Preliminaries

On the EL-Shellability of the Cambrian Lattices

Myrto Kallipoliti and Henri Mühle

September 10, 2012

- it is well-known that the Hasse diagram of the Tamari lattice corresponds to the 1-skeleton of the classical associahedron
- the Tamari lattice T_n can be realized as a lattice quotient of the weak order lattice of the Coxeter group A_n
- the bottom elements of each congruence class are precisely the 312-avoiding permutations
- Nathan Reading has generalized this construction to all finite Coxeter groups W and all Coxeter elements $\gamma \in W$
- he called the resulting lattices Cambrian lattices, denoted by ${\cal C}_{\gamma}$
- this construction yields a generalized associahedron for all finite Coxeter groups

Preliminaries	EL-Shellability of C_{γ}	Applications

- Björner and Wachs showed that T_n is EL-shellable and that each open interval of T_n is either contractible or spherical
 - it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical

Preliminaries	

- Björner and Wachs showed that T_n is EL-shellable and that each open interval of T_n is either contractible or spherical
 - it follows from a result by Hugh Thomas and Colin Ingalls that C_{γ} is EL-shellable
 - it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical

Preliminaries

- Björner and Wachs showed that T_n is EL-shellable and that each open interval of T_n is either contractible or spherical
 - it follows from a result by Hugh Thomas and Colin Ingalls that C_{γ} is EL-shellable
 - it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical
- however,
 - Thomas and Ingalls utilize the representation theory of Coxeter groups
 - Reading utilizes the fact that C_{γ} is the fan lattice of the Coxeter arrangement

Preliminaries

- Björner and Wachs showed that T_n is EL-shellable and that each open interval of T_n is either contractible or spherical
 - it follows from a result by Hugh Thomas and Colin Ingalls that C_{γ} is EL-shellable
 - it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical
- however,
 - Thomas and Ingalls utilize the representation theory of Coxeter groups
 - Reading utilizes the fact that ${\it C}_{\gamma}$ is the fan lattice of the Coxeter arrangement
- we give a direct, case-free proof of these properties, using the realization of C_{γ} in terms of γ -sortable elements

Preliminaries

Outline

1 Preliminaries

Cambrian Lattices EL-Shellability of Posets

2 EL-Shellability of C_{γ}

The Labeling Main Result

3 Applications

Topology of C_{γ} Subword Complexes

Preliminaries	EL-Shellability of C_{γ}	Appli

Outline

Preliminaries Cambrian Lattices EL-Shellability of Posets EL-Shellability of C_γ

The Labeling Main Result

3 Applications Topology of C_γ Subword Complex

$\gamma\text{-}\mathbf{Sorting}\ \mathbf{Words}$

- let W be a finite Coxeter group of rank n, with simple generators S = {s₁, s₂, ..., s_n}
- consider the Coxeter element $\gamma = s_1 s_2 \cdots s_n$ and the half-infinite word $\gamma^{\infty} = s_1 s_2 \cdots s_n |s_1 s_2 \cdots s_n| s_1 \cdots$
- γ -sorting word of w: the reduced decomposition of $w \in W$ which is lexicographically first as a subword of γ^{∞} among all reduced decompositions of w

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

 $s_1s_4s_3s_4, \quad s_4s_1s_3s_4, \quad s_4s_3s_1s_4, \quad s_4s_3s_4s_1,$

 $s_1s_3s_4s_3$, $s_3s_1s_4s_3$, $s_3s_4s_1s_3$, $s_3s_4s_3s_1$

• the decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ -sorting word of w

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

 $s_1s_4s_3s_4, \quad s_4s_1s_3s_4, \quad s_4s_3s_1s_4, \quad s_4s_3s_4s_1,$

 $s_1 s_3 s_4 s_3, \quad s_3 s_1 s_4 s_3, \quad s_3 s_4 s_1 s_3, \quad s_3 s_4 s_3 s_1$

• the decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ -sorting word of w

Preliminaries 0000 000 Cambrian Lattices

γ -Sorting Words – Example

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

S₁**S**₄**S**₃**S**₄, *S*₄*S*₃*S*₄*S*, *S*₄*S*₃*S*₄*S*₃, *S*₄*S*₃*S*₄*S*₁,

 $s_1 s_3 s_4 s_3, \quad s_3 s_1 s_4 s_3, \quad s_3 s_4 s_1 s_3, \quad s_3 s_4 s_3 s_1$

