On the Roots of Generalized Eulerian Polynomials

Carla D. Savage ${ }^{1} \quad$ Mirkó Visontai ${ }^{2}$

${ }^{1}$ Department of Computer Science North Carolina State University
${ }^{2}$ Department of Mathematics
Kungliga Tekniska högskolan
69th Séminaire Lotharingien de Combinatoire, Strobl, 11.09.2012

Outline

(9) Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
(2) A novel approach to Eulerian polynomials
- s-inversion sequences and s-Eulerian polynomials
- Our main result
- The proof using compatible polynomials
(3) Applications
- h^{*}-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

Outline

(9) Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
(2) A novel approach to Eulerian polynomials
- s-inversion sequences and s-Eulerian polynomials
- Our main result
- The proof using compatible polynomials
(3) Applications
- h^{*}-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

For a permutation $\pi=\pi_{1} \ldots \pi_{n}$ in ς_{n}, let

$$
\operatorname{des}(\pi)=\left|\left\{i \mid \pi_{i}>\pi_{i+1}\right\}\right|
$$

denote the number of descents in π.
The Eulerian polynomial

$$
\Im_{n}(x):=\sum_{\pi \in \Xi_{n}} x^{\operatorname{des}(\pi)}=\sum_{k=0}^{n-1}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle x^{k},
$$

where $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ is the number of permutations in Θ_{n} with k descents.

Eulerian numbers: $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$

Euler's triangle

		$\mathrm{k}:$					
		0	1	2	3	4	5
$\mathrm{n}:$	1	1					
	2	1	1				
	3	1	4	1			
	4	1	11	11	1		
	5	1	26	66	26	1	
	6	1	57	302	302	57	1

Eulerian numbers: $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$

Euler's triangle

		$\mathrm{k}:$					
		0	1	2	3	4	5
$\mathrm{n}:$	1	1					
	2	1	1				
	3	1	4	1			
	4	1	11	11	1		
	5	1	26	66	26	1	
	6	1	57	302	302	57	1

- $\mathfrak{S}_{1}(x)=1$,
- $\mathfrak{\Xi}_{2}(x)=1+x$,
- $\Im_{3}(x)=1+4 x+x^{2}$,
- $\mathfrak{S}_{4}(x)=1+11 x+11 x^{2}+x^{3}, \ldots$

The roots of $\Im_{n}(x)$

Theorem (Frobenius)

$\Im_{n}(x)$ has only (negative and simple) real roots.

The roots of $\mathfrak{\Im}_{n}(x)$

Theorem (Frobenius)

$\mathfrak{S}_{n}(x)$ has only (negative and simple) real roots.

Corollary

For all $n \geqslant 1$, the Eulerian numbers

$$
\left\langle\begin{array}{l}
n \\
0
\end{array}\right\rangle,\left\langle\begin{array}{c}
n \\
1
\end{array}\right\rangle, \ldots,\left\langle\begin{array}{c}
n \\
n-1
\end{array}\right\rangle
$$

form a (strictly) log-concave, and hence unimodal sequence.

Theorem (Frobenius)

$\Im_{n}(x)$ has only (negative and simple) real roots.

Corollary

For all $n \geqslant 1$, the Eulerian numbers

$$
\left\langle\begin{array}{l}
n \\
0
\end{array}\right\rangle,\left\langle\begin{array}{c}
n \\
1
\end{array}\right\rangle, \ldots,\left\langle\begin{array}{c}
n \\
n-1
\end{array}\right\rangle
$$

form a (strictly) log-concave, and hence unimodal sequence.
Most proofs of the theorem rely on the recurrence:

$$
\mathfrak{S}_{n}(x)=(1+n x) \Im_{n-1}(x)+x(1-x) \Im_{n-1}^{\prime}(x)
$$

- Various algebraic and enumerative generalizations of $\Im_{n}(x)$ have been studied. For example:
- the descent generating function for Coxeter groups,
- the second-order Eulerian polynomial.
- Does the property of having only real roots hold for these generating functions?
- How far can this be extended?

Outline

(9) Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
(2) A novel approach to Eulerian polynomials
- s-inversion sequences and s-Eulerian polynomials
- Our main result
- The proof using compatible polynomials
(3) Applications
- h^{*}-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

Inversion sequences

Let π be a permutation in the symmetric group \mathfrak{S}_{n}.

Definition

The inversion sequence $\mathbf{e}=\left(e_{1}, \ldots, e_{n}\right)$ for a permutation π is defined as

$$
e_{j}=\left|\left\{i \mid \pi^{-1}(\mathfrak{i})>\pi^{-1}(\mathfrak{j}), \mathfrak{i}<\mathfrak{j}\right\}\right| .
$$

Inversion sequences

Let π be a permutation in the symmetric group \mathfrak{S}_{n}.

Definition

The inversion sequence $\mathbf{e}=\left(e_{1}, \ldots, e_{n}\right)$ for a permutation π is defined as

$$
e_{j}=\left|\left\{i \mid \pi^{-1}(i)>\pi^{-1}(j), i<j\right\}\right| .
$$

Alternative way to represent permutations.

Inversion sequences

Let π be a permutation in the symmetric group \mathfrak{S}_{n}.

Definition

The inversion sequence $\mathbf{e}=\left(e_{1}, \ldots, e_{n}\right)$ for a permutation π is defined as

$$
e_{j}=\left|\left\{i \mid \pi^{-1}(i)>\pi^{-1}(j), i<j\right\}\right| .
$$

Alternative way to represent permutations.
Example ($n=3$)

$e_{1} e_{2} e_{3}$	$\pi_{1} \pi_{2} \pi_{3}$
000	123
001	132
002	312
010	213
011	231
012	321

Outline

(9) Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
(2) A novel approach to Eulerian polynomials
- s-inversion sequences and s-Eulerian polynomials
- Our main result
- The proof using compatible polynomials
(3) Applications
- h^{*}-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

Eulerian statistic

Recall that for a permutation π in \mathfrak{S}_{n},

$$
\operatorname{des}(\pi)=\left|\left\{i \in\{1,2, \ldots, n-1\} \mid \pi_{i}>\pi_{i+1}\right\}\right|
$$

denotes the number of descents in π.

