A word Hopf algebra based on the selection/quotient principle

Nguyen HOANG-NGHIA
LIPN, Univ. Paris XIII, Sorbonne Paris Cité

based on arXiv:1207.6522v1
Séminaire Lotharingien de Combinatoire 69
Strobl, September 10, 2012

Plan

- Introduction - Combinatorial Hopf algebra classification (for this purpose)

Plan

- Introduction - Combinatorial Hopf algebra classification (for this purpose)
- Algebra structure of WMat

Plan

- Introduction - Combinatorial Hopf algebra classification (for this purpose)
- Algebra structure of WMat
- Bialgebra structure of WMat

Plan

- Introduction - Combinatorial Hopf algebra classification (for this purpose)
- Algebra structure of WMat
- Bialgebra structure of WMat
- Primitive elements of WMat

Plan

- Introduction - Combinatorial Hopf algebra classification (for this purpose)
- Algebra structure of WMat
- Bialgebra structure of WMat
- Primitive elements of WMat
- Hilbert series of WMat
- Introduction - Combinatorial Hopf algebra classification (for this purpose)
- Algebra structure of WMat
- Bialgebra structure of WMat
- Primitive elements of WMat
- Hilbert series of WMat
- Conclusion and perspectives

Introduction - Combinatorial Hopf algebra classification

(1) Combinatorial Hopf algebras of type I - the selection/quotient principle

Introduction - Combinatorial Hopf algebra classification

(1) Combinatorial Hopf algebras of type I - the selection/quotient principle
(2) Combinatorial Hopf algebras of type II - the selection/complementation principle

Combinatorial Hopf algebras of type I

The selection/quotient principle

$$
\begin{equation*}
\Delta(S)=\sum_{A \subseteq S(+ \text { Conditions })} S[A] \otimes S / A, \tag{1}
\end{equation*}
$$

\hookrightarrow mostly used in combinatorial physics

- Connes-Kreimer Hopf algebra of Feynman graphs
A. Connes, D. Kreimer, Commun. Math. Phys. 210 (2000), no. 1, 249-273, [arXiv:hep-th/0003188].

Combinatorial Hopf algebras of type I

The selection/quotient principle

$$
\begin{equation*}
\Delta(S)=\sum_{A \subseteq S(+ \text { Conditions })} S[A] \otimes S / A, \tag{1}
\end{equation*}
$$

\hookrightarrow mostly used in combinatorial physics

- Connes-Kreimer Hopf algebra of Feynman graphs
A. Connes, D. Kreimer, Commun. Math. Phys. 210 (2000), no. 1, 249-273, [arXiv:hep-th/0003188].
- Hopf algebra of Feynman ribbon graphs
A. Tanasa, Vignes-Tourneret, J. Noncomm. Geom. (2008). arXiv:0707.4143[math-ph]
A. Tanasa, Kreimer, J. Noncomm. Geom. (in press), arXiv:0907.2182 [hep-th].

Combinatorial Hopf algebras of type I

The selection/quotient principle

$$
\begin{equation*}
\Delta(S)=\sum_{A \subseteq S(+ \text { Conditions })} S[A] \otimes S / A, \tag{1}
\end{equation*}
$$

\hookrightarrow mostly used in combinatorial physics

- Connes-Kreimer Hopf algebra of Feynman graphs
A. Connes, D. Kreimer, Commun. Math. Phys. 210 (2000), no. 1, 249-273, [arXiv:hep-th/0003188].
- Hopf algebra of Feynman ribbon graphs
A. Tanasa, Vignes-Tourneret, J. Noncomm. Geom. (2008). arXiv:0707.4143[math-ph]
A. Tanasa, Kreimer, J. Noncomm. Geom. (in press), arXiv:0907.2182 [hep-th].
- Hopf algebra of quantum gravity spin-foam models
A. Tanasa, Class. Quant. Grav. 27, 095008 (2010), [arXiv:0909. 5631 [gr-qc]].

