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Eulerian polynomials
as generating polynomials

For a permutation π = π1 . . .πn in Sn, let

des(π) = |{i | πi > πi+1}|

denote the number of descents in π.

The Eulerian polynomial

Sn(x) :=
∑
π∈Sn

xdes(π) =

n−1∑
k=0

〈n
k

〉
xk,

where
〈
n
k

〉
is the number of permutations in Sn with k

descents.
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Eulerian numbers:
〈
n
k

〉
Euler’s triangle

k:
0 1 2 3 4 5

n: 1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1

S1(x) = 1,
S2(x) = 1 + x,
S3(x) = 1 + 4x+ x2,
S4(x) = 1 + 11x+ 11x2 + x3, . . .
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The roots of Sn(x)

Theorem (Frobenius)

Sn(x) has only (negative and simple) real roots.

Corollary
For all n > 1, the Eulerian numbers〈n

0

〉
,
〈n

1

〉
, . . . ,

〈
n

n− 1

〉
form a (strictly) log-concave, and hence unimodal sequence.

Most proofs of the theorem rely on the recurrence:

Sn(x) = (1 + nx)Sn−1(x) + x(1 − x)S ′n−1(x).
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Plan: Generalize Frobenius’ theorem
on the roots of the Eulerian polynomial

Various algebraic and enumerative generalizations of
Sn(x) have been studied. For example:

the descent generating function for Coxeter groups,
the second-order Eulerian polynomial.

Does the property of having only real roots hold for these
generating functions?
How far can this be extended?
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Inversion sequences

Let π be a permutation in the symmetric group Sn.

Definition
The inversion sequence e = (e1, . . . , en) for a permutation π is
defined as

ej =
∣∣{i | π−1(i) > π−1(j), i < j}

∣∣ .

Alternative way to represent permutations.

Example (n = 3)

e1e2e3 π1π2π3
0 0 0 1 2 3
0 0 1 1 3 2
0 0 2 3 1 2
0 1 0 2 1 3
0 1 1 2 3 1
0 1 2 3 2 1
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Eulerian statistic

Recall that for a permutation π in Sn,

des(π) = |{i ∈ {1, 2, . . . ,n− 1} | πi > πi+1}|

denotes the number of descents in π.

Definition
A statistic is called Eulerian if its generating function is the
Eulerian polynomial.

Example

Sn(x) :=
∑
π∈Sn

xdes(π).
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Surprise!
The ascent statistics over inversion sequences is Eulerian.

Theorem (Savage, Schuster)

For e ∈ In, let ascI(e) = |{i | ei < ei+1}| . Then∑
e∈In

xascI(e) =
∑
π∈Sn

xdes(π) .

Example (n = 3)

e1e2e3 ascI(e) π1π2π3 des(π)
0 0 0 0 1 2 3 0
0 0 1 1 1 3 2 1
0 0 2 1 3 1 2 1
0 1 0 1 2 1 3 1
0 1 1 1 2 3 1 1
0 1 2 2 3 2 1 2
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Generalized inversion sequences

Recall some facts about the inversion sequences:
In = {(e1, . . . , en) ∈ Zn | 0 6 ei < i} .
In = {0}× {0, 1}× · · · × {0, 1, . . . ,n− 1} .
|In| = n!

Definition

For a given sequence s = (s1, . . . , sn) ∈Nn, let I(s)n denote the
set of s-inversion sequences by

I
(s)
n = {(e1, . . . , en) ∈ Zn | 0 6 ei < si} .

In = {0, . . . , s1 − 1}× {0, . . . , s2 − 1}× · · · × {0, . . . , sn − 1} .

∣∣∣I(s)n ∣∣∣ = n∏
i=1

si .
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Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials



The ascent statistic on s-inversion sequences

Recently, Savage and Schuster studied an ascent statistic for
s-inversion sequences.

Definition

For e = (e1, . . . , en) ∈ I(s)n , let

ascI(e) =
∣∣∣∣{i ∈ {0, . . . ,n− 1} :

ei
si
<
ei+1

si+1

}∣∣∣∣ ,

where we use the convention e0 = 0 (and s0 = 1).
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The ascent statistic on s-inversion sequences

Two examples for the sequence s = (2, 4, 6)

u �
�
�
�
�
��

u

u u

0

1

2

3

4

5

e0

e1 e2 e3

u
e ′0

e ′1 e ′2 e ′3

0

1

2

3

4

5

�
�

�
�u u u

e = (0, 3, 4) with
ascI(e) = 1.

e ′ = (1, 1, 2) with
ascI(e ′) = 2.
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s-Eulerian polynomials

Theorem (Savage, Schuster)

Sn(x) =
∑
π∈Sn

xdes(π) (1)

=
∑

e∈I(s)n

xascI(e) , (2)

when s = 1, 2, . . . ,n.