Eulerian statistic

Recall that for a permutation π in \mathfrak{S}_{n},

$$
\operatorname{des}(\pi)=\left|\left\{i \in\{1,2, \ldots, n-1\} \mid \pi_{i}>\pi_{i+1}\right\}\right|
$$

denotes the number of descents in π.

Definition

A statistic is called Eulerian if its generating function is the Eulerian polynomial.

Eulerian statistic

Recall that for a permutation π in \mathfrak{S}_{n},

$$
\operatorname{des}(\pi)=\left|\left\{i \in\{1,2, \ldots, n-1\} \mid \pi_{i}>\pi_{i+1}\right\}\right|
$$

denotes the number of descents in π.

Definition

A statistic is called Eulerian if its generating function is the Eulerian polynomial.

Example

$$
\Im_{n}(x):=\sum_{\pi \in \mathbb{S}_{n}} x^{\operatorname{des}(\pi)}
$$

Surprise!

The ascent statistics over inversion sequences is Eulerian.

Theorem (Savage, Schuster)

For $\mathbf{e} \in \mathrm{I}_{\mathrm{n}}$, let $\operatorname{asc}_{\mathrm{I}}(\boldsymbol{e})=\left|\left\{i \mid e_{i}<\mathrm{e}_{i+1}\right\}\right|$. Then

$$
\sum_{e \in \mathrm{I}_{n}} x^{\operatorname{asc}_{\mathrm{I}}(e)}=\sum_{\pi \in \Im_{n}} x^{\operatorname{des}(\pi)}
$$

Surprise!

The ascent statistics over inversion sequences is Eulerian.

Theorem (Savage, Schuster)

For $\mathbf{e} \in \mathrm{I}_{\mathrm{n}}$, let $\operatorname{asc}_{\mathrm{I}}(\boldsymbol{e})=\left|\left\{i \mid e_{i}<e_{i+1}\right\}\right|$. Then

$$
\sum_{e \in \mathrm{I}_{n}} x^{\operatorname{asc}_{\mathrm{I}}(e)}=\sum_{\pi \in \Im_{n}} x^{\operatorname{des}(\pi)}
$$

Example ($n=3$)

$e_{1} e_{2} e_{3}$	$\operatorname{asc}_{I}(\mathbf{e})$	$\pi_{1} \pi_{2} \pi_{3}$	$\operatorname{des}(\pi)$
00	0	0	0
0	0	2	1
0	0	1	1
0	0	2	1
0	1	0	1
0	1	1	1
0	1	2	2

Outline

Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
(2) A novel approach to Eulerian polynomials
- s-inversion sequences and s-Eulerian polynomials
- Our main result
- The proof using compatible polynomials
(3) Applications
- h^{*}-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

Generalized inversion sequences

Recall some facts about the inversion sequences:

- $\mathrm{I}_{\mathrm{n}}=\left\{\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{Z}^{n} \mid 0 \leqslant e_{i}<i\right\}$.
- $I_{n}=\{0\} \times\{0,1\} \times \cdots \times\{0,1, \ldots, n-1\}$.
- $\left|\mathrm{I}_{\mathrm{n}}\right|=\mathrm{n}$!

Generalized inversion sequences

Recall some facts about the inversion sequences:

- $I_{n}=\left\{\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{Z}^{n} \mid 0 \leqslant e_{i}<i\right\}$.
- $I_{n}=\{0\} \times\{0,1\} \times \cdots \times\{0,1, \ldots, n-1\}$.
- $\left|\mathrm{I}_{\mathrm{n}}\right|=\mathrm{n}$!

Definition

For a given sequence $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{N}^{n}$, let $\mathrm{I}_{n}^{(\mathbf{s})}$ denote the set of s-inversion sequences by

$$
\mathrm{I}_{n}^{(s)}=\left\{\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{Z}^{n} \mid 0 \leqslant e_{i}<s_{i}\right\} .
$$

Generalized inversion sequences

Recall some facts about the inversion sequences:

- $I_{n}=\left\{\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{Z}^{n} \mid 0 \leqslant e_{i}<i\right\}$.
- $I_{n}=\{0\} \times\{0,1\} \times \cdots \times\{0,1, \ldots, n-1\}$.
- $\left|\mathrm{I}_{\mathrm{n}}\right|=\mathrm{n}$!

Definition

For a given sequence $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{N}^{n}$, let $\mathrm{I}_{n}^{(\mathbf{s})}$ denote the set of s-inversion sequences by

$$
\mathrm{I}_{n}^{(s)}=\left\{\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{Z}^{n} \mid 0 \leqslant e_{i}<s_{i}\right\} .
$$

$I_{n}=\left\{0, \ldots, s_{1}-1\right\} \times\left\{0, \ldots, s_{2}-1\right\} \times \cdots \times\left\{0, \ldots, s_{n}-1\right\}$.

$$
\left|I_{n}^{(s)}\right|=\prod_{i=1}^{n} s_{i}
$$

Recently, Savage and Schuster studied an ascent statistic for s-inversion sequences.

Recently, Savage and Schuster studied an ascent statistic for s-inversion sequences.

