# On the Roots of Generalized Eulerian Polynomials

#### Carla D. Savage<sup>1</sup> Mirkó Visontai<sup>2</sup>

<sup>1</sup>Department of Computer Science North Carolina State University

<sup>2</sup>Department of Mathematics Kungliga Tekniska högskolan

# 69th Séminaire Lotharingien de Combinatoire, Strobl, 11.09.2012

・ 同 ト ・ ヨ ト ・ ヨ ト

# Outline



#### Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
- 2 A novel approach to Eulerian polynomials
  - s-inversion sequences and s-Eulerian polynomials
  - Our main result
  - The proof using compatible polynomials

# 3 Applications

- h\*-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

# Outline



#### Introduction

## Eulerian polynomials

- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences

## 2 A novel approach to Eulerian polynomials

- s-inversion sequences and s-Eulerian polynomials
- Our main result
- The proof using compatible polynomials

# 3 Applications

- h\*-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

・ 同 ト ・ ヨ ト ・ ヨ

For a permutation  $\pi = \pi_1 \dots \pi_n$  in  $\mathfrak{S}_n$ , let

$$des(\pi) = |\{i \mid \pi_i > \pi_{i+1}\}|$$

denote the number of *descents* in  $\pi$ .

The Eulerian polynomial

$$\mathfrak{S}_n(\mathbf{x}) := \sum_{\pi \in \mathfrak{S}_n} \mathbf{x}^{\mathsf{des}(\pi)} = \sum_{k=0}^{n-1} \left< \frac{n}{k} \right> \mathbf{x}^k,$$

where  $\left< {n \atop k} \right>$  is the number of permutations in  $\mathfrak{S}_n$  with k descents.

ヘロン 人間 とくほ とくほ とう

## Eulerian numbers: ${\binom{n}{k}}$ Euler's triangle



Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials

▶ ★ 臣 ▶

æ

# Eulerian numbers: ${\binom{n}{k}}$



•  $\mathfrak{S}_1(x) = 1$ , •  $\mathfrak{S}_2(x) = 1 + x$ , •  $\mathfrak{S}_3(x) = 1 + 4x + x^2$ , •  $\mathfrak{S}_4(x) = 1 + 11x + 11x^2 + x^3 \dots$ 

프 > 프

# The roots of $\mathfrak{S}_n(x)$

#### Theorem (Frobenius)

 $\mathfrak{S}_n(x)$  has only (negative and simple) real roots.

・ロン・西方・ ・ ヨン・

ъ

#### Theorem (Frobenius)

 $\mathfrak{S}_n(x)$  has only (negative and simple) real roots.

#### Corollary

For all  $n \ge 1$ , the Eulerian numbers

$${\binom{n}{0}}, {\binom{n}{1}}, \dots, {\binom{n}{n-1}}$$

form a (strictly) log-concave, and hence unimodal sequence.

ヘロト 人間 ト くほ ト くほ トー

#### Theorem (Frobenius)

 $\mathfrak{S}_n(x)$  has only (negative and simple) real roots.

#### Corollary

For all  $n \ge 1$ , the Eulerian numbers

$${\binom{n}{0}}, {\binom{n}{1}}, \dots, {\binom{n}{n-1}}$$

form a (strictly) log-concave, and hence unimodal sequence.

Most proofs of the theorem rely on the recurrence:

$$\mathfrak{S}_n(x) = (1+nx)\mathfrak{S}_{n-1}(x) + x(1-x)\mathfrak{S}_{n-1}'(x).$$

< 口 > < 同 > < 臣 > < 臣 >

# Plan: Generalize Frobenius' theorem

on the roots of the Eulerian polynomial

- Various algebraic and enumerative generalizations of <sup>6</sup><sub>n</sub>(x) have been studied. For example:
  - the descent generating function for Coxeter groups,
  - the second-order Eulerian polynomial.
- Does the property of having only real roots hold for these generating functions?
- How far can this be extended?

・聞き ・ヨト ・ヨト

# Outline



## Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
- 2 A novel approach to Eulerian polynomials
  - s-inversion sequences and s-Eulerian polynomials
  - Our main result
  - The proof using compatible polynomials

# 3 Applications

- h\*-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

・ 同 ト ・ ヨ ト ・ ヨ

## **Inversion sequences**

Let  $\pi$  be a permutation in the symmetric group  $\mathfrak{S}_n$ .