• the decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ -sorting word of w

Preliminaries 0000 000 Cambrian Lattices

γ -Sorting Words – Example

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

 $s_1 s_4 s_3 s_4$, $s_4 s_1 s_3 s_4$, $s_4 s_3 s_1 s_4$, $s_4 s_3 s_4 s_1$,

 $s_1 s_3 s_4 s_3, \quad s_3 s_1 s_4 s_3, \quad s_3 s_4 s_1 s_3, \quad s_3 s_4 s_3 s_1$

• the decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ -sorting word of w

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

 $s_1 s_4 s_3 s_4$, $s_4 s_1 s_3 s_4$, $s_4 s_3 s_1 s_4$, $s_4 s_3 s_4 s_1$,

 $s_1 s_3 s_4 s_3, \quad s_3 s_1 s_4 s_3, \quad s_3 s_4 s_1 s_3, \quad s_3 s_4 s_3 s_1$

• the decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ -sorting word of w

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

 $s_1 s_4 s_3 s_4$, $s_4 s_1 s_3 s_4$, $s_4 s_3 s_1 s_4$, $s_4 s_3 s_4 s_1$,

 $s_1 s_3 s_4 s_3, \quad s_3 s_1 s_4 s_3, \quad s_3 s_4 s_1 s_3, \quad s_3 s_4 s_3 s_1$

• the decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ -sorting word of w

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

 $s_1s_4s_3s_4, \quad s_4s_1s_3s_4, \quad s_4s_3s_1s_4, \quad s_4s_3s_4s_1,$

S₁**S**₃**S**₄**S**₃, *S*₃*S*₁*S*₄*S*₃, *S*₃*S*₄*S*₃*S*₁, *S*₃*S*₄*S*₃*S*₁

• the decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ -sorting word of w

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

 $s_1s_4s_3s_4, \quad s_4s_1s_3s_4, \quad s_4s_3s_1s_4, \quad s_4s_3s_4s_1,$

*s*₁*s*₃*s*₄*s*₃, *s*₃*s*₁*s*₄*s*₃, *s*₃*s*₄*s*₃*s*₁

• the decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ -sorting word of w

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

 $s_1s_4s_3s_4, \quad s_4s_1s_3s_4, \quad s_4s_3s_1s_4, \quad s_4s_3s_4s_1,$

*s*₁*s*₃*s*₄*s*₃, *s*₃*s*₁*s*₄*s*₃, *s*₃*s*₄*s*₃*s*₁

• the decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ -sorting word of w

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

 $s_1s_4s_3s_4, \quad s_4s_1s_3s_4, \quad s_4s_3s_1s_4, \quad s_4s_3s_4s_1,$

 $s_1 s_3 s_4 s_3, \quad s_3 s_1 s_4 s_3, \quad s_3 s_4 s_1 s_3, \quad s_3 s_4 s_3 s_1$

• the decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ -sorting word of w

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

 $s_1s_4s_3s_4, \quad s_4s_1s_3s_4, \quad s_4s_3s_1s_4, \quad s_4s_3s_4s_1,$

S₁**S**₃**S**₄**S**₃, *S*₃*S*₁*S*₄*S*₃, *S*₃*S*₄*S*₃*S*₁, *S*₃*S*₄*S*₃*S*₁

• the decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^{∞} among these words, and thus the γ -sorting word of w

Preliminaries	EL-Shellability of C_{γ}
00000	
Cambrian Lattices	

γ -Sortable Words

• write the γ -sorting word of w as follows

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

- *i*-th block of *w*: the set $b_i = \{s_j \mid \delta_{i,j} = 1\} \subseteq S$, where $i \in \{1, 2, \dots, l\}$
- γ -sortable word: a word $w \in W$ satisfying $b_1 \supseteq b_2 \supseteq \cdots \supseteq b_l$

$\gamma\text{-}\mathbf{Sortable}$ Words

• write the γ -sorting word of w as follows

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

- *i*-th block of *w*: the set $b_i = \{s_j \mid \delta_{i,j} = 1\} \subseteq S$, where $i \in \{1, 2, \dots, l\}$
- γ -sortable word: a word $w \in W$ satisfying $b_1 \supseteq b_2 \supseteq \cdots \supseteq b_l$
- the γ -sorting word $w = s_1 s_3 s_4 | s_3$ has $b_1 = \{s_1, s_3, s_4\}$ and $b_2 = \{s_3\}$ and is thus γ -sortable
- the γ -sorting word $v = s_1 s_3 s_4 | s_2$ is not

