} s_{4}\left|\mathbf{s}_{1} s_{2} \mathbf{s}_{3} s_{4}\right| s_{1} s_{2} s_{3} s_{4}
$$

γ-Sorting Words - Example

- let $W=A_{4}$ with $s_{i}=(i, i+1)$, and $\gamma=s_{1} s_{2} s_{3} s_{4}$
- consider $w=s_{1} s_{4} s_{3} s_{4}$
- there are eight reduced decompositions of w, namely

$$
\begin{array}{lll}
S_{1} S_{4} S_{3} S_{4}, & S_{4} S_{1} S_{3} S_{4}, & S_{4} S_{3} S_{1} S_{4},
\end{array} S_{4} S_{3} S_{4} S_{1}, ~ 子 S_{3} S_{4} S_{1} S_{3}, \quad S_{3} S_{4} S_{3} S_{1}
$$

- the decomposition $s_{1} s_{3} s_{4} s_{3}$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ-sorting word of w

$$
s_{1} s_{2} s_{3} s_{4}\left|s_{1} s_{2} s_{3} s_{4}\right| \mathbf{s}_{1} s_{2} s_{3} s_{4}
$$

γ-Sorting Words - Example

- let $W=A_{4}$ with $s_{i}=(i, i+1)$, and $\gamma=s_{1} s_{2} s_{3} s_{4}$
- consider $w=s_{1} s_{4} s_{3} s_{4}$
- there are eight reduced decompositions of w, namely

$$
\begin{array}{lll}
S_{1} S_{4} S_{3} S_{4}, & S_{4} S_{1} S_{3} S_{4}, & S_{4} S_{3} S_{1} S_{4},
\end{array} S_{4} S_{3} S_{4} S_{1}, ~ 子 S_{3} S_{4} S_{1} S_{3}, \quad S_{3} S_{4} S_{3} S_{1}
$$

- the decomposition $s_{1} s_{3} s_{4} s_{3}$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ-sorting word of w

$$
s_{1} s_{2} s_{3} s_{4}\left|s_{1} s_{2} s_{3} s_{4}\right| s_{1} s_{2} s_{3} s_{4}
$$

γ-Sorting Words - Example

- let $W=A_{4}$ with $s_{i}=(i, i+1)$, and $\gamma=s_{1} s_{2} s_{3} s_{4}$
- consider $w=s_{1} s_{4} s_{3} s_{4}$
- there are eight reduced decompositions of w, namely

$$
\begin{array}{llll}
s_{1} s_{4} s_{3} s_{4}, & s_{4} s_{1} s_{3} s_{4}, & s_{4} s_{3} s_{1} s_{4}, & s_{4} s_{3} s_{4} s_{1}, \\
s_{1} s_{3} s_{4} s_{3}, & s_{3} s_{1} s_{4} s_{3}, & s_{3} s_{4} s_{1} s_{3}, & s_{3} s_{4} s_{3} s_{1}
\end{array}
$$

- the decomposition $s_{1} s_{3} s_{4} s_{3}$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ-sorting word of w

$$
\mathbf{s}_{1} s_{2} \mathbf{s}_{3} \mathbf{s}_{4}\left|s_{1} s_{2} \mathbf{s}_{3} s_{4}\right| s_{1} s_{2} s_{3} s_{4}
$$

γ-Sorting Words - Example

- let $W=A_{4}$ with $s_{i}=(i, i+1)$, and $\gamma=s_{1} s_{2} s_{3} s_{4}$
- consider $w=s_{1} s_{4} s_{3} s_{4}$
- there are eight reduced decompositions of w, namely

$$
\begin{array}{lll}
S_{1} S_{4} S_{3} S_{4}, & S_{4} S_{1} S_{3} S_{4}, & S_{4} S_{3} S_{1} S_{4},
\end{array} S_{4} S_{3} S_{4} S_{1}, ~ 子 S_{3} S_{1} S_{4} S_{3}, \quad S_{3} S_{3}, \quad S_{3} S_{4} S_{3} S_{1}
$$