Combinatorial Hopf algebras of type I

The selection/quotient principle

$$
\begin{equation*}
\Delta(S)=\sum_{A \subseteq S(+ \text { Conditions })} S[A] \otimes S / A, \tag{1}
\end{equation*}
$$

\hookrightarrow mostly used in combinatorial physics

- Connes-Kreimer Hopf algebra of Feynman graphs
A. Connes, D. Kreimer, Commun. Math. Phys. 210 (2000), no. 1, 249-273, [arXiv:hep-th/0003188].
- Hopf algebra of Feynman ribbon graphs
A. Tanasa, Vignes-Tourneret, J. Noncomm. Geom. (2008). arXiv:0707.4143[math-ph]
A. Tanasa, Kreimer, J. Noncomm. Geom. (in press), arXiv:0907.2182 [hep-th].
- Hopf algebra of quantum gravity spin-foam models
A. Tanasa, Class. Quant. Grav. 27, 095008 (2010), [arXiv:0909.5631 [gr-qc]].
\hookrightarrow A Hopf algebraic structure of matroids:
W. Schmitt, J. of Pure and Applied Alg. 96 (1994), 299-330.

Combinatorial Hopf algebra of type II

The selection/complemention principle:

$$
\begin{equation*}
\Delta(S)=\sum_{A \subseteq S(+ \text { Conditions })} S[A] \otimes[S-A] . \tag{2}
\end{equation*}
$$

- The Loday-Ronco Hopf algebra of planar binary trees
J.- L. Loday, M. O. Ronco, Adv. Math. 139 (1998), 293-309.

Combinatorial Hopf algebra of type II

The selection/complemention principle:

$$
\begin{equation*}
\Delta(S)=\sum_{A \subseteq S(+ \text { Conditions })} S[A] \otimes[S-A] . \tag{2}
\end{equation*}
$$

- The Loday-Ronco Hopf algebra of planar binary trees
J.- L. Loday, M. O. Ronco, Adv. Math. 139 (1998), 293-309.
- The Hopf algebra on matrix quasi-symmetric functions MQSym, the Hopf algebra on the free quasi-symmetric functions FQSym, etc

[^0]
Introduction

Objective

Define a combinatorial Hopf algebra structure of type I - WMat - on objects familiar to type II (words)

Algebra structure of WMat

$X=\left\{x_{i}\right\}_{i \geq 0}$ (the alphabet)
X^{*} - the set of words with letters in the alphabet X.
The shifted concatenation $*-$ the product:

$$
\begin{equation*}
u * v=u T_{\sup (u)}(v), \tag{3}
\end{equation*}
$$

where, for $t \in \mathbb{N}, T_{t}(v)$ - the image of w by S_{ϕ} for $\phi(n)=n+t$ if $n>0$ and $\phi(0)=0$ (in general, all letters can be reindexed except x_{0}). Ex.

$$
x_{1} x_{2} x_{1} x_{3} * x_{2} x_{0} x_{1}=x_{1} x_{2} x_{1} x_{3} x_{5} x_{0} x_{4}
$$

Algebra structure of WMat

$X=\left\{x_{i}\right\}_{i \geq 0}$ (the alphabet)
X^{*} - the set of words with letters in the alphabet X.
The shifted concatenation $*$ - the product:

$$
\begin{equation*}
u * v=u T_{\sup (u)}(v) \tag{3}
\end{equation*}
$$

where, for $t \in \mathbb{N}, T_{t}(v)$ - the image of w by S_{ϕ} for $\phi(n)=n+t$ if $n>0$ and $\phi(0)=0$ (in general, all letters can be reindexed except x_{0}). Ex.

$$
x_{1} x_{2} x_{1} x_{3} * x_{2} x_{0} x_{1}=x_{1} x_{2} x_{1} x_{3} x_{5} x_{0} x_{4}
$$