#### Definition

The inversion sequence  $e = (e_1, \dots, e_n)$  for a permutation  $\pi$  is defined as

$$e_j = \left| \{ i \mid \pi^{-1}(i) > \pi^{-1}(j), i < j \} \right|$$
.

イロト イポト イヨト イヨト

## **Inversion sequences**

Let  $\pi$  be a permutation in the symmetric group  $\mathfrak{S}_n$ .

#### Definition

The inversion sequence  $e = (e_1, \dots, e_n)$  for a permutation  $\pi$  is defined as

$$e_j = \left| \{ i \mid \pi^{-1}(i) > \pi^{-1}(j), i < j \} \right|.$$

Alternative way to represent permutations.

ヘロト 人間 ト くほ ト くほ トー

## **Inversion sequences**

Let  $\pi$  be a permutation in the symmetric group  $\mathfrak{S}_n$ .

#### Definition

The inversion sequence  $e = (e_1, \dots, e_n)$  for a permutation  $\pi$  is defined as

$$e_j = |\{i \mid \pi^{-1}(i) > \pi^{-1}(j), i < j\}|$$
.

Alternative way to represent permutations.

| Example $(n = 3)$ |                                              |                     |   |  |
|-------------------|----------------------------------------------|---------------------|---|--|
|                   | e <sub>1</sub> e <sub>2</sub> e <sub>3</sub> | $\pi_1 \pi_2 \pi_3$ |   |  |
|                   | 000                                          | 123                 | - |  |
|                   | 001                                          | 132                 |   |  |
|                   | 002                                          | 312                 |   |  |
|                   | 010                                          | 213                 |   |  |
|                   | 011                                          | 231                 |   |  |
|                   | 012                                          | 321                 |   |  |

# Outline



## Introduction

- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
- 2 A novel approach to Eulerian polynomials
  - s-inversion sequences and s-Eulerian polynomials
  - Our main result
  - The proof using compatible polynomials

# 3 Applications

- h\*-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall that for a permutation  $\pi$  in  $\mathfrak{S}_n$ ,

$$des(\pi) = |\{i \in \{1, 2, \dots, n-1\} \mid \pi_i > \pi_{i+1}\}|$$

denotes the number of *descents* in  $\pi$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Recall that for a permutation  $\pi$  in  $\mathfrak{S}_n$ ,

```
des(\pi) = |\{i \in \{1, 2, \dots, n-1\} \mid \pi_i > \pi_{i+1}\}|
```

denotes the number of *descents* in  $\pi$ .

#### Definition

A statistic is called *Eulerian* if its generating function is the Eulerian polynomial.

ヘロト 人間 ト くほ ト くほ トー

Recall that for a permutation  $\pi$  in  $\mathfrak{S}_n$ ,

$$des(\pi) = |\{i \in \{1, 2, \dots, n-1\} \mid \pi_i > \pi_{i+1}\}|$$

denotes the number of *descents* in  $\pi$ .

#### Definition

A statistic is called *Eulerian* if its generating function is the Eulerian polynomial.

#### Example

$$\mathfrak{S}_{\mathfrak{n}}(x):=\sum_{\pi\in\mathfrak{S}_{\mathfrak{n}}}x^{\textup{des}(\pi)}.$$

イロト イポト イヨト イヨト

#### Theorem (Savage, Schuster)

For  $e \in \mathrm{I}_n$  , let  $asc_I(e) = |\{i \mid e_i < e_{i+1}\}|$  . Then

$$\sum_{e \in I_n} x^{\text{asc}_I(e)} = \sum_{\pi \in \mathfrak{S}_n} x^{\text{des}(\pi)}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Theorem (Savage, Schuster)

For  $e \in \mathrm{I}_n,$  let  $asc_I(e) = |\{i \mid e_i < e_{i+1}\}|$  . Then

$$\sum_{e \in I_n} x^{\mathsf{asc}_I(e)} = \sum_{\pi \in \mathfrak{S}_n} x^{\mathsf{des}(\pi)}$$

## Example (n = 3)

| e <sub>1</sub> e <sub>2</sub> e <sub>3</sub> | $  \operatorname{asc}_{\mathrm{I}}(e)  $ | $\pi_1 \pi_2 \pi_3$ | des $(\pi)$ |
|----------------------------------------------|------------------------------------------|---------------------|-------------|
| 000                                          | 0                                        | 123                 | 0           |
| 001                                          | 1                                        | 132                 | 1           |
| 002                                          | 1                                        | 312                 | 1           |
| 010                                          | 1                                        | 213                 | 1           |
| 011                                          | 1                                        | 231                 | 1           |
| 012                                          | 2                                        | 321                 | 2           |

Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

# Outline



- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
- A novel approach to Eulerian polynomials
  - s-inversion sequences and s-Eulerian polynomials
  - Our main result
  - The proof using compatible polynomials

## 3 Applications

- h\*-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

・ 同 ト ・ ヨ ト ・ ヨ

# Generalized inversion sequences

Recall some facts about the inversion sequences:

• 
$$I_n = \{(e_1, \dots, e_n) \in \mathbb{Z}^n \mid 0 \le e_i < i\}.$$
  
•  $I_n = \{0\} \times \{0, 1\} \times \dots \times \{0, 1, \dots, n-1\}.$   
•  $|I_n| = n!$ 

프 🖌 🖌 프

# Generalized inversion sequences

Recall some facts about the inversion sequences:

• 
$$I_n = \{(e_1, \dots, e_n) \in \mathbb{Z}^n \mid 0 \le e_i < i\}.$$
  
•  $I_n = \{0\} \times \{0, 1\} \times \dots \times \{0, 1, \dots, n-1\}.$ 

• 
$$|I_n| = n!$$

#### Definition

For a given sequence  $s = (s_1, \ldots, s_n) \in \mathbb{N}^n$ , let  $I_n^{(s)}$  denote the set of *s*-inversion sequences by

$$I_n^{(s)} = \{(e_1, \ldots, e_n) \in \mathbb{Z}^n \mid 0 \leqslant e_i < s_i\}.$$

# Generalized inversion sequences

Recall some facts about the inversion sequences:

• 
$$I_n = \{(e_1, \dots, e_n) \in \mathbb{Z}^n \mid 0 \le e_i < i\}.$$
  
•  $I_n = \{0\} \times \{0, 1\} \times \dots \times \{0, 1, \dots, n-1\}.$   
•  $|I_n| = n!$ 

#### Definition

For a given sequence  $s = (s_1, \ldots, s_n) \in \mathbb{N}^n$ , let  $I_n^{(s)}$  denote the set of *s*-inversion sequences by

$$\mathbf{I}_{\mathfrak{n}}^{(s)} = \{ (e_1, \ldots, e_n) \in \mathbb{Z}^n \mid \mathbf{0} \leqslant e_i < s_i \}.$$

$$I_n = \{0, \ldots, s_1 - 1\} \times \{0, \ldots, s_2 - 1\} \times \cdots \times \{0, \ldots, s_n - 1\}.$$

$$\left| \mathbf{I}_{n}^{(\mathbf{s})} \right| = \prod_{i=1}^{n} \mathbf{s}_{i} \, .$$

・ 同 ト ・ 臣 ト ・ 臣 ト …

Recently, Savage and Schuster studied an *ascent* statistic for *s*-inversion sequences.

프 🖌 🖌 프 🕨

Recently, Savage and Schuster studied an *ascent* statistic for *s*-inversion sequences.

#### Definition

For 
$$e = (e_1, \ldots, e_n) \in I_n^{(s)}$$
, let

$$\operatorname{asc}_{\mathrm{I}}(e) = \left| \left\{ i \in \{0, \dots, n-1\} : \frac{e_{i}}{s_{i}} < \frac{e_{i+1}}{s_{i+1}} \right\} \right|$$

where we use the convention  $e_0 = 0$  (and  $s_0 = 1$ ).

・ 同 ト ・ ヨ ト ・ ヨ ト

Two examples for the sequence s = (2, 4, 6)



프 에 에 프 에 다

3

Two examples for the sequence s = (2, 4, 6)



★ E ► ★ E ► E

Two examples for the sequence s = (2, 4, 6)



★ E ► ★ E ► E

< 🗇 🕨

Two examples for the sequence s = (2, 4, 6)



# s-Eulerian polynomials

#### Theorem (Savage, Schuster)

$$\mathfrak{S}_{\mathfrak{n}}(\mathbf{x}) = \sum_{\pi \in \mathfrak{S}_{\mathfrak{n}}} \mathbf{x}^{\mathsf{des}(\pi)} \tag{1}$$

$$=\sum_{e\in I_n^{(s)}} x^{\operatorname{asc}_I(e)}, \qquad (2)$$

ヘロン ヘアン ヘビン ヘビン

3

when 
$$s = 1, 2, ..., n$$
.