- the decomposition $s_{1} s_{3} s_{4} s_{3}$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ-sorting word of w

$$
s_{1} s_{2} \mathbf{s}_{3} s_{4}\left|\mathbf{s}_{1} s_{2} s_{3} \mathbf{s}_{4}\right| s_{1} s_{2} \mathbf{s}_{3} s_{4}
$$

γ-Sorting Words - Example

- let $W=A_{4}$ with $s_{i}=(i, i+1)$, and $\gamma=s_{1} s_{2} s_{3} s_{4}$
- consider $w=s_{1} s_{4} s_{3} s_{4}$
- there are eight reduced decompositions of w, namely

$$
\begin{array}{llll}
S_{1} S_{4} S_{3} S_{4}, & S_{4} S_{1} S_{3} S_{4}, & S_{4} S_{3} S_{1} S_{4}, & S_{4} S_{3} S_{4} S_{1}, \\
S_{1} S_{3} S_{4} S_{3}, & S_{3} S_{1} S_{4} S_{3}, & S_{3} S_{4} S_{1} S_{3}, & S_{3} S_{4} S_{3} S_{1}
\end{array}
$$

- the decomposition $s_{1} s_{3} s_{4} s_{3}$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ-sorting word of w

$$
s_{1} s_{2} \mathbf{s}_{3} s_{4}\left|\mathbf{s}_{1} s_{2} \mathbf{s}_{3} s_{4}\right| s_{1} s_{2} s_{3} s_{4}
$$

γ-Sorting Words - Example

- let $W=A_{4}$ with $s_{i}=(i, i+1)$, and $\gamma=s_{1} s_{2} s_{3} s_{4}$
- consider $w=s_{1} s_{4} s_{3} s_{4}$
- there are eight reduced decompositions of w, namely

$S_{1} S_{4} S_{3} S_{4}$,	$S_{4} S_{1} S_{3} S_{4}$,	$S_{4} S_{3} S_{1} S_{4}$,	$S_{4} S_{3} S_{4} S_{1}$,
$S_{1} S_{3} S_{4} S_{3}$,	$S_{3} S_{1} S_{4} S_{3}$,	$S_{3} S_{4} S_{1} S_{3}$,	$S_{3} S_{4} S_{3} S_{1}$

- the decomposition $s_{1} s_{3} s_{4} s_{3}$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ-sorting word of w

$$
s_{1} s_{2} \mathbf{s}_{3} s_{4}\left|s_{1} s_{2} \mathbf{s}_{3} s_{4}\right| \mathbf{s}_{1} s_{2} s_{3} s_{4}
$$

γ-Sorting Words - Example

- let $W=A_{4}$ with $s_{i}=(i, i+1)$, and $\gamma=s_{1} s_{2} s_{3} s_{4}$
- consider $w=s_{1} s_{4} s_{3} s_{4}$
- there are eight reduced decompositions of w, namely

$$
\begin{array}{llll}
s_{1} s_{4} s_{3} s_{4}, & s_{4} s_{1} s_{3} s_{4}, & s_{4} s_{3} s_{1} s_{4}, & s_{4} s_{3} s_{4} s_{1}, \\
s_{1} s_{3} s_{4} s_{3}, & s_{3} s_{1} s_{4} s_{3}, & s_{3} s_{4} s_{1} s_{3}, & s_{3} s_{4} s_{3} s_{1}
\end{array}
$$

- the decomposition $s_{1} s_{3} s_{4} s_{3}$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ-sorting word of w

$$
\mathbf{s}_{1} s_{2} \mathbf{s}_{3} \mathbf{s}_{4}\left|s_{1} s_{2} \mathbf{s}_{3} s_{4}\right| s_{1} s_{2} s_{3} s_{4}
$$