Algebra structure of WMat

$X=\left\{x_{i}\right\}_{i \geq 0}$ (the alphabet)
X^{*} - the set of words with letters in the alphabet X.
The shifted concatenation $*-$ the product:

$$
\begin{equation*}
u * v=u T_{\sup (u)}(v) \tag{3}
\end{equation*}
$$

where, for $t \in \mathbb{N}, T_{t}(v)$ - the image of w by S_{ϕ} for $\phi(n)=n+t$ if $n>0$ and $\phi(0)=0$ (in general, all letters can be reindexed except x_{0}). Ex.

$$
x_{1} x_{2} x_{1} x_{3} * x_{2} x_{0} x_{1}=x_{1} x_{2} x_{1} x_{3} x_{5} x_{0} x_{4}
$$

Algebra structure of WMat

Definition (Packed words)

$w \in X^{*}$ - a word, $I=I A \operatorname{lph}(w) \backslash\{0\}$ - the set of indices of w. Let $I=\left\{j_{1}, \cdots j_{k}\right\}$ with $j_{1}<j_{2}<\cdots<j_{k}$ and define ϕ_{0} as $\phi_{0}\left(j_{m}\right)=m$ and $\phi_{0}(0)=0$. The pack of word is $S_{\phi_{0}}(w)-\operatorname{pack}(w)$. A word $w \in X^{*}$ is called packed iff $w=\operatorname{pack}(w)$.
Ex. : $w=x_{1} x_{3} x_{4} x_{0}, \operatorname{pack}(w)=x_{1} x_{2} x_{3} x_{0}$.

Algebra structure of WMat

Definition (Packed words)

$w \in X^{*}-$ a word, $I=I A \operatorname{lph}(w) \backslash\{0\}$ - the set of indices of w. Let $I=\left\{j_{1}, \cdots j_{k}\right\}$ with $j_{1}<j_{2}<\cdots<j_{k}$ and define ϕ_{0} as $\phi_{0}\left(j_{m}\right)=m$ and $\phi_{0}(0)=0$. The pack of word is $S_{\phi_{0}}(w)-\operatorname{pack}(w)$. A word $w \in X^{*}$ is called packed iff $w=\operatorname{pack}(w)$.
Ex. : $w=x_{1} x_{3} x_{4} x_{0}, \operatorname{pack}(w)=x_{1} x_{2} x_{3} x_{0}$. $\mathcal{H}=\operatorname{span}_{k}\left(\operatorname{pack}\left(X^{*}\right)\right) \subset k\langle X\rangle$

$$
\begin{gathered}
\mu: \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H} \\
u \otimes v \longmapsto u * v .
\end{gathered}
$$

Algebra structure of WMat

Definition (Packed words)

$w \in X^{*}$ - a word, $I=I A \operatorname{lph}(w) \backslash\{0\}$ - the set of indices of w. Let $I=\left\{j_{1}, \cdots j_{k}\right\}$ with $j_{1}<j_{2}<\cdots<j_{k}$ and define ϕ_{0} as $\phi_{0}\left(j_{m}\right)=m$ and $\phi_{0}(0)=0$. The pack of word is $S_{\phi_{0}}(w)-\operatorname{pack}(w)$. A word $w \in X^{*}$ is called packed iff $w=\operatorname{pack}(w)$.
Ex. : $w=x_{1} x_{3} x_{4} x_{0}, \operatorname{pack}(w)=x_{1} x_{2} x_{3} x_{0}$. $\mathcal{H}=\operatorname{span}_{k}\left(\operatorname{pack}\left(X^{*}\right)\right) \subset k\langle X\rangle$

$$
\begin{gathered}
\mu: \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}, \\
\quad u \otimes v \longmapsto u * v .
\end{gathered}
$$

The set pack $\left(X^{*}\right)$ with the empty word and the shifted concatenation is a monoid. Therefore

Proposition

$\left(\mathcal{H}, \mu, 1_{X^{*}}\right)$ is an associative algebra with unit (AAU).