Definition

For $\mathbf{e}=\left(e_{1}, \ldots, e_{n}\right) \in I_{n}^{(s)}$, let

$$
\operatorname{asc}_{I}(e)=\left|\left\{i \in\{0, \ldots, n-1\}: \frac{e_{i}}{s_{i}}<\frac{e_{i+1}}{s_{i+1}}\right\}\right|,
$$

where we use the convention $e_{0}=0$ (and $s_{0}=1$).

The ascent statistic on s-inversion sequences

Two examples for the sequence $s=(2,4,6)$

The ascent statistic on s-inversion sequences

Two examples for the sequence $s=(2,4,6)$

$e=(0,3,4)$

$e^{\prime}=(1,1,2)$

The ascent statistic on s-inversion sequences

Two examples for the sequence $s=(2,4,6)$

The ascent statistic on s-inversion sequences

Two examples for the sequence $s=(2,4,6)$

$$
\begin{gathered}
\mathbf{e}=(0,3,4) \text { with } \\
\quad \operatorname{asc}_{I}(\mathbf{e})=1 .
\end{gathered}
$$

$e^{\prime}=(1,1,2)$ with

- $\operatorname{asc}_{I}\left(\mathbf{e}^{\prime}\right)=2$.

s-Eulerian polynomials

Theorem (Savage, Schuster)

$$
\begin{align*}
\mathfrak{S}_{n}(x) & =\sum_{\pi \in \mathbb{S}_{n}} x^{\operatorname{des}(\pi)} \tag{1}\\
& =\sum_{e \in \mathrm{I}_{n}^{(s)}} x^{\operatorname{asc}_{1}(e)}, \tag{2}
\end{align*}
$$

when $s=1,2, \ldots, n$.

s-Eulerian polynomials

Theorem (Savage, Schuster)

$$
\begin{align*}
\mathfrak{S}_{n}(x) & =\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{des}(\pi)} \tag{1}\\
& =\sum_{e \in \mathrm{I}_{n}^{(s)}} x^{\operatorname{asc}_{1}(e)}, \tag{2}
\end{align*}
$$

when $s=1,2, \ldots, n$.

Definition (s-Eulerian polynomials)

For an arbitrary sequence $s=s_{1}, s_{2}, \ldots$, let

$$
\mathcal{E}_{n}^{(\mathbf{s})}(x):=\sum_{e \in \mathrm{I}_{n}^{(s)}} x^{\operatorname{asc}_{\mathrm{I}}(e)} .
$$

Outline

(9) Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
(2) A novel approach to Eulerian polynomials
- s-inversion sequences and s-Eulerian polynomials
- Our main result
- The proof using compatible polynomials
(3) Applications
- h^{*}-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

On the roots of s-Eulerian polynomials

Theorem (Frobenius)
The Eulerian polynomials

$$
\Im_{n}(x)=\sum_{e \in \mathrm{I}_{\mathrm{n}}^{(1,2, \ldots, n)}} x^{\operatorname{asc}_{\mathrm{I}}(e)}
$$

have only real roots.

On the roots of s-Eulerian polynomials

Theorem (Frobenius)

The Eulerian polynomials

$$
\Im_{n}(x)=\sum_{e \in \mathrm{I}_{n}^{(1,2, \ldots, n)}} x^{\operatorname{asc}_{\mathrm{I}}(e)}
$$

have only real roots.
This can be generalized to the following.

Theorem (Savage, V.)

For any sequence s of nonnegative integers, the s-Eulerian polynomials

$$
\mathcal{E}_{n}^{(s)}(x)=\sum_{e \in \mathrm{I}_{n}^{(s)}} x^{\operatorname{asc}_{I}(e)}
$$

have only real roots.

Outline

Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
(2) A novel approach to Eulerian polynomials
- s-inversion sequences and s-Eulerian polynomials
- Our main result
- The proof using compatible polynomials
(3) Applications
- h^{*}-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

Compatible polynomials

Definition

Polynomials $f_{1}(x), \ldots, f_{m}(x)$ over \mathbb{R} are compatible, if all their conic combinations, i.e., the polynomials

$$
\sum_{i=1}^{m} c_{i} f_{i}(x) \quad \text { with } c_{1}, \ldots, c_{m} \geqslant 0
$$

have only real roots.

Compatible polynomials

Definition

Polynomials $f_{1}(x), \ldots, f_{m}(x)$ over \mathbb{R} are compatible, if all their conic combinations, i.e., the polynomials

$$
\sum_{i=1}^{m} c_{i} f_{i}(x) \text { with } c_{1}, \ldots, c_{m} \geqslant 0
$$

have only real roots.
Fact: A real-rooted polynomial is compatible with itself.

Compatible polynomials

Definition

Polynomials $f_{1}(x), \ldots, f_{m}(x)$ over \mathbb{R} are compatible, if all their conic combinations, i.e., the polynomials

$$
\sum_{i=1}^{m} c_{i} f_{i}(x) \quad \text { with } c_{1}, \ldots, c_{m} \geqslant 0
$$

have only real roots.
Fact: A real-rooted polynomial is compatible with itself.

Definition

The polynomials $f_{1}(x), \ldots, f_{m}(x)$ are pairwise compatible if for all $i, j \in\{1,2, \ldots, m\}, f_{i}(x)$ and $f_{j}(x)$ are compatible.

Compatible polynomials

Remark

Polynomials $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are compatible if and only if each of the following pairs is compatible

- $\operatorname{af}(x)$ and $b g(x)$ for any positive $a, b \in \mathbb{R}$,
- $\mathrm{xf}(\mathrm{x})$ and $\mathrm{xg}(\mathrm{x})$
- $(c+d x) f(x)$ and $(c+d x) g(x)$ for any positive $c, d \in \mathbb{R}$.