γ-Sortable Words

- write the γ-sorting word of w as follows

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}
$$

$$
\text { where } \delta_{i, j} \in\{0,1\} \text { for } 1 \leq i \leq I \text { and } 1 \leq j \leq n
$$

- i-th block of w : the set $b_{i}=\left\{s_{j} \mid \delta_{i, j}=1\right\} \subseteq S$, where $i \in\{1,2, \ldots, I\}$
- γ-sortable word: a word $w \in W$ satisfying $b_{1} \supseteq b_{2} \supseteq \cdots \supseteq b_{1}$

γ-Sortable Words

- write the γ-sorting word of w as follows

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq 1$ and $1 \leq j \leq n$

- i-th block of w : the set $b_{i}=\left\{s_{j} \mid \delta_{i, j}=1\right\} \subseteq S$, where $i \in\{1,2, \ldots, I\}$
- γ-sortable word: a word $w \in W$ satisfying $b_{1} \supseteq b_{2} \supseteq \cdots \supseteq b_{1}$
- the γ-sorting word $w=s_{1} s_{3} s_{4} \mid s_{3}$ has $b_{1}=\left\{s_{1}, s_{3}, s_{4}\right\}$ and $b_{2}=\left\{s_{3}\right\}$ and is thus γ-sortable
- the γ-sorting word $v=s_{1} s_{3} s_{4} \mid s_{2}$ is not

Cambrian Lattices

Theorem (Reading, 2005)

Let γ be a Coxeter element of a finite Coxeter group W. The γ-sortable elements of W constitute a sublattice of the weak order on W.

- consider the map $\pi_{\gamma}: W \rightarrow W, w \mapsto \pi_{\gamma}(w)$ that maps w to the largest γ-sortable element below it
- the fibers of π_{γ} induce a lattice congruence θ_{γ} on the weak order on W
- Cambrian lattice C_{γ} : the lattice quotient W / θ_{γ}

Cambrian Lattices - Example

Cambrian Lattices - Example

Cambrian Lattices

Cambrian Lattices - Example

Cambrian Lattices - Example

Cambrian Lattices

Cambrian Lattices - Example

Basics on Posets

- bounded poset: a poset that has a unique minimal and a unique maximal element
- let $\mathbb{P}=\left(P, \leq_{\mathbb{P}}\right)$ be a bounded poset
- $\overline{\mathbb{P}}$ is the poset that arises from \mathbb{P} by removing the maximal and minimal element (the so-called proper part of \mathbb{P})
- chain: linearly ordered subset c of P notation: $c: p_{0}<\mathbb{P} p_{1}<\mathbb{P} \cdots<\mathbb{P} p_{s}$
- maximal chain in $[p, q]$: there is no $p^{\prime} \in[p, q]$ and no $0 \leq i<s$ such that $p=p_{0}<\mathbb{P} p_{1}<\mathbb{P} \cdots<\mathbb{P} p_{i}<\mathbb{P} p^{\prime}<\mathbb{P} p_{i+1}<\mathbb{P} \cdots<\mathbb{P} p_{s}=q$ is a chain

Edge-Labelings

- cover relation $p \ll \mathbb{P} q: p<\mathbb{P} q$ and there is no $p^{\prime} \in P$ with $p<_{\mathbb{P}} p^{\prime}<_{\mathbb{P}} q$
- $\mathcal{E}(\mathbb{P})=\{(p, q) \mid p \lessdot \mathbb{P} q\}$ is the set of covering relations on \mathbb{P}
- edge-labeling $\lambda: \operatorname{map} \lambda: \mathcal{E}(\mathbb{P}) \rightarrow \Lambda$, for some poset Λ
- $\lambda(c)=\left(\lambda\left(p_{0}, p_{1}\right), \lambda\left(p_{1}, p_{2}\right), \ldots, \lambda\left(p_{s-1}, p_{s}\right)\right)$ is the label-sequence of c
- rising chain: a chain c such that $\lambda(c)$ is strictly increasing
- ER-labeling: an edge-labeling such that for every interval of \mathbb{P} there is exactly one rising maximal chain
- EL-labeling: an ER-labeling such that the rising chain in every interval is lexicographically first among all maximal chains