Algebra structure of WMat

Definition (Packed words)

$w \in X^{*}$ - a word, $I=I A \operatorname{lph}(w) \backslash\{0\}$ - the set of indices of w. Let $I=\left\{j_{1}, \cdots j_{k}\right\}$ with $j_{1}<j_{2}<\cdots<j_{k}$ and define ϕ_{0} as $\phi_{0}\left(j_{m}\right)=m$ and $\phi_{0}(0)=0$. The pack of word is $S_{\phi_{0}}(w)-\operatorname{pack}(w)$. A word $w \in X^{*}$ is called packed iff $w=\operatorname{pack}(w)$.
Ex. : $w=x_{1} x_{3} x_{4} x_{0}, \operatorname{pack}(w)=x_{1} x_{2} x_{3} x_{0}$. $\mathcal{H}=\operatorname{span}_{k}\left(\operatorname{pack}\left(X^{*}\right)\right) \subset k\langle X\rangle$

$$
\begin{aligned}
\mu: \mathcal{H} \otimes \mathcal{H} & \longrightarrow \mathcal{H}, \\
u \otimes v & \longmapsto u * v .
\end{aligned}
$$

The set pack $\left(X^{*}\right)$ with the empty word and the shifted concatenation is a monoid. Therefore

Proposition

$\left(\mathcal{H}, \mu, 1_{X^{*}}\right)$ is an associative algebra with unit (AAU).
The product is non-commutative, Ex. : $x_{1} * x_{1} x_{1} \neq x_{1} x_{1} * x_{1}$.

Algebra structure of WMat

Definition (Packed words)

$w \in X^{*}$ - a word, $I=I A \operatorname{lph}(w) \backslash\{0\}$ - the set of indices of w. Let $I=\left\{j_{1}, \cdots j_{k}\right\}$ with $j_{1}<j_{2}<\cdots<j_{k}$ and define ϕ_{0} as $\phi_{0}\left(j_{m}\right)=m$ and $\phi_{0}(0)=0$. The pack of word is $S_{\phi_{0}}(w)-\operatorname{pack}(w)$. A word $w \in X^{*}$ is called packed iff $w=\operatorname{pack}(w)$.
Ex. : $w=x_{1} x_{3} x_{4} x_{0}, \operatorname{pack}(w)=x_{1} x_{2} x_{3} x_{0}$.
$\mathcal{H}=\operatorname{span}_{k}\left(\operatorname{pack}\left(X^{*}\right)\right) \subset k\langle X\rangle$

$$
\begin{aligned}
& \mu: \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}, \\
& u \otimes v \longmapsto u * v .
\end{aligned}
$$

The set pack $\left(X^{*}\right)$ with the empty word and the shifted concatenation is a monoid. Therefore

Proposition

$\left(\mathcal{H}, \mu, 1_{X^{*}}\right)$ is an associative algebra with unit (AAU).
The product is non-commutative, Ex. : $x_{1} * x_{1} x_{1} \neq x_{1} x_{1} * x_{1}$.
The mapping pack $k<X>\xrightarrow{\text { pack }} \mathcal{H}$ is a morphism_AAU

WMat is a subalgebra of an extension of MQSym

The "free basis" of MQSym: $F B_{M}=\mathbf{M S}_{M_{1}} \mathbf{M S}_{M_{2}} \ldots \mathbf{M S}_{M_{k}}$, where

$$
M=\left(\begin{array}{cccc}
M_{1} & 0 & \cdots & \cdots \\
0 & M_{2} & \cdots & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & M_{k}
\end{array}\right)
$$

is a maximal decomposition (k maximal, i.e. the M_{i} are irreducible).

$$
\begin{aligned}
\pi_{1}: \operatorname{pack}(X) & \longrightarrow k\langle Y\rangle \\
x & \longmapsto\left\{\begin{array}{l}
y \text { if } x \neq x_{0} \\
y_{0} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