Definition (s-Eulerian polynomials)
For an arbitrary sequence s = s1, s2, . . . , let

E
(s)
n (x) :=

∑
e∈I(s)n

xascI(e) .
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On the roots of s-Eulerian polynomials

Theorem (Frobenius)
The Eulerian polynomials

Sn(x) =
∑

e∈I(1,2,...,n)
n

xascI(e)

have only real roots.

This can be generalized to the following.

Theorem (Savage, V.)
For any sequence s of nonnegative integers, the s-Eulerian
polynomials

E
(s)
n (x) =

∑
e∈I(s)n

xascI(e)

have only real roots.
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Compatible polynomials

Definition
Polynomials f1(x), . . . , fm(x) over R are compatible, if all their
conic combinations, i.e., the polynomials

m∑
i=1

cifi(x) with c1, . . . , cm > 0

have only real roots.

Fact: A real-rooted polynomial is compatible with itself.

Definition
The polynomials f1(x), . . . , fm(x) are pairwise compatible if for
all i, j ∈ {1, 2, . . . ,m}, fi(x) and fj(x) are compatible.
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Compatible polynomials

Remark
Polynomials f(x) and g(x) are compatible if and only if each of
the following pairs is compatible

af(x) and bg(x) for any positive a,b ∈ R,
xf(x) and xg(x)
(c+ dx)f(x) and (c+ dx)g(x) for any positive c,d ∈ R.

A key tool in our proof is the following.

Lemma (Chudnovsky–Seymour)

The polynomials f1(x), . . . , fm(x) are compatible if and only if
they are pairwise compatible.
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Proving more is sometimes easier

Instead of working with

E
(s)
n (x) =

∑
e∈I(s)n

xascI(e)

we will work with the partial sums

P
(s)
n,i(x) :=

∑
{e∈I(s)n |en=i}

xascI(e) .

Clearly,

E
(s)
n (x) =

sn−1∑
i=0

P
(s)
n,i(x).

Thus, P(s)n,i(x) compatible =⇒ E
(s)
n (x) has only real roots.
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A simple recurrence

P
(s)
n,i(x) =

∑
{e∈I(s)n |en=i}

xascI(e).

Lemma
Given a sequence s = {si}i>1 of positive integers, let n > 1 and
0 6 i < sn. Then for n > 1,

P
(s)
n,i(x) =

`−1∑
j=0

xP
(s)
n−1,j(x) +

sn−1−1∑
j=`

P
(s)
n−1,j(x),

where
` = disn−1/sne.

When n = 1, P(s)1,0 (x) = 1 and P(s)1,i (x) = x for i > 0.
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Again: prove something even stronger

Theorem (Savage, V.)

Given a sequence s = {si}i>1, for all 0 6 i 6 j < sn,

(i) P(s)n,i(x) and P(s)n,j(x) are compatible, and

(ii) xP(s)n,i(x) and P(s)n,j(x) are compatible.

Corollary

The polynomials P(s)n,0(x),P
(s)
n,1(x) . . . ,P(s)n,sn−1(x) are compatible.
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Proof of real-rootedness

Use induction. Base case: (x, 1) or (x, x) or (x2, x).

X
For i < j, we have ` 6 k.

P
(s)
n+1,i = x (P

(s)
n,0 + · · ·+ P

(s)
n,`−1)︸                       ︷︷                       ︸

`

+ · · ·+ P(s)n,k−1 + · · ·+ P
(s)
n,sn−1 ,

P
(s)
n+1,j = x (P

(s)
n,0 + · · ·+ P

(s)
n,`−1 + · · ·+ P

(s)
n,k−1)︸                                            ︷︷                                            ︸

k

+ · · ·+ P(s)n,sn−1 .

(i) P(s)n+1,i(x) and P(s)n+1,j(x) are compatible because{
xP

(s)
n,α

}
06α<`

∪
{
(c+ dx)P

(s)
n,β

}
`6β<k

∪
{
P
(s)
n,γ

}
k6γ<sn

are pairwise compatible.
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Proof of real-rootedness (cont’d)

Now{
xP

(s)
n,α

}
06α<`

∪
{
(c+ dx)P

(s)
n,β

}
`6β<k

∪
{
P
(s)
n,γ

}
k6γ<sn

are parwise compatible because of the following:

Two polynomials from the same set are compatible by IH(i).

xP
(s)
n,α and P(s)n,γ is compatible by IH(ii).

xP
(s)
n,α and (c+ dx)P

(s)
n,β are compatible because

xP
(s)
n,α, xP(s)n,β,P(s)n,β are pairwise compatible.

(c+ dx)P
(s)
n,β and P(s)n,γ are compatible because

P
(s)
n,β, xP(s)n,β,P(s)n,γ are pairwise compatible.
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Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials



Proof of real-rootedness (cont’d)

Now{
xP

(s)
n,α

}
06α<`

∪
{
(c+ dx)P

(s)
n,β

}
`6β<k

∪
{
P
(s)
n,γ

}
k6γ<sn

are parwise compatible because of the following:
Two polynomials from the same set are compatible by IH(i).

xP
(s)
n,α and P(s)n,γ is compatible by IH(ii).

xP
(s)
n,α and (c+ dx)P

(s)
n,β are compatible because

xP
(s)
n,α, xP(s)n,β,P(s)n,β are pairwise compatible.