Preliminaries	
00000	
Cambrian	Lattices

Cambrian Lattices

Theorem (Reading, 2005)

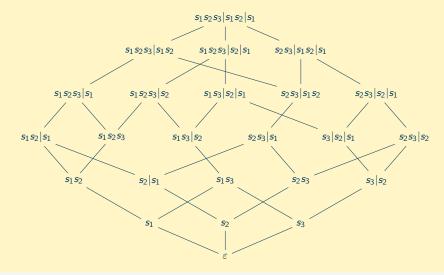
Let γ be a Coxeter element of a finite Coxeter group W. The γ -sortable elements of W constitute a sublattice of the weak order on W.

- consider the map π_γ : W → W, w ↦ π_γ(w) that maps w to the largest γ-sortable element below it
- the fibers of π_γ induce a lattice congruence θ_γ on the weak order on W
- Cambrian lattice C_{γ} : the lattice quotient W/θ_{γ}

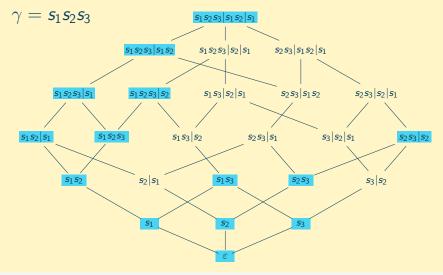
Preliminaries	EL-Shellability of C_{γ}
0000	

Cambrian Lattices

Cambrian Lattices – Example



Preliminaries	EL-Shellability of C_{γ}	Applications
0000		00
Cambrian Lattices		



Myrto Kallipoliti and Henri Mühle

Preliminaries ○○○○●	EL-Shellability of C_{γ} oo ooo	Applications
Cambrian Lattices		
Cambrian Lattices –	Example	
$\gamma=s_1s_2s_3$	<u>515253</u> 5152 51	
51 52 53 51 51 52 53 5		52 53 52

*s*₁*s*₃

s₂

ε

Myrto Kallipoliti and Henri Mühle

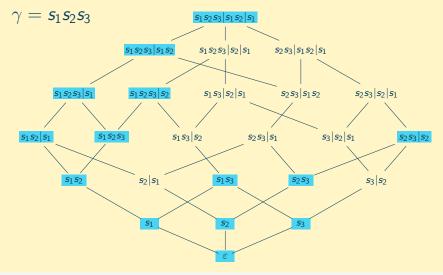
s1

*s*₁*s*₂

*s*₂*s*₃

s3

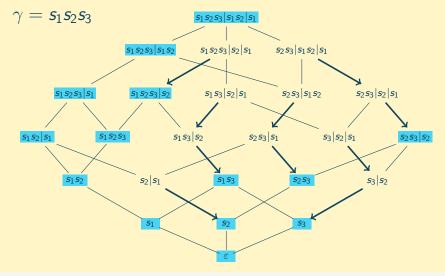
Preliminaries	EL-Shellability of C_{γ}	Applications
0000		00
Cambrian Lattices		



Myrto Kallipoliti and Henri Mühle

Preliminaries	EL-Shellability of C_{γ}	Applications
0000		00
Combrian Lattices		

Ρ



Myrto Kallipoliti and Henri Mühle

Preliminaries ○○○○●	EL-Shellability of C_{γ} oo oooo	Applications
Cambrian Lattices		
Cambrian Lattices –	Example	
$\gamma=s_1s_2s_3$	<u>515253</u> 51 <u>52</u> 51 52	
51 52 53 51 51 52 53 5		5 2 5 3 5 2