EL-Shellability

- EL-shellable poset: a bounded poset that admits an EL-labeling

EL-Shellability

- EL-shellable poset: a bounded poset that admits an EL-labeling
- the order complex $\Delta(\overline{\mathbb{P}})$ of an EL-shellable poset \mathbb{P} is shellable and hence Cohen-Macaulay
- the geometric realization of $\Delta(\overline{\mathbb{P}})$ is homotopy equivalent to a wedge of spheres
- the i-th Betti number of $\Delta(\overline{\mathbb{P}})$ is given by the number of falling maximal chains of length $i+2$
- hence, the Euler characteristic $\chi(\Delta(\overline{\mathbb{P}}))$ can be computed from the labeling
- if $0_{\mathbb{P}}$ is the unique minimal element and $1_{\mathbb{P}}$ the unique maximal element of \mathbb{P}, we have $\chi(\Delta(\overline{\mathbb{P}}))=\mu\left(0_{\mathbb{P}}, 1_{\mathbb{P}}\right)$

Outline

(1) Preliminaries

Cambrian Lattices
 EL-Shellability of Posets

(2) EL-Shellability of C_{γ}

The Labeling
Main Result

(3) Applications

Topology of C
Subword Complexes

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{l, 2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{l, 2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0},
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=\mathbf{s}_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1,3\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1,3\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1,3\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1,3,6\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1,3,6\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1,3,6,8\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1,3,6,8\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1,3,6,8\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{l, 2}} \cdots s_{n}^{\delta_{1, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1,3,6,8,11\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{l, 2}} \cdots s_{n}^{\delta_{1, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1,3,6,8,11\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{l, 2}} \cdots s_{n}^{\delta_{1, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- let $w=s_{1} s_{3}\left|s_{2} s_{4}\right| s_{3} \in A_{4}$

$$
w=s_{1}^{1} s_{2}^{0} s_{3}^{1} s_{4}^{0}\left|s_{1}^{0} s_{2}^{1} s_{3}^{0} s_{4}^{1}\right| s_{1}^{0} s_{2}^{0} s_{3}^{1} s_{4}^{0}, \quad \alpha(w)=\{1,3,6,8,11\}
$$

The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$
w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{l, 1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{l, n}}
$$

where $\delta_{i, j} \in\{0,1\}$ for $1 \leq i \leq I$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^{∞} by

$$
\alpha(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

- $\lambda: \mathcal{E}\left(C_{\gamma}\right) \rightarrow \mathbb{N}, \quad(u, v) \mapsto \min \{\alpha(v) \backslash \alpha(u)\}$

The Labeling

The Labeling - Example

Main Result

Theorem

For every finite Coxeter group W and every Coxeter element $\gamma \in W$, the edge-labeling λ is an EL-labeling of C_{γ}.

We need two technical lemmas for the proof!

Lemma 1

Lemma

Let $u \leq v$ in C_{γ}. If u and v have the same first block b, then let u^{\prime}, v^{\prime} be the elements obtained by omitting b. Then, $u^{\prime}, v^{\prime} \in C_{\gamma}$, and we have:
(1) The intervals $[u, v]$ and $\left[u^{\prime}, v^{\prime}\right]$ are isomorphic.
(2) For every $w_{1}^{\prime}, w_{2}^{\prime} \in\left[u^{\prime}, v^{\prime}\right]$ with $w_{1}^{\prime} \lessdot w_{2}^{\prime}$ we have $\lambda\left(b w_{1}^{\prime}, b w_{2}^{\prime}\right)=\lambda\left(w_{1}^{\prime}, w_{2}^{\prime}\right)+n$.