(c+ dx)P
(s)
n,β and P(s)n,γ are compatible because

P
(s)
n,β, xP(s)n,β,P(s)n,γ are pairwise compatible.
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Proof of real-rootedness (cont’d)

(i) Thus, P(s)n+1,i(x) and P(s)n+1,j(x) are compatible because{
xP

(s)
n,α

}
06α<`

∪
{
(c+ dx)P

(s)
n,β

}
`6β<k

∪
{
P
(s)
n,γ

}
k6γ<sn

are pairwise compatible.

X

(ii) xP(s)n+1,i(x) and P(s)n+1,j(x) are also compatible and can be
shown in a similar way. X
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Geometric interpretation

The Ehrhart series of a polytope P in Rn is the series∑
t>0

i(P, t)xt,

where tP is the t-fold dilation of P:

tP = {(tλ1, tλ2, . . . , tλn) | (λ1, λ2, . . . , λn) ∈ P},

and i(P, t) is the number of points in tP, all of whose
coordinates are integer:

i(P, t) = |tP ∩Zn|.
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The h∗-polynomial of a polytope

If all vertices of P are integer, then i(P, t) is a polynomial in t
and the Ehrhart series of P has the form∑

t>0

i(P, t)xt =
h(x)

(1 − x)n
,

for a polynomial

h(x) = h0 + h1x+ · · ·hdxd

known as the h∗-polynomial of P. Here d is the dimension of P.
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h∗-polynomial of the s-lecture hall polytope

Definition (s-lecture hall polytope)

P
(s)
n =

{
λ ∈ Rn : 0 6

λ1

s1
6
λ2

s2
6 · · · 6 λn

sn
6 1
}

.

Theorem (Savage, Schuster)
For any sequence s of positive integers,

∑
t>0

i(P
(s)
n , t)xt =

E
(s)
n (x)

(1 − x)n+1 .

Our theorem for E(s)
n (x) implies:

Corollary (Savage, V.)
For any sequence s of positive integers, the h∗-polynomial of
the s-lecture hall polytope has all roots real.
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Variations on a theme: Eulerian polynomials

The fact that E(s)
n (x) has only real roots implies several results.

s = (1, 2, . . . ,n): the Eulerian polynomial, Sn(x),
s = (2, 4, . . . , 2n): the type B Eulerian polynomial, Bn(x),
s = (k, 2k, . . . ,nk): the descent polynomial for the wreath
products, Gn,r(x),
s = (k,k, . . . ,k): the ascent polynomial for words over a
k-letter alphabet {0, 1, 2, . . . ,k− 1},
s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerian
polynomial, xexcπ(1/k)cycπ,
s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descent
polynomial for the multiset {1, 1, 2, 2, . . . ,n,n}

have only real roots.
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Euler–Mahonian extensions (q-analogs)
Conjectures of Chow–Gessel, Chow–Mansour

Theorem (Savage, V.)
The MacMahon–Carlitz q-analog

Sn(x,q) =
∑
π∈Sn

xdes(π)qmaj(π)

has only real roots for q > 0.

Our result also holds for
the hyperoctahedral group (type B), and
the generalized symmetric group (wreath product Sn o Cr),
and
other q-statistics (finv, comaj).
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Summary

Summary

We studied a novel generalization of Eulerian polynomials
using statistics over s-inversion sequences.
We showed that the s-Eulerian polynomials have only real
roots, for any sequence s, using the powerful technique of
compatible polynomials.
Our results unify several existing results and also settle
conjectures of Chow–Gessel and Chow–Mansour (on
real-rootedness of q-analogs).

Question:
Is there an s-inversion sequence which will give the type D
Eulerian polynomial?
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Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials



Summary

Summary
We studied a novel generalization of Eulerian polynomials
using statistics over s-inversion sequences.
We showed that the s-Eulerian polynomials have only real
roots, for any sequence s, using the powerful technique of
compatible polynomials.
Our results unify several existing results and also settle
conjectures of Chow–Gessel and Chow–Mansour (on
real-rootedness of q-analogs).

Question:
Is there an s-inversion sequence which will give the type D
Eulerian polynomial?

Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials



Summary

Summary
We studied a novel generalization of Eulerian polynomials
using statistics over s-inversion sequences.
We showed that the s-Eulerian polynomials have only real
roots, for any sequence s, using the powerful technique of
compatible polynomials.
Our results unify several existing results and also settle
conjectures of Chow–Gessel and Chow–Mansour (on
real-rootedness of q-analogs).

Question:

Is there an s-inversion sequence which will give the type D
Eulerian polynomial?
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