*s*₁*s*₃

s₂

ε

Myrto Kallipoliti and Henri Mühle

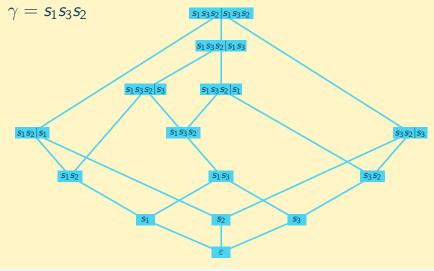
s1

*s*₁*s*₂

*s*₂*s*₃

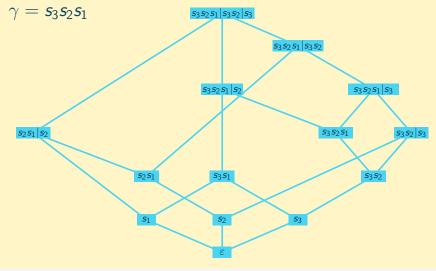
s3

Preliminaries	EL-Shellability of C_{γ}	Applications
Cambrian Lattices		



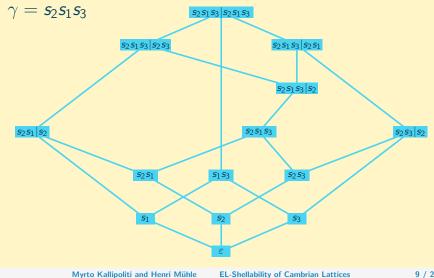
Myrto Kallipoliti and Henri Mühle

Preliminaries	EL-Shellability of C_{γ}	Applications
0000		00 00
Cambrian Lattices		



Myrto Kallipoliti and Henri Mühle

Preliminaries	EL-Shellability of C_{γ}	Applications
0000		00 00
Cambrian Lattices		



9 / 24

Basics on Posets

- bounded poset: a poset that has a unique minimal and a unique maximal element
- let $\mathbb{P} = (P, \leq_{\mathbb{P}})$ be a bounded poset
- ₱ is the poset that arises from ℙ by removing the maximal and minimal element (the so-called proper part of ℙ)
- chain: linearly ordered subset c of P notation: c : p₀ <_ℙ p₁ <_ℙ ··· <_ℙ p_s
- maximal chain in [p, q]: there is no $p' \in [p, q]$ and no $0 \le i < s$ such that

 $p = p_0 <_{\mathbb{P}} p_1 <_{\mathbb{P}} \cdots <_{\mathbb{P}} p_i <_{\mathbb{P}} p' <_{\mathbb{P}} p_{i+1} <_{\mathbb{P}} \cdots <_{\mathbb{P}} p_s = q$ is a chain

Preliminaries	EL-Shellability of C_{γ}	Applicatio
00000		
EL-Shellability of Posets		

Edge-Labelings

- cover relation $p \leq_{\mathbb{P}} q$: $p <_{\mathbb{P}} q$ and there is no $p' \in P$ with $p <_{\mathbb{P}} p' <_{\mathbb{P}} q$
- $\mathcal{E}(\mathbb{P}) = ig\{(p,q) \mid p \lessdot_{\mathbb{P}} qig\}$ is the set of covering relations on \mathbb{P}
- edge-labeling λ : map $\lambda : \mathcal{E}(\mathbb{P}) \to \Lambda$, for some poset Λ
- $\lambda(c) = (\lambda(p_0, p_1), \lambda(p_1, p_2), \dots, \lambda(p_{s-1}, p_s))$ is the label-sequence of c
- rising chain: a chain c such that $\lambda(c)$ is strictly increasing
- ER-labeling: an edge-labeling such that for every interval of $\mathbb P$ there is exactly one rising maximal chain
- EL-labeling: an ER-labeling such that the rising chain in every interval is lexicographically first among all maximal chains

Preliminaries	EL-Shellability of C_{γ}	Арр
00000 000		
EL-Shellability of Posets		

EL-Shellability

• EL-shellable poset: a bounded poset that admits an EL-labeling

EL-Shellability

- EL-shellable poset: a bounded poset that admits an EL-labeling
- the order complex $\Delta(\overline{\mathbb{P}})$ of an EL-shellable poset \mathbb{P} is shellable and hence Cohen-Macaulay
- the geometric realization of $\Delta(\overline{\mathbb{P}})$ is homotopy equivalent to a wedge of spheres
- the *i*-th Betti number of Δ(ℙ) is given by the number of falling maximal chains of length *i* + 2
- hence, the Euler characteristic $\chi\big(\Delta(\overline{\mathbb{P}})\big)$ can be computed from the labeling
- if $0_{\mathbb{P}}$ is the unique minimal element and $1_{\mathbb{P}}$ the unique maximal element of \mathbb{P} , we have $\chi(\Delta(\overline{\mathbb{P}})) = \mu(0_{\mathbb{P}}, 1_{\mathbb{P}})$