WMat is a subalgebra of an extension of MQSym

The "free basis" of MQSym: $F B_{M}=\mathbf{M S}_{M_{1}} \mathbf{M S}_{M_{2}} \ldots \mathbf{M S}_{M_{k}}$, where

$$
M=\left(\begin{array}{cccc}
M_{1} & 0 & \cdots & \cdots \\
0 & M_{2} & \cdots & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & M_{k}
\end{array}\right)
$$

is a maximal decomposition (k maximal, i.e. the M_{i} are irreducible).

$$
\pi_{1}: \operatorname{pack}(X) \longrightarrow k\langle Y\rangle
$$

$$
x \longmapsto\left\{\begin{array}{l}
y \text { if } x \neq x_{0} \\
y_{0} \text { otherwise }
\end{array}\right.
$$

places with $x_{i}, i \neq 0$

WMat is a subalgebra of an extension of MQSym

$$
\begin{aligned}
\pi_{2}: \operatorname{pack}(X) & \longrightarrow \text { MQSym } \\
w & \longmapsto F B_{M_{w}}
\end{aligned}
$$

where $j^{t h}$ column of the finite matrix M_{w} is e_{k} if $w[j]=x_{k}, k>0$.

Ex. :

$$
\pi_{2}\left(x_{2} x_{1} x_{0} x_{3}\right)=F B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{F B_{(1)}=F B}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

WMat is a subalgebra of an extension of MQSym

Let $\mathcal{A}=k\left\langle y, y_{0}\right\rangle \otimes$ MQSym.
Lemma
A mapping

$$
\begin{align*}
\nu: \operatorname{pack}(X) & \longrightarrow \mathcal{A} \\
w & \longmapsto \pi_{1}(w) \otimes \pi_{2}(w), \tag{4}
\end{align*}
$$

is an injective morphism.

WMat is a subalgebra of an extension of MQSym

Let $\mathcal{A}=k\left\langle y, y_{0}\right\rangle \otimes$ MQSym.
Lemma
A mapping

$$
\begin{align*}
\nu: \operatorname{pack}(X) & \longrightarrow \mathcal{A} \\
w & \longmapsto \pi_{1}(w) \otimes \pi_{2}(w), \tag{4}
\end{align*}
$$

is an injective morphism.
\hookrightarrow The algebra WMat can thus be shown to be a subalgebra of \mathcal{A}.

WMat is a free algebra

Objective: Check that $\operatorname{pack}(X)$ is a free monoid on its irreducibles (see just below).

Definition
A packed word w in $\operatorname{pack}(X)$ is an irreducible word iff it can not be written under the form $w=u * v$ where u and v are two non trivial packed words.
Ex. : $x_{1} x_{1}$ is an irreducible word. $x_{1} x_{2}=x_{1} * x_{1}$ - a reducible word.

WMat is a free algebra

Objective: Check that $\operatorname{pack}(X)$ is a free monoid on its irreducibles (see just below).

Definition
A packed word w in $\operatorname{pack}(X)$ is an irreducible word iff it can not be written under the form $w=u * v$ where u and v are two non trivial packed words.
Ex. : $x_{1} x_{1}$ is an irreducible word. $x_{1} x_{2}=x_{1} * x_{1}$ - a reducible word.

Lemma

w - a packed word, then w can be written uniquely as
$w=v_{1} * v_{2} * \cdots * v_{n}$ where $v_{i}, 1 \leq i \leq n$, are non-trivial irreducible words.

WMat is a free algebra

Objective: Check that pack (X) is a free monoid on its irreducibles (see just below).

Definition
A packed word w in $\operatorname{pack}(X)$ is an irreducible word iff it can not be written under the form $w=u * v$ where u and v are two non trivial packed words.
Ex. : $x_{1} x_{1}$ is an irreducible word. $x_{1} x_{2}=x_{1} * x_{1}$ - a reducible word.