# s-Eulerian polynomials

#### Theorem (Savage, Schuster)

$$\mathfrak{S}_{\mathfrak{n}}(\mathbf{x}) = \sum_{\pi \in \mathfrak{T}} \mathbf{x}^{\mathsf{des}(\pi)}$$
(1)

$$=\sum_{e\in I_n^{(s)}}^{n\in \mathfrak{S}_n} x^{\operatorname{asc}_I(e)}, \qquad (2)$$

ъ

ヘロト 人間 ト ヘヨト ヘヨト

when 
$$s = 1, 2, ..., n$$
.

#### Definition (s-Eulerian polynomials)

For an arbitrary sequence  $s = s_1, s_2, \ldots$ , let

$$\mathcal{E}_n^{(s)}(x) := \sum_{e \in I_n^{(s)}} x^{\operatorname{asc}_I(e)} \,.$$

# Outline



- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences

## A novel approach to Eulerian polynomials

s-inversion sequences and s-Eulerian polynomials

#### Our main result

The proof using compatible polynomials

## 3 Applications

- h\*-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶

# On the roots of *s*-Eulerian polynomials

#### Theorem (Frobenius)

The Eulerian polynomials

$$\mathfrak{S}_{n}(\mathbf{x}) = \sum_{\boldsymbol{e} \in \mathbf{I}_{n}^{(1,2,\dots,n)}} \mathbf{x}^{\texttt{asc}_{I}(\boldsymbol{e})}$$

have only real roots.

イロト イポト イヨト イヨト

# On the roots of *s*-Eulerian polynomials

#### Theorem (Frobenius)

The Eulerian polynomials

$$\mathfrak{S}_{n}(\mathbf{x}) = \sum_{\boldsymbol{e} \in I_{n}^{(1,2,\dots,n)}} \mathbf{x}^{\texttt{asc}_{I}(\boldsymbol{e})}$$

have only real roots.

This can be generalized to the following.

#### Theorem (Savage, V.)

For any sequence s of nonnegative integers, the s-Eulerian polynomials

$$\mathcal{E}_n^{(s)}(x) = \sum_{e \in I_n^{(s)}} x^{\text{asc}_I(e)}$$

have only real roots.

# Outline



- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences

## 2 A novel approach to Eulerian polynomials

- s-inversion sequences and s-Eulerian polynomials
- Our main result
- The proof using compatible polynomials

## Applications

- h\*-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

・ 同 ト ・ ヨ ト ・ ヨ
# Compatible polynomials

#### Definition

Polynomials  $f_1(x), \ldots, f_m(x)$  over  $\mathbb{R}$  are *compatible*, if all their conic combinations, i.e., the polynomials

$$\sum_{i=1}^{m} c_{i}f_{i}(x) \quad \text{with } c_{1}, \dots, c_{m} \geqslant 0$$

have only real roots.

イロト イ理ト イヨト イヨト

# Compatible polynomials

#### Definition

Polynomials  $f_1(x), \ldots, f_m(x)$  over  $\mathbb R$  are *compatible*, if all their conic combinations, i.e., the polynomials

$$\sum_{i=1}^{m} c_{i}f_{i}(x) \quad \text{with } c_{1}, \dots, c_{m} \ge 0$$

have only real roots.

Fact: A real-rooted polynomial is compatible with itself.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Compatible polynomials

#### Definition

Polynomials  $f_1(x), \ldots, f_m(x)$  over  $\mathbb R$  are *compatible*, if all their conic combinations, i.e., the polynomials

$$\sum_{i=1}^{m} c_{i}f_{i}(x) \quad \text{with } c_{1}, \dots, c_{m} \ge 0$$

have only real roots.

Fact: A real-rooted polynomial is compatible with itself.

#### Definition

The polynomials  $f_1(x), \ldots, f_m(x)$  are *pairwise compatible* if for all  $i, j \in \{1, 2, \ldots, m\}$ ,  $f_i(x)$  and  $f_j(x)$  are compatible.

イロト イポト イヨト イヨト

#### Remark

Polynomials f(x) and g(x) are compatible if and only if each of the following pairs is compatible

- af(x) and bg(x) for any positive  $a, b \in \mathbb{R}$ ,
- xf(x) and xg(x)
- (c + dx)f(x) and (c + dx)g(x) for any positive  $c, d \in \mathbb{R}$ .