Preliminarie	s

Outline

Preliminaries
 Cambrian Lattices
 EL-Shellability of Posets

2 EL-Shellability of C_{γ} The Labeling Main Result

3 Applications Topology of C_γ Subword Complexe

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• •••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• •••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• •••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0$,

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• •••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \left\{ (i-1) \cdot n + j \mid \delta_{i,j} = 1 \right\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = \mathbf{s_1^1} s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• •••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \left\{ (i-1) \cdot n + j \mid \delta_{i,j} = 1 \right\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 \mathbf{s}_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1\}$

Preliminaries 00000 000	EL-Shellability of C_{γ}	Applications
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(\mathsf{w}) = \left\{ (i-1) \cdot \mathsf{n} + j \mid \delta_{i,j} = 1 \right\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0$, $\alpha(w) = \{1, 3\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• ••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(\mathsf{w}) = \left\{ (i-1) \cdot \mathsf{n} + j \mid \delta_{i,j} = 1 \right\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0$, $\alpha(w) = \{1, 3\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• ••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(\mathsf{w}) = \left\{ (i-1) \cdot \mathsf{n} + j \mid \delta_{i,j} = 1 \right\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• ••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(\mathsf{w}) = \left\{ (i-1) \cdot \mathsf{n} + j \mid \delta_{i,j} = 1 \right\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0$, $\alpha(w) = \{1, 3, 6\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• ••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0$, $\alpha(w) = \{1, 3, 6\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• ••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 \mathbf{s}_4^1 | s_1^0 s_2^0 s_3^1 s_4^0$, $\alpha(w) = \{1, 3, 6, 8\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• ••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \left\{ (i-1) \cdot n + j \mid \delta_{i,j} = 1 \right\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | \mathbf{s}_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6, 8\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• ••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0$, $\alpha(w) = \{1, 3, 6, 8\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
	•• •••	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 \mathbf{s}_3^1 s_4^0$, $\alpha(w) = \{1, 3, 6, 8, 11\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
	• 0 0000	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0$, $\alpha(w) = \{1, 3, 6, 8, 11\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
	• 0 0000	
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let
$$w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0$, $\alpha(w) = \{1, 3, 6, 8, 11\}$

Preliminaries	EL-Shellability of C_{γ}	Applications
The Labeling		

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

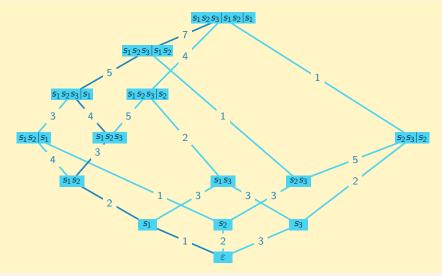
• define the set of filled positions of w in γ^∞ by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• $\lambda : \mathcal{E}(C_{\gamma}) \to \mathbb{N}, \quad (u, v) \mapsto \min\{\alpha(v) \setminus \alpha(u)\}$

Preliminaries
The Labeling

The Labeling – Example



Preliminaries	EL-Shellability of C_{γ}	Applications
	00 000	00
Main Result		

Main Result

Theorem

For every finite Coxeter group W and every Coxeter element $\gamma \in W$, the edge-labeling λ is an EL-labeling of C_{γ} .

We need two technical lemmas for the proof!

Preliminaries	EL-Shellability of C_{γ}	Applications
Main Result		

Lemma 1

Lemma

Let $u \leq v$ in C_{γ} . If u and v have the same first block b, then let u', v' be the elements obtained by omitting b. Then, $u', v' \in C_{\gamma}$, and we have:

- **1** The intervals [u, v] and [u', v'] are isomorphic.
- ② For every $w'_1, w'_2 \in [u', v']$ with $w'_1 < w'_2$ we have $\lambda(bw'_1, bw'_2) = \lambda(w'_1, w'_2) + n$.

Preliminaries	EL-Shellability of C_{γ}	Applications
Main Result		

Lemma 2

Lemma

For $u, v \in C_{\gamma}$ with $u \leq v$ define $i_0 = \min\{i \in \alpha(v) \setminus \alpha(u)\}$. The following hold:

- **1** The label i_0 appears in every maximal chain of [u, v].
- 2 There is a unique element $u_1 \in (u, v)$ with $u \leq u_1$ and $\lambda(u, u_1) = i_0$.
- **3** $\alpha(u)$ is a subset of $\alpha(v)$.
- **4** The labels of each maximal chain in [u, v] are distinct.