Compatible polynomials

Remark

Polynomials $f(x)$ and $g(x)$ are compatible if and only if each of the following pairs is compatible

- $\operatorname{af}(x)$ and $b g(x)$ for any positive $a, b \in \mathbb{R}$,
- $\mathrm{xf}(\mathrm{x})$ and $\mathrm{xg}(\mathrm{x})$
- $(c+d x) f(x)$ and $(c+d x) g(x)$ for any positive $c, d \in \mathbb{R}$.

A key tool in our proof is the following.

Lemma (Chudnovsky-Seymour)

The polynomials $f_{1}(x), \ldots, f_{m}(x)$ are compatible if and only if they are pairwise compatible.

Proving more is sometimes easier

Instead of working with

$$
\mathcal{E}_{\mathrm{n}}^{(\mathbf{s})}(x)=\sum_{\mathbf{e} \in \mathrm{I}_{\mathrm{n}}^{(\mathbf{s})}} x^{\operatorname{asc}_{\mathrm{I}}(e)}
$$

we will work with the partial sums

$$
P_{n, i}^{(s)}(x):=\sum_{\left\{e \in \mathrm{I}_{n}^{(s)} \mid e_{n}=\mathrm{i}\right\}} x^{\operatorname{asc}_{\mathrm{I}}(\mathbf{e})} .
$$

Proving more is sometimes easier

Instead of working with

$$
\mathcal{E}_{\mathrm{n}}^{(s)}(x)=\sum_{e \in \mathrm{I}_{\mathrm{n}}^{(s)}} x^{\operatorname{asc}_{\mathrm{I}}(e)}
$$

we will work with the partial sums

$$
P_{n, i}^{(s)}(x):=\sum_{\left\{e \in I_{n}^{(s)} \mid e_{n}=i\right\}} x^{\operatorname{asc}_{I}(e)} .
$$

Clearly,

$$
\mathcal{E}_{n}^{(s)}(x)=\sum_{i=0}^{s_{n}-1} P_{n, i}^{(s)}(x)
$$

Thus, $P_{n, i}^{(s)}(x)$ compatible $\Longrightarrow \mathcal{E}_{n}^{(s)}(x)$ has only real roots.

A simple recurrence

$$
P_{n, i}^{(s)}(x)=\sum_{\left\{e \in \mathrm{I}_{n}^{(s)} \mid e_{n}=i\right\}} x^{\operatorname{asc}_{\mathrm{I}}(e)} .
$$

Lemma

Given a sequence $s=\left\{s_{i}\right\}_{i \geqslant 1}$ of positive integers, let $n \geqslant 1$ and $0 \leqslant i<s_{n}$. Then for $n>1$,

$$
P_{n, i}^{(s)}(x)=\sum_{j=0}^{\ell-1} x P_{n-1, j}^{(s)}(x)+\sum_{j=\ell}^{s_{n-1}-1} P_{n-1, j}^{(s)}(x)
$$

where

$$
\ell=\left\lceil i s_{n-1} / s_{n}\right\rceil .
$$

When $\mathrm{n}=1, \mathrm{P}_{1,0}^{(\mathbf{s})}(\mathrm{x})=1$ and $\mathrm{P}_{1, \mathrm{i}}^{(\mathrm{s})}(\mathrm{x})=\mathrm{x}$ for $\mathrm{i}>0$.

A simple recurrence

$$
\operatorname{asc}_{I}(e)=\left|\left\{i \in\{0, \ldots, n-1\}: \frac{e_{i}}{s_{i}}<\frac{e_{i+1}}{s_{i+1}}\right\}\right|
$$

Lemma

Given a sequence $s=\left\{s_{i}\right\}_{i \geqslant 1}$ of positive integers, let $n \geqslant 1$ and $0 \leqslant i<s_{n}$. Then for $n>1$,

$$
P_{n, i}^{(s)}(x)=\sum_{j=0}^{\ell-1} x P_{n-1, j}^{(s)}(x)+\sum_{j=\ell}^{s_{n-1}-1} P_{n-1, j}^{(s)}(x)
$$

where

$$
\ell=\left\lceil i s_{n-1} / s_{n}\right\rceil .
$$

When $\mathrm{n}=1, \mathrm{P}_{1,0}^{(\mathrm{s})}(\mathrm{x})=1$ and $\mathrm{P}_{1, \mathrm{i}}^{(\mathrm{s})}(\mathrm{x})=\mathrm{x}$ for $\mathrm{i}>0$.

Again: prove something even stronger

Theorem (Savage, V.)

Given a sequence $s=\left\{s_{i}\right\}_{i \geqslant 1}$, for all $0 \leqslant i \leqslant j<s_{n}$,
(i) $\mathrm{P}_{n, \mathrm{i}}^{(\mathrm{s})}(\mathrm{x})$ and $\mathrm{P}_{n, \mathrm{j}}^{(\mathrm{s})}(\mathrm{x})$ are compatible, and
(ii) $x \mathrm{P}_{\mathrm{n}, \mathrm{i}}^{(\mathrm{s})}(x)$ and $\mathrm{P}_{\mathrm{n}, \mathrm{j}}^{(\mathrm{s})}(x)$ are compatible.

Corollary

The polynomials $\mathrm{P}_{n, 0}^{(s)}(x), \mathrm{P}_{n, 1}^{(s)}(x) \ldots, \mathrm{P}_{n, s_{n}-1}^{(s)}(x)$ are compatible.

Proof of real-rootedness

Use induction. Base case: $(x, 1)$ or (x, x) or $\left(x^{2}, x\right)$.