Lemma

w - a packed word, then w can be written uniquely as
$w=v_{1} * v_{2} * \cdots * v_{n}$ where $v_{i}, 1 \leq i \leq n$, are non-trivial irreducible words.
\hookrightarrow WMat is a free monoids on its letters.

Bialgebra structure of WMat

Definition

Let $A \subset X$, one defines $w / A=S_{\phi_{A}}(w)$ with $\phi_{A}(i)=\left\{\begin{array}{l}i \text { if } x_{i} \notin A, \\ 0 \text { if } x_{i} \in A\end{array}\right.$ Let $w / u=w / \operatorname{Alph}(u)$.

Bialgebra structure of WMat

Definition

Let $A \subset X$, one defines $w / A=S_{\phi_{A}}(w)$ with $\phi_{A}(i)=\left\{\begin{array}{l}i \text { if } x_{i} \notin A, \\ 0 \text { if } x_{i} \in A\end{array}\right.$.
Let $w / u=w / \operatorname{Alph}(u)$.

Definition

The coproduct:

$$
\begin{equation*}
\Delta(w)=\sum_{I+J=[1 \ldots|w|]} \operatorname{pack}(w[I]) \otimes \operatorname{pack}(w[J] / w[I]), \forall w \in \mathcal{H} . \tag{5}
\end{equation*}
$$

Ex. : $\Delta\left(x_{1} x_{2} x_{3}\right)=x_{1} x_{2} x_{3} \otimes 1_{\mathcal{H}}+3 x_{1} \otimes x_{1} x_{2}+3 x_{1} x_{2} \otimes x_{1}+1_{\mathcal{H}} \otimes x_{1} x_{2} x_{3}$.

Bialgebra structure of WMat

Definition

Let $A \subset X$, one defines $w / A=S_{\phi_{A}}(w)$ with $\phi_{A}(i)=\left\{\begin{array}{l}i \text { if } x_{i} \notin A, \\ 0 \text { if } x_{i} \in A\end{array}\right.$.
Let $w / u=w / \operatorname{Alph}(u)$.

Definition

The coproduct:

$$
\begin{equation*}
\Delta(w)=\sum_{I+J=[1 \ldots|w|]} \operatorname{pack}(w[I]) \otimes \operatorname{pack}(w[J] / w[I]), \forall w \in \mathcal{H} . \tag{5}
\end{equation*}
$$

Ex. : $\Delta\left(x_{1} x_{2} x_{3}\right)=x_{1} x_{2} x_{3} \otimes 1_{\mathcal{H}}+3 x_{1} \otimes x_{1} x_{2}+3 x_{1} x_{2} \otimes x_{1}+1_{\mathcal{H}} \otimes x_{1} x_{2} x_{3}$.
$\Delta\left(x_{1} x_{2} x_{1}\right)=x_{1} x_{2} x_{1} \otimes 1_{\mathcal{H}}+x_{1} \otimes\left(x_{1} x_{0}+x_{1} x_{1}+x_{0} x_{1}\right)+x_{1} x_{2} \otimes x_{0}+x_{1} x_{1} \otimes x_{1}$ $+x_{2} x_{1} \otimes x_{0}+1_{\mathcal{H}} \otimes x_{1} x_{2} x_{1}$.

Bialgebra structure of WMat

Proposition

The coproduct (5) is coassociative.
The counit is given by $\epsilon(w)=\delta_{1_{x^{*}}, w}$.
Therefore $(\mathcal{H}, \Delta, \epsilon)$ is a coassociative coalgebra with counit (co-AAU).

Bialgebra structure of WMat

Proposition

The coproduct (5) is coassociative.
The counit is given by $\epsilon(w)=\delta_{1_{x^{*}}, w}$.
Therefore $(\mathcal{H}, \Delta, \epsilon)$ is a coassociative coalgebra with counit (co-AAU). WMat is not cocommutative. Ex. : $\tau \circ \Delta^{\prime}\left(x_{1} x_{1}\right) \neq \Delta^{\prime}\left(x_{1} x_{1}\right)$, where $\tau(u \otimes v)=v \otimes u$.