Preliminaries	EL-Shellability of C_{γ}	Applications
		00
Main Result		

Main Result

Theorem

For every finite Coxeter group W and every Coxeter element $\gamma \in W$, the edge-labeling λ is an EL-labeling of C_{γ} .

Sketch of proof:

- proceed by induction on the length k of the interval [u, v]
- if k = 2, then the result follows from Lemma 2
- Lemma 2 tells us that there exists an $u < u_1$ in [u, v] with $\lambda(u, u_1) = i_0$
- apply induction on the interval [u₁, v] to find the maximal chain u₁ ≤ u₂ ≤ · · · ≤ v which is rising and lexicographically first
- by definition and Lemma 2, the chain u ≤ u₁ ≤ u₂ ≤ · · · ≤ v is the desired maximal chain in [u, v]

Preliminarie	s

Outline

Preliminaries
 Cambrian Lattices
 EL-Shellability of Posets

2 EL-Shellability of C_γ The Labeling Main Result

3 Applications

Topology of C_{γ} Subword Complexes

Topology of C_{γ}

Theorem (Reading, 2004)

Every open interval in a Cambrian lattice is either contractible or homotopy equivalent to a sphere.

- Nathan Reading obtained this result by showing that C_{γ} is a special instance of a fan lattice associated to a central hyperplane arrangement
- he showed this property for this larger class of lattices
- having an EL-labeling of C_{γ} , we can proof this property directly

Preliminaries	EL-Shellability of C_{γ}	Applications
		00
Topology of C_{γ}		

Topology of
$$\mathcal{C}_\gamma$$

Theorem

Let $u, v \in C_{\gamma}$ with $u \leq v$. Then $|\mu(u, v)| \leq 1$.

• if $\mathbb P$ is an EL-shellable poset, and $p,q\in\mathbb P$ with $p\leq q$, then

 $\mu(p,q) = \#$ even length falling chains in [p,q]-# odd length falling chains in [p,q]

 we show that there exists at most one falling chain in each interval Preliminaries

Subword Complexes

Subword Complexes

- Vincent Pilaud and Christian Stump have recently shown that the Cambrian lattices coincide with the poset of flips of special subword complexes
- Christian Stump observed that our labeling is a specialization of a natural labeling of the poset of flips for every subword complex

Preliminaries	EL-Shellability of C_{γ}	Applications
00000	00	00
		0•
Subword Complexes		

Thank You.

Myrto Kallipoliti and Henri Mühle EL-Shellability of Cambrian Lattices

An EL-Labeling for Trim Lattices

- let *L* be a lattice
- left-modular element: $x \in L$ such that for all $y, z \in L$ holds

$$(y \lor_L x) \land_L z = y \lor_L (x \land_L z)$$

- left-modular lattice: a lattice that contains a maximal chain of left-modular elements
- join-irreducible element: x ∈ L which covers exactly one element
- meet-irreducible element: x ∈ L which is covered by exactly one element
- trim lattice: a left-modular lattice (with left-modular chain of length n) that has exactly n join- and n meet-irreducible elements

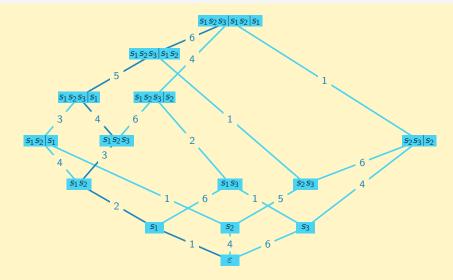
An EL-Labeling for Trim Lattices

- let *L* be a finite lattice with left-modular chain $\hat{0} = x_0 \ll_L x_1 \ll_L \cdots \ll_L x_n = \hat{1}$
- $\gamma: \mathcal{E}(L) \to \mathbb{N}, \quad (p,q) \mapsto \min\{i \mid p \lor_L x_i \land_L q = q\}$

Proposition (Liu, 1999)

If L is a finite, left-modular lattice, then γ is an EL-labeling.

Liu's Labeling



Our Labeling