Proof of real-rootedness

Use induction. Base case: $(x, 1)$ or (x, x) or $\left(x^{2}, x\right) . \checkmark$

Use induction. Base case: $(x, 1)$ or (x, x) or $\left(x^{2}, x\right)$.
For $i<j$, we have $\ell \leqslant k$.

$$
\begin{aligned}
& P_{n+1, i}^{(s)}=x \underbrace{\left(P_{n, 0}^{(s)}+\cdots+P_{n, \ell-1}^{(s)}\right)}_{\ell}+\cdots+P_{n, k-1}^{(s)}+\cdots+P_{n, s_{n}-1}^{(s)} \\
& P_{n+1, j}^{(s)}=x \underbrace{\left(P_{n, 0}^{(s)}+\cdots+P_{n, \ell-1}^{(s)}+\cdots+P_{n, k-1}^{(s)}\right.}_{k}+\cdots+P_{n, s_{n}-1}^{(s)}
\end{aligned}
$$

Use induction. Base case: $(x, 1)$ or (x, x) or $\left(x^{2}, x\right)$.
For $\mathfrak{i}<\mathfrak{j}$, we have $\ell \leqslant k$.

$$
\begin{aligned}
& P_{n+1, i}^{(s)}=x \underbrace{\left(P_{n, 0}^{(s)}+\cdots+P_{n, \ell-1}^{(s)}\right)}_{\ell}+\cdots+P_{n, k-1}^{(s)}+\cdots+P_{n, s_{n}-1}^{(s)}, \\
& P_{n+1, j}^{(s)}=x \underbrace{\left(P_{n, 0}^{(s)}+\cdots+P_{n, \ell-1}^{(s)}+\cdots+P_{n, k-1}^{(s)}\right)}_{k}+\cdots+P_{n, s_{n}-1}^{(s)} .
\end{aligned}
$$

(i) $P_{n+1, i}^{(s)}(x)$ and $P_{n+1, j}^{(s)}(x)$ are compatible because

$$
\left\{x P_{n, \alpha}^{(s)}\right\}_{0 \leqslant \alpha<\ell} \cup\left\{(c+d x) P_{n, \beta}^{(s)}\right\}_{\ell \leqslant \beta<k} \cup\left\{P_{n, \gamma}^{(s)}\right\}_{k \leqslant \gamma<s_{n}}
$$

are pairwise compatible.

Proof of real-rootedness (cont’d)

Now

$$
\left\{x P_{n, \alpha}^{(s)}\right\}_{0 \leqslant \alpha<\ell} \cup\left\{(c+d x) P_{n, \beta}^{(s)}\right\}_{\ell \leqslant \beta<k} \cup\left\{P_{n, \gamma}^{(s)}\right\}_{k \leqslant \gamma<s_{n}}
$$

are parwise compatible because of the following:

Now

$$
\left\{x P_{n, \alpha}^{(s)}\right\}_{0 \leqslant \alpha<\ell} \cup\left\{(c+d x) P_{n, \beta}^{(s)}\right\}_{\ell \leqslant \beta<k} \cup\left\{P_{n, \gamma}^{(s)}\right\}_{k \leqslant \gamma<s_{n}}
$$

are parwise compatible because of the following:

- Two polynomials from the same set are compatible by IH(i).

Now

$$
\left\{x P_{n, \alpha}^{(s)}\right\}_{0 \leqslant \alpha<\ell} \cup\left\{(c+d x) P_{n, \beta}^{(s)}\right\}_{\ell \leqslant \beta<k} \cup\left\{P_{n, \gamma}^{(s)}\right\}_{k \leqslant \gamma<s_{n}}
$$

are parwise compatible because of the following:

- Two polynomials from the same set are compatible by IH(i).
- $x \mathrm{P}_{n, \alpha}^{(s)}$ and $\mathrm{P}_{n, \gamma}^{(s)}$ is compatible by $\mathrm{H}($ (ii).

Now

$$
\left\{x P_{n, \alpha}^{(s)}\right\}_{0 \leqslant \alpha<\ell} \cup\left\{(c+d x) P_{n, \beta}^{(s)}\right\}_{\ell \leqslant \beta<k} \cup\left\{P_{n, \gamma}^{(s)}\right\}_{k \leqslant \gamma<s_{n}}
$$

are parwise compatible because of the following:

- Two polynomials from the same set are compatible by $\mathrm{IH}(\mathrm{i})$.
- $x \mathrm{P}_{\mathrm{n}, \alpha}^{(\mathrm{s})}$ and $\mathrm{P}_{\mathrm{n}, \gamma}^{(\mathrm{s})}$ is compatible by $\mathrm{H}(\mathrm{ii})$.
- $x \mathrm{P}_{\mathrm{n}, \alpha}^{(\mathrm{s})}$ and $(\mathrm{c}+\mathrm{dx}) \mathrm{P}_{\mathrm{n}, \beta}^{(\mathrm{s})}$ are compatible because
- $x \mathrm{P}_{n, \alpha}^{(\mathbf{s})}, x \mathrm{P}_{n, \beta}^{(\mathbf{s})}, \mathrm{P}_{n, \beta}^{(\mathrm{s})}$ are pairwise compatible.