Lemma 2

Lemma

For $u, v \in C_{\gamma}$ with $u \leq v$ define $i_{0}=\min \{i \in \alpha(v) \backslash \alpha(u)\}$. The following hold:
(1) The label i_{0} appears in every maximal chain of $[u, v]$.
(2) There is a unique element $u_{1} \in(u, v)$ with $u \lessdot u_{1}$ and $\lambda\left(u, u_{1}\right)=i_{0}$.
(3) $\alpha(u)$ is a subset of $\alpha(v)$.
(4) The labels of each maximal chain in $[u, v]$ are distinct.

Main Result

Theorem

For every finite Coxeter group W and every Coxeter element $\gamma \in W$, the edge-labeling λ is an EL-labeling of C_{γ}.

Sketch of proof:

- proceed by induction on the length k of the interval $[u, v]$
- if $k=2$, then the result follows from Lemma 2
- Lemma 2 tells us that there exists an $u \lessdot u_{1}$ in $[u, v]$ with $\lambda\left(u, u_{1}\right)=i_{0}$
- apply induction on the interval $\left[u_{1}, v\right]$ to find the maximal chain $u_{1} \lessdot u_{2} \lessdot \cdots \lessdot v$ which is rising and lexicographically first
- by definition and Lemma 2, the chain $u \lessdot u_{1} \lessdot u_{2} \lessdot \cdots \lessdot v$ is the desired maximal chain in $[u, v$]

Outline

(1) Preliminaries

Cambrian Lattices
 EL-Shellability of Posets

(2) EL-Shellability of C_{γ}

The Labeling
Main Result
(3) Applications

Topology of C_{γ}
Subword Complexes

Topology of C_{γ}

Theorem (Reading, 2004)

Every open interval in a Cambrian lattice is either contractible or homotopy equivalent to a sphere.

- Nathan Reading obtained this result by showing that C_{γ} is a special instance of a fan lattice associated to a central hyperplane arrangement
- he showed this property for this larger class of lattices
- having an EL-labeling of C_{γ}, we can proof this property directly

Topology of C_{γ}

Theorem

Let $u, v \in C_{\gamma}$ with $u \leq v$. Then $|\mu(u, v)| \leq 1$.

- if \mathbb{P} is an EL-shellable poset, and $p, q \in \mathbb{P}$ with $p \leq q$, then
$\mu(p, q)=\#$ even length falling chains in $[p, q]-$ \# odd length falling chains in $[p, q]$
- we show that there exists at most one falling chain in each interval

Subword Complexes

- Vincent Pilaud and Christian Stump have recently shown that the Cambrian lattices coincide with the poset of flips of special subword complexes
- Christian Stump observed that our labeling is a specialization of a natural labeling of the poset of flips for every subword complex

Thank You.

An EL-Labeling for Trim Lattices

- let L be a lattice
- left-modular element: $x \in L$ such that for all $y, z \in L$ holds

$$
\left(y \vee_{L} x\right) \wedge_{L} z=y \vee_{L}\left(x \wedge_{L} z\right)
$$

- left-modular lattice: a lattice that contains a maximal chain of left-modular elements
- join-irreducible element: $x \in L$ which covers exactly one element
- meet-irreducible element: $x \in L$ which is covered by exactly one element
- trim lattice: a left-modular lattice (with left-modular chain of length n) that has exactly n join- and n meet-irreducible elements

An EL-Labeling for Trim Lattices

- let L be a finite lattice with left-modular chain $\hat{0}=x_{0} \lessdot\left\llcorner x_{1} \lessdot\left\llcorner\cdots \lessdot\left\llcorner x_{n}=\hat{1}\right.\right.\right.$
- $\gamma: \mathcal{E}(L) \rightarrow \mathbb{N}, \quad(p, q) \mapsto \min \left\{i \mid p \vee_{L} x_{i} \wedge_{L} q=q\right\}$

Proposition (Liu, 1999)

If L is a finite, left-modular lattice, then γ is an EL-labeling.

Liu's Labeling

Our Labeling