Bialgebra structure of WMat

Proposition

The coproduct (5) is coassociative.
The counit is given by $\epsilon(w)=\delta_{1_{x^{*}}, w}$.
Therefore $(\mathcal{H}, \Delta, \epsilon)$ is a coassociative coalgebra with counit (co-AAU).
WMat is not cocommutative. Ex. : $\tau \circ \Delta^{\prime}\left(x_{1} x_{1}\right) \neq \Delta^{\prime}\left(x_{1} x_{1}\right)$, where $\tau(u \otimes v)=v \otimes u$.
Theorem (Main result)
$\left(\mathcal{H}, *, 1_{\mathcal{H}}, \Delta, \epsilon\right)$ is a (\mathbb{N}-graded) bialgebra. And, hence a Hopf algebra.

Bialgebra structure of WMat

Proposition

The coproduct (5) is coassociative.
The counit is given by $\epsilon(w)=\delta_{1_{x^{*}}, w}$.
Therefore $(\mathcal{H}, \Delta, \epsilon)$ is a coassociative coalgebra with counit (co-AAU). WMat is not cocommutative. Ex. : $\tau \circ \Delta^{\prime}\left(x_{1} x_{1}\right) \neq \Delta^{\prime}\left(x_{1} x_{1}\right)$, where $\tau(u \otimes v)=v \otimes u$.
Theorem (Main result)
$\left(\mathcal{H}, *, 1_{\mathcal{H}}, \Delta, \epsilon\right)$ is a (\mathbb{N}-graded) bialgebra. And, hence a Hopf algebra. The antipode:

$$
\begin{equation*}
S(w)=-w-\sum_{I+J=[1 \ldots|w|], I, J \neq \emptyset} S(\operatorname{pack}(w[I])) \operatorname{pack}(w[J] / w[I]) . \tag{6}
\end{equation*}
$$

Primitive elements of WMat

Lemma

Prim(WMat) is a Lie subalgebra of WMat, graded by the word's length:

$$
\begin{equation*}
\operatorname{Prim}(\mathrm{WMat})_{n}=\operatorname{Prim}(\mathrm{WMat}) \cap \mathrm{WMat}_{n} . \tag{7}
\end{equation*}
$$

Primitive elements of WMat

Lemma

Prim(WMat) is a Lie subalgebra of WMat, graded by the word's length:

$$
\begin{equation*}
\operatorname{Prim}(\mathrm{WMat})_{n}=\operatorname{Prim}(\mathrm{WMat}) \cap \mathrm{WMat}_{n} . \tag{7}
\end{equation*}
$$

The words x_{0} and x_{1} are primitive elements. Thus, the element $p_{1}=\left[x_{0}, x_{1}\right]=x_{0} x_{1}-x_{1} x_{0}$ (ordinary or shifted concatenation in this case) is also a primitive element.

Primitive elements of WMat

Lemma

Prim(WMat) is a Lie subalgebra of WMat, graded by the word's length:

$$
\begin{equation*}
\operatorname{Prim}(\mathrm{WMat})_{n}=\operatorname{Prim}(\mathrm{WMat}) \cap \mathrm{WMat}_{n} . \tag{7}
\end{equation*}
$$

The words x_{0} and x_{1} are primitive elements. Thus, the element $p_{1}=\left[x_{0}, x_{1}\right]=x_{0} x_{1}-x_{1} x_{0}$ (ordinary or shifted concatenation in this case) is also a primitive element.
Define Prim(WMat) $)_{n+1}$ by the following recursion: $p_{n}=\left[x_{0}, p_{n}\right]_{*}$, for all $n \geq 1$.