Now

$$
\left\{x P_{n, \alpha}^{(s)}\right\}_{0 \leqslant \alpha<\ell} \cup\left\{(c+d x) P_{n, \beta}^{(s)}\right\}_{\ell \leqslant \beta<k} \cup\left\{P_{n, \gamma}^{(s)}\right\}_{k \leqslant \gamma<s_{n}}
$$

are parwise compatible because of the following:

- Two polynomials from the same set are compatible by $\mathrm{IH}(\mathrm{i})$.
- $x \mathrm{P}_{\mathrm{n}, \alpha}^{(\mathrm{s})}$ and $\mathrm{P}_{\mathrm{n}, \gamma}^{(\mathrm{s})}$ is compatible by $\mathrm{H}(\mathrm{ii})$.
- $x P_{n, \alpha}^{(s)}$ and $(c+d x) P_{n, \beta}^{(s)}$ are compatible because
- $x \mathrm{P}_{n, \alpha}^{(\mathbf{s})}, x \mathrm{P}_{n, \beta}^{(\mathrm{s})}, \mathrm{P}_{n, \beta}^{(\mathrm{s})}$ are pairwise compatible.
- $(c+d x) P_{n, \beta}^{(s)}$ and $P_{n, \gamma}^{(s)}$ are compatible because
- $\mathrm{P}_{n, \beta}^{(s)}, \chi \mathrm{P}_{n, \beta}^{(s)}, \mathrm{P}_{n, \gamma}^{(\mathrm{s})}$ are pairwise compatible.
(i) Thus, $\mathrm{P}_{n+1, \mathrm{i}}^{(\mathrm{s})}(x)$ and $\mathrm{P}_{n+1, \mathrm{j}}^{(\mathrm{s})}(x)$ are compatible because

$$
\left\{x \mathrm{P}_{\mathrm{n}, \alpha}^{(s)}\right\}_{0 \leqslant \alpha<\ell} \cup\left\{(\mathrm{c}+\mathrm{dx}) \mathrm{P}_{\mathrm{n}, \beta}^{(\mathrm{s})}\right\}_{\ell \leqslant \beta<k} \cup\left\{\mathrm{P}_{\mathrm{n}, \gamma}^{(s)}\right\}_{k \leqslant \gamma<s_{n}}
$$

are pairwise compatible.
(i) Thus, $\mathrm{P}_{n+1, \mathrm{i}}^{(\mathrm{s})}(x)$ and $\mathrm{P}_{n+1, \mathrm{j}}^{(\mathrm{s})}(x)$ are compatible because

$$
\left\{x \mathrm{P}_{\mathrm{n}, \alpha}^{(s)}\right\}_{0 \leqslant \alpha<\ell} \cup\left\{(\mathrm{c}+\mathrm{dx}) \mathrm{P}_{\mathrm{n}, \beta}^{(\mathrm{s})}\right\}_{\ell \leqslant \beta<k} \cup\left\{\mathrm{P}_{\mathrm{n}, \gamma}^{(s)}\right\}_{k \leqslant \gamma<s_{n}}
$$

are pairwise compatible.
(i) Thus, $\mathrm{P}_{n+1, \mathrm{i}}^{(\mathrm{s})}(\mathrm{x})$ and $\mathrm{P}_{n+1, \mathrm{j}}^{(\mathrm{s})}(x)$ are compatible because

$$
\left\{x \mathrm{P}_{\mathrm{n}, \alpha}^{(s)}\right\}_{0 \leqslant \alpha<\ell} \cup\left\{(\mathrm{c}+\mathrm{dx}) \mathrm{P}_{\mathrm{n}, \beta}^{(\mathrm{s})}\right\}_{\ell \leqslant \beta<k} \cup\left\{\mathrm{P}_{\mathrm{n}, \gamma}^{(s)}\right\}_{k \leqslant \gamma<s_{n}}
$$

are pairwise compatible.
(ii) $x \mathrm{P}_{n+1, \mathrm{i}}^{(\mathrm{s})}(x)$ and $\mathrm{P}_{\mathrm{n}+1, \mathrm{j}}^{(\mathrm{s})}(x)$ are also compatible and can be shown in a similar way.
(i) Thus, $\mathrm{P}_{n+1, \mathrm{i}}^{(\mathrm{s})}(\mathrm{x})$ and $\mathrm{P}_{n+1, \mathrm{j}}^{(\mathrm{s})}(x)$ are compatible because

$$
\left\{x \mathrm{P}_{\mathrm{n}, \alpha}^{(s)}\right\}_{0 \leqslant \alpha<\ell} \cup\left\{(\mathrm{c}+\mathrm{dx}) \mathrm{P}_{\mathrm{n}, \beta}^{(\mathrm{s})}\right\}_{\ell \leqslant \beta<k} \cup\left\{\mathrm{P}_{\mathrm{n}, \gamma}^{(s)}\right\}_{k \leqslant \gamma<s_{n}}
$$

are pairwise compatible.
(ii) $x \mathrm{P}_{n+1, i}^{(s)}(x)$ and $\mathrm{P}_{n+1, \mathrm{j}}^{(\mathrm{s})}(x)$ are also compatible and can be shown in a similar way.

Outline

(1) Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
(2) A novel approach to Eulerian polynomials
- s-inversion sequences and s-Eulerian polynomials
- Our main result
- The proof using compatible polynomials
(3) Applications
- h^{*}-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

Geometric interpretation

The Ehrhart series of a polytope \mathcal{P} in \mathbb{R}^{n} is the series

$$
\sum_{t \geqslant 0} \mathfrak{i}(\mathcal{P}, t) \chi^{t}
$$

where tP is the t -fold dilation of \mathcal{P} :

$$
\mathrm{t} \mathcal{P}=\left\{\left(\mathrm{t} \lambda_{1}, \mathrm{t} \lambda_{2}, \ldots, \mathrm{t} \lambda_{\mathrm{n}}\right) \mid\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}\right) \in \mathcal{P}\right\}
$$

and $\mathfrak{i}(\mathcal{P}, \mathrm{t})$ is the number of points in tP , all of whose coordinates are integer:

$$
\mathfrak{i}(\mathcal{P}, \mathrm{t})=\left|\mathrm{t} \mathcal{P} \cap \mathbb{Z}^{\mathrm{n}}\right|
$$

