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associated to a Coxeter system, namely

“The Koszul dual of

the algebra of
the dual braid monoid”

Most of the talk will be focused on type A for simplicity.

. and also because | cannot yet prove the main results in all
generality.
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Usual noncrossing partitions.

Let (W, S) the Coxeter system of type A,,_1.
So W =5, generated by S = {(¢,2+ 1)} fori=1,...,n — 1.
s Standard theory

Length £g{w) == minimal & such that w =185, sy,
Bruhat order: \w < w8 () 4 e (o Han ') = e ()
e Dual presentation

W with all transpositions T' = {(7, j)} as generators.
Absolute length /7 (w) = minimal k with w =1¢;, ---t;, .

=n — |{ cycles of w}|
Absolute order: w <7 w' if br(w) + br(w™tw') = br(w').

NC(n) = NC(A,_1) = lid, (12---n)] .
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Braids

Braids on n strings = Strings go down, 2
of them can cross in two ways.

Braids (up to isotopy) form a group wrt
concatenation.

Permutation of the endpoints
= S,, as quotient group.

o Ay

[/ J
Consider the monoid BK L,, generated by I U
the braids a;; in this braid group. —
(Usual generators of the braid group/monoid are a;;1.) ﬁ 1

They verify certain relations, eg  a;;a;;, = a;j;aix.
One can characterize all such relations.




he Birman Ko Lee monoid

Proposition [BKL '98] The monoid BK L,, has generators a;;
for 1 <17 < 7 < n and relations:

Q;j Ak = AjLAjk = A;kA;; for 2 <7 < k;
a;;jap = aga;; fort<jg<k<lori<k<l<y.

The relations respect length of words
= length ¢(m) of an element in the quotient is well defined.
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Proposition [BKL '98] The monoid BK L,, has generators a;;
for 1 <17 < 7 < n and relations:

Q;j Ak = AjLAjk = A;kA;; for 2 <7 < k;
a;;jap = aga;; fort<jg<k<lori<k<l<y.

The relations respect length of words
= length ¢(m) of an element in the quotient is well defined.

n—1

.
n—l— 'k!(k+1)!

Proposntlon Z ttm) —

Let P, (t) =

OM

Pn(_t) |

1
1 — 6t + 10t2 — 513

For instance Z $b(m)
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Proof of the evaluation of P, (%)

In fact there is a well known relation between the length
generating function and the Moebius function of the monoid
ordered by divisibility (see [Cartier—Foatal).

Put)= Y |u(m)]t"™.

meBK L,

But BK L, is a Garside monoid with Garside element
C' = ajzas3 - a,_1, = u(m) = 0 if m does not divide C'.
Furthermore [1, Clieft divisibility =~ INC(n), and so

Po(t) = Y enc(s,) Imw) )

In [Albenque, N. '09] we computed this “combinatorially”.

And then | talked to Vic Reiner.



he monoid algebra

We pass from the monoid to its k-algebra A:

Definition The algebra A is defined by the generators a;; and relations
I:<a7;jakl—akla7;j fori< g <k<lori<k<l<y;

QA5 — AjkAik; AjkAik — Ak for 1 < 7 < k.



he monoid algebra

We pass from the monoid to its k-algebra A:

Definition The algebra A is defined by the generators a;; and relations
I:<a7;jakl—akla7;j fori< g <k<lori<k<l<y;

QA5 — AjkAik; AjkAik — Ak for 1 < 7 < k.

Elements of BK L,, form a basis of A, which has a grading
A= @RZOAIm with

Hilba(t ZdlmAk th — N
n>0

We associate to A another algebra AT the Koszul dual of A.
This transformation Q — QT is defined more generally for all
quadratic algebras ().
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Koszul duality of quadratic algebras

Definition A quadratic algebra () is a graded algebra where
the ideal of relations is generated by elements of degree 2.

Q = k{xX1,...,Xm)/Ideal(R)
with R vector subspace of Wy :={} ; . \ijXiX; }.

Declare that (x;X;); ; is an orthonormal basis of Wy, and let
R' be the orthogonal of R. Then define

QT = k(x1,... ,Xm>/ldeal(RT)

Examples

(a) R =span{x;x; —x;X;,1 < j}  Ri=span{x?, x;x; +x;X;,1 < j}
Symmetric algebra Exterior algebra

(b) R = span{x;x;, (i,j) € I € [m]*} R = span{x;x;,(i,j) € [m]*> — I}

Monomial ideals
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Koszul duality for algebras

e We have A = k(a;;)/Ideal(R) with

R =span{a;;jay —aga;; fori<j<k<lori<k<l<yjy
Q; A5k — AjkAik; AjkAik — ALA4; for 1 < ] < k}

e What is R in this case ?

It has a basis consisting of:
(1) all a; jax,; which do not appear above;
(2) a; jai; + axa; ; for (¢,7), (k,l) noncrossing;
(3) ;A T+ Ak T A5, with 1 < 7 < k.
Theorem [Albenque, N. '09; N.’ 12]

Hilb 4+ (t) = Py(t)

Main question: why did | reprove one of my own results ?
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Koszul algebras

e In [Albenque, N. '09], we proved a bit more.

We showed that A is a Koszul algebra, which can be defined
as A graded k-algebra () such that the ()-module £ admits a
minimal graded free resolution which is linear” .

Now () Koszul = () numerically Koszul:
Hilbg(t) - Hilbgi (—t) =1
But this gives no insight on the structure of AT.

e New work: a nice basis of the algebra AT.

A= & Affu]

weNC(n)

with an explicit basis of AT[w] of cardinality p(w).
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Other Coxeter groups

(W, S) a finite Coxeter system

Reflections t € T' = U, ,wSw™! as new generators.
e /7(w) = minimal k such that w =ty --- 1.

w <7 w' if bp(w) + br(w™tw'") = br(w')

Fix a Coxeter element ¢, define NC(W) := [1, c|<.,.

e [Bessis '00] Define the dual braid monoid as generated by
a; with ¢ € T" and relations a;a,, = a, a,, whenever tu <7 c.

Its algebra A(W) is clearly quadratic, we can therefore
consider the dual algebra AT(W) and explicit a presentation.

Same questions for A(W) instead of A = A(S,,)
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Questions for the future

1) Is A(W) numerically Koszul, ie.
Hile(W)(t) - HileT(W)(—t) =17
2) Is A(W) a Koszul algebra?
3) Is there a decomposition AT(W) = D envemw) AT(W)[w]

with AT(W)[w] has a nice basis of size u(w) ?

Conjecture Yes.

Known and To do

3) or 2) imply 1).

2) is true for type B [Albenque, N. '09].

Check 3) (or simply 1) for exceptional types by computer.
Prove 3) by checking that a certain chain complex is exact
(V. Féray).

e Use explicit EL-shelling of NC(W).