Primitive elements of WMat

Lemma

Prim(WMat) is a Lie subalgebra of WMat, graded by the word's length:

$$
\begin{equation*}
\operatorname{Prim}(\mathrm{WMat})_{n}=\operatorname{Prim}(\mathrm{WMat}) \cap \mathrm{WMat}_{n} . \tag{7}
\end{equation*}
$$

The words x_{0} and x_{1} are primitive elements. Thus, the element $p_{1}=\left[x_{0}, x_{1}\right]=x_{0} x_{1}-x_{1} x_{0}$ (ordinary or shifted concatenation in this case) is also a primitive element.
Define Prim(WMat) $)_{n+1}$ by the following recursion: $p_{n}=\left[x_{0}, p_{n}\right]_{*}$, for all $n \geq 1$.

Lemma

$p_{n} \neq 0, \forall n \geq 1$.

Hilbert series of WMat

A word $w=x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}$: length n and supremum k is in one-to-one correspondence with the list $\left[S_{0}, S_{1}, S_{2}, \ldots, S_{k}\right]$, where the S_{i} is the set of positions of x_{i} in the word w, with $0 \leq i \leq k$.

Hilbert series of WMat

A word $w=x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}$: length n and supremum k is in one-to-one correspondence with the list $\left[S_{0}, S_{1}, S_{2}, \ldots, S_{k}\right.$], where the S_{i} is the set of positions of x_{i} in the word w, with $0 \leq i \leq k$.
The cardinal of set of packed words with length n, supremum k is given by:

$$
\begin{equation*}
d(n, k)=S(n, k) k!+S(n, k+1)(k+1)! \tag{8}
\end{equation*}
$$

where $S(n, k)$ - The Stirling numbers of the second kind.

Hilbert series of WMat

A word $w=x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}$: length n and supremum k is in one-to-one correspondence with the list $\left[S_{0}, S_{1}, S_{2}, \ldots, S_{k}\right.$], where the S_{i} is the set of positions of x_{i} in the word w, with $0 \leq i \leq k$.
The cardinal of set of packed words with length n, supremum k is given by:

$$
\begin{equation*}
d(n, k)=S(n, k) k!+S(n, k+1)(k+1)! \tag{8}
\end{equation*}
$$

where $S(n, k)$ - The Stirling numbers of the second kind.
The cardinal of set of packed words with length n is given by

$$
d_{n}=\sum_{k=0}^{n} d(n, k)=\left\{\begin{array}{l}
1 \text { if } n=0 \tag{9}\\
2 \sum_{k=1}^{n} S(n, k) k!\text { if } n \geq 1
\end{array}\right.
$$

Conclusion and perspectives

- We have defined here a new non-commutative and non-cocommutative Hopf algebra of type I.

Conclusion and perspectives

- We have defined here a new non-commutative and non-cocommutative Hopf algebra of type I.
- The next step would be to find a polynomial realization of WMat.

Conclusion and perspectives

- We have defined here a new non-commutative and non-cocommutative Hopf algebra of type I.
- The next step would be to find a polynomial realization of WMat.
- This model in easily computed and a help to study the properties of universality of the Tutte polynomial of matroids, using the characteristics of the Schmitt Hopf algebra of matroids.
T. Krajewski, P. Martinetti, Wilsonian renormalization, differential equations and Hopf algebras (2007).

Thank you for your attention!

[^0]: I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, J.Y. Thibon, NCSF, Adv. Math. 112 (1995), 218-348.
 G.H.E. Duchamp, A. Klyachko, D. Krob, J.Y. Thibon, NCSF III: Deformations of Cauchy and convolution algebras (1997).
 G.H.E. Duchamp, F. Hivert, J.Y. Thibon, Some generalizations of quasi-symmetric functions and noncommutative symmetric functions (2000).
 G.H.E. Duchamp, F. Hivert, J.Y. Thibon, NCFS VI: Free quasi-symmetric functions and related algebras (2002).
 G.H.E. Duchamp, F. Hivert, J.C. Novelli, J.Y. Thibon, NCFS VII: Free quasi-symmetric functions revisited (2008).