If all vertices of \mathcal{P} are integer, then $\mathfrak{i}(\mathcal{P}, \mathrm{t})$ is a polynomial in t and the Ehrhart series of \mathcal{P} has the form

$$
\sum_{t \geqslant 0} \mathfrak{i}(\mathcal{P}, t) x^{t}=\frac{h(x)}{(1-x)^{n}},
$$

for a polynomial

$$
h(x)=h_{0}+h_{1} x+\cdots h_{d} x^{d}
$$

known as the h^{*}-polynomial of \mathcal{P}. Here d is the dimension of \mathcal{P}.

h^{*}-polynomial of the s-lecture hall polytope

Definition (s-lecture hall polytope)

$$
\mathcal{P}_{n}^{(s)}=\left\{\lambda \in \mathbb{R}^{n}: 0 \leqslant \frac{\lambda_{1}}{s_{1}} \leqslant \frac{\lambda_{2}}{s_{2}} \leqslant \cdots \leqslant \frac{\lambda_{n}}{s_{n}} \leqslant 1\right\} .
$$

h^{*}-polynomial of the s-lecture hall polytope

Definition (s-lecture hall polytope)

$$
\mathcal{P}_{n}^{(s)}=\left\{\lambda \in \mathbb{R}^{n}: 0 \leqslant \frac{\lambda_{1}}{s_{1}} \leqslant \frac{\lambda_{2}}{s_{2}} \leqslant \cdots \leqslant \frac{\lambda_{n}}{s_{n}} \leqslant 1\right\} .
$$

Theorem (Savage, Schuster)

For any sequence s of positive integers,

$$
\sum_{t \geqslant 0} \mathfrak{i}\left(\mathcal{P}_{n}^{(s)}, t\right) x^{t}=\frac{\mathcal{E}_{n}^{(s)}(x)}{(1-x)^{n+1}}
$$

h^{*}-polynomial of the s-lecture hall polytope

Definition (s-lecture hall polytope)

$$
\mathcal{P}_{n}^{(s)}=\left\{\lambda \in \mathbb{R}^{n}: 0 \leqslant \frac{\lambda_{1}}{s_{1}} \leqslant \frac{\lambda_{2}}{s_{2}} \leqslant \cdots \leqslant \frac{\lambda_{n}}{s_{n}} \leqslant 1\right\} .
$$

Theorem (Savage, Schuster)

For any sequence s of positive integers,

$$
\sum_{t \geqslant 0} i\left(\mathcal{P}_{n}^{(s)}, t\right) x^{t}=\frac{\mathcal{E}_{n}^{(s)}(x)}{(1-x)^{n+1}}
$$

Our theorem for $\mathcal{E}_{n}^{(s)}(x)$ implies:
Corollary (Savage, V.)
For any sequence s of positive integers, the h^{*}-polynomial of the s-lecture hall polytope has all roots real.

Outline

(1) Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
(2) A novel approach to Eulerian polynomials
- s-inversion sequences and s-Eulerian polynomials
- Our main result
- The proof using compatible polynomials
(3) Applications
- h^{*}-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

Variations on a theme: Eulerian polynomials

The fact that $\varepsilon_{\mathrm{n}}^{(\mathrm{s})}(\mathrm{x})$ has only real roots implies several results.

Variations on a theme: Eulerian polynomials

The fact that $\varepsilon_{\mathrm{n}}^{(\mathrm{s})}(\mathrm{x})$ has only real roots implies several results.

- $\mathbf{s}=(1,2, \ldots, n):$ the Eulerian polynomial, $\mathfrak{S}_{n}(x)$,

Variations on a theme: Eulerian polynomials

The fact that $\varepsilon_{n}^{(s)}(\mathrm{x})$ has only real roots implies several results.

- $\mathbf{s}=(1,2, \ldots, n)$: the Eulerian polynomial, $\mathfrak{S}_{n}(x)$,
- $s=(2,4, \ldots, 2 n)$: the type B Eulerian polynomial, $B_{n}(x)$,

Variations on a theme: Eulerian polynomials

The fact that $\varepsilon_{n}^{(s)}(\mathrm{x})$ has only real roots implies several results.

- $\mathbf{s}=(1,2, \ldots, n)$: the Eulerian polynomial, $\mathfrak{S}_{n}(x)$,
- $s=(2,4, \ldots, 2 n)$: the type B Eulerian polynomial, $\mathrm{B}_{\mathrm{n}}(x)$,
- $\mathbf{s}=(k, 2 k, \ldots, n k)$: the descent polynomial for the wreath products, $G_{n, r}(x)$,

Variations on a theme: Eulerian polynomials

The fact that $\varepsilon_{n}^{(s)}(\mathrm{x})$ has only real roots implies several results.

- $\mathbf{s}=(1,2, \ldots, n)$: the Eulerian polynomial, $\mathfrak{S}_{n}(x)$,
- $s=(2,4, \ldots, 2 n)$: the type B Eulerian polynomial, $\mathrm{B}_{\mathrm{n}}(x)$,
- $\mathbf{s}=(k, 2 k, \ldots, n k)$: the descent polynomial for the wreath products, $\mathrm{G}_{\mathrm{n}, \mathrm{r}}(\mathrm{x})$,
- $\mathbf{s}=(k, k, \ldots, k)$: the ascent polynomial for words over a k-letter alphabet $\{0,1,2, \ldots, k-1\}$,

Variations on a theme: Eulerian polynomials

The fact that $\varepsilon_{n}^{(s)}(\mathrm{x})$ has only real roots implies several results.

- $\mathbf{s}=(1,2, \ldots, n)$: the Eulerian polynomial, $\mathfrak{S}_{n}(x)$,
- $\mathbf{s}=(2,4, \ldots, 2 n)$: the type B Eulerian polynomial, $\mathrm{B}_{\mathrm{n}}(x)$,
- $\mathbf{s}=(k, 2 k, \ldots, n k)$: the descent polynomial for the wreath products, $G_{n, r}(x)$,
- $\mathbf{s}=(\mathrm{k}, \mathrm{k}, \ldots, \mathrm{k})$: the ascent polynomial for words over a k-letter alphabet $\{0,1,2, \ldots, k-1\}$,
- $s=(k+1,2 k+1, \ldots,(n-1) k+1)$: the $1 / k$-Eulerian polynomial, $x^{\operatorname{exc} \pi}(1 / k)^{\mathrm{cyc} \pi}$,

Variations on a theme: Eulerian polynomials

The fact that $\varepsilon_{\mathrm{n}}^{(\mathrm{s})}(\mathrm{x})$ has only real roots implies several results.

- $\mathbf{s}=(1,2, \ldots, n)$: the Eulerian polynomial, $\mathfrak{S}_{n}(x)$,
- $\mathbf{s}=(2,4, \ldots, 2 n)$: the type B Eulerian polynomial, $\mathrm{B}_{\mathrm{n}}(x)$,
- $\boldsymbol{s}=(k, 2 k, \ldots, n k)$: the descent polynomial for the wreath products, $G_{n, r}(x)$,
- $\mathbf{s}=(\mathrm{k}, \mathrm{k}, \ldots, \mathrm{k})$: the ascent polynomial for words over a k-letter alphabet $\{0,1,2, \ldots, k-1\}$,
- $s=(k+1,2 k+1, \ldots,(n-1) k+1)$: the $1 / k$-Eulerian polynomial, $x^{\operatorname{exc} \pi}(1 / k)^{\mathrm{cyc} \pi}$,
- $s=(1,1,3,2,5,3,7,4, \ldots, 2 n-1, n):$ the descent polynomial for the multiset $\{1,1,2,2, \ldots, n, n\}$

Variations on a theme: Eulerian polynomials

The fact that $\varepsilon_{\mathrm{n}}^{(\mathrm{s})}(\mathrm{x})$ has only real roots implies several results.

- $\mathbf{s}=(1,2, \ldots, n)$: the Eulerian polynomial, $\mathfrak{S}_{n}(x)$,
- $\mathbf{s}=(2,4, \ldots, 2 n)$: the type B Eulerian polynomial, $\mathrm{B}_{\mathrm{n}}(x)$,
- $\boldsymbol{s}=(k, 2 k, \ldots, n k)$: the descent polynomial for the wreath products, $G_{n, r}(x)$,
- $\mathbf{s}=(\mathrm{k}, \mathrm{k}, \ldots, \mathrm{k})$: the ascent polynomial for words over a k-letter alphabet $\{0,1,2, \ldots, k-1\}$,
- $s=(k+1,2 k+1, \ldots,(n-1) k+1)$: the $1 / k$-Eulerian polynomial, $x^{\operatorname{exc} \pi}(1 / k)^{\mathrm{cyc} \pi}$,
- $s=(1,1,3,2,5,3,7,4, \ldots, 2 n-1, n)$: the descent polynomial for the multiset $\{1,1,2,2, \ldots, n, n\}$
have only real roots.

Euler-Mahonian extensions (q-analogs)

Conjectures of Chow-Gessel, Chow-Mansour

Euler-Mahonian extensions (q-analogs)

Conjectures of Chow-Gessel, Chow-Mansour

Theorem (Savage, V.)

The MacMahon-Carlitz q-analog

$$
\mathfrak{S}_{n}(x, q)=\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{des}(\pi)} q^{\operatorname{maj}(\pi)}
$$

has only real roots for $q \geqslant 0$.

Euler-Mahonian extensions (q-analogs)

Theorem (Savage, V.)

The MacMahon-Carlitz q-analog

$$
\Im_{n}(x, q)=\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{des}(\pi)} q^{\operatorname{maj}(\pi)}
$$

has only real roots for $\mathrm{q} \geqslant 0$.
Our result also holds for

- the hyperoctahedral group (type B), and
- the generalized symmetric group (wreath product $\Im_{n} \prec \mathrm{C}_{r}$), and
- other q-statistics (finv, comaj).

Summary

Summary

- We studied a novel generalization of Eulerian polynomials using statistics over s-inversion sequences.

Summary

- We studied a novel generalization of Eulerian polynomials using statistics over s-inversion sequences.
- We showed that the s-Eulerian polynomials have only real roots, for any sequence s, using the powerful technique of compatible polynomials.

Summary

- We studied a novel generalization of Eulerian polynomials using statistics over s -inversion sequences.
- We showed that the s-Eulerian polynomials have only real roots, for any sequence s, using the powerful technique of compatible polynomials.
- Our results unify several existing results and also settle conjectures of Chow-Gessel and Chow-Mansour (on real-rootedness of q-analogs).

Summary

- We studied a novel generalization of Eulerian polynomials using statistics over s -inversion sequences.
- We showed that the s-Eulerian polynomials have only real roots, for any sequence s, using the powerful technique of compatible polynomials.
- Our results unify several existing results and also settle conjectures of Chow-Gessel and Chow-Mansour (on real-rootedness of q-analogs).
Question:

Summary

- We studied a novel generalization of Eulerian polynomials using statistics over s-inversion sequences.
- We showed that the s-Eulerian polynomials have only real roots, for any sequence s, using the powerful technique of compatible polynomials.
- Our results unify several existing results and also settle conjectures of Chow-Gessel and Chow-Mansour (on real-rootedness of q-analogs).
Question:
- Is there an s-inversion sequence which will give the type D Eulerian polynomial?