イロト イ押ト イヨト イヨトー

#### Remark

Polynomials  $f(\mathbf{x})$  and  $g(\mathbf{x})$  are compatible if and only if each of the following pairs is compatible

- af(x) and bg(x) for any positive  $a, b \in \mathbb{R}$ ,
- xf(x) and xg(x)
- (c + dx)f(x) and (c + dx)g(x) for any positive  $c, d \in \mathbb{R}$ .

A key tool in our proof is the following.

#### Lemma (Chudnovsky-Seymour)

The polynomials  $f_1(x), \ldots, f_m(x)$  are compatible if and only if they are pairwise compatible.

イロト イポト イヨト イヨト

## Proving more is sometimes easier

Instead of working with

$$\mathcal{E}_n^{(s)}(x) = \sum_{e \in I_n^{(s)}} x^{\text{asc}_I(e)}$$

we will work with the partial sums

$$\mathsf{P}_{n,i}^{(s)}(x) := \sum_{\{\boldsymbol{e} \in \mathrm{I}_n^{(s)} | \boldsymbol{e}_n = i\}} x^{\mathsf{asc}_I(\boldsymbol{e})} \,.$$

伺き くほき くほう

## Proving more is sometimes easier

Instead of working with

$$\mathcal{E}_n^{(s)}(x) = \sum_{e \in I_n^{(s)}} x^{\text{asc}_I(e)}$$

we will work with the partial sums

$$\mathsf{P}_{n,i}^{(s)}(\mathbf{x}) := \sum_{\{\boldsymbol{e} \in \mathsf{I}_n^{(s)} | \boldsymbol{e}_n = i\}} \mathsf{x}^{\mathsf{asc}_{\mathsf{I}}(\boldsymbol{e})} \,.$$

Clearly,

$$\mathcal{E}_{n}^{(s)}(x) = \sum_{i=0}^{s_{n}-1} P_{n,i}^{(s)}(x).$$

Thus,  $P_{n,i}^{(s)}(x)$  compatible  $\Longrightarrow \mathcal{E}_n^{(s)}(x)$  has only real roots.

## A simple recurrence

$$\mathsf{P}_{n,i}^{(s)}(x) = \sum_{\{e \in I_n^{(s)} | e_n = i\}} x^{\mathsf{asc}_I(e)}.$$

#### Lemma

Given a sequence  $s=\{s_i\}_{i\geqslant 1}$  of positive integers, let  $n\geqslant 1$  and  $0\leqslant i< s_n.$  Then for n>1,

$$P_{n,i}^{(s)}(x) = \sum_{j=0}^{\ell-1} x P_{n-1,j}^{(s)}(x) + \sum_{j=\ell}^{s_{n-1}-1} P_{n-1,j}^{(s)}(x)$$

where

$$\ell = \lceil is_{n-1}/s_n \rceil.$$

When n = 1,  $P_{1,0}^{(s)}(x) = 1$  and  $P_{1,i}^{(s)}(x) = x$  for i > 0.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

## A simple recurrence

$$\operatorname{asc}_{\mathrm{I}}(e) = \left| \left\{ i \in \{0, \dots, n-1\} : \frac{e_{i}}{s_{i}} < \frac{e_{i+1}}{s_{i+1}} \right\} \right|$$

#### Lemma

Given a sequence  $s=\{s_i\}_{i\geqslant 1}$  of positive integers, let  $n\geqslant 1$  and  $0\leqslant i< s_n.$  Then for n>1,

$$\mathsf{P}_{n,i}^{(s)}(x) = \sum_{j=0}^{\ell-1} x \mathsf{P}_{n-1,j}^{(s)}(x) + \sum_{j=\ell}^{s_{n-1}-1} \mathsf{P}_{n-1,j}^{(s)}(x)$$

where

$$\ell = \lceil is_{n-1}/s_n \rceil.$$

When 
$$n = 1$$
,  $P_{1,0}^{(s)}(x) = 1$  and  $P_{1,i}^{(s)}(x) = x$  for  $i > 0$ .

ъ

ヘロン 人間 とくほ とくほ とう

#### Theorem (Savage, V.)

Given a sequence  $s = \{s_i\}_{i \ge 1}$ , for all  $0 \le i \le j < s_n$ ,

(i)  $P_{n,i}^{(s)}(x)$  and  $P_{n,j}^{(s)}(x)$  are compatible, and

(ii)  $xP_{n,i}^{(s)}(x)$  and  $P_{n,j}^{(s)}(x)$  are compatible.

#### Corollary

The polynomials  $P_{n,0}^{(s)}(x), P_{n,1}^{(s)}(x) \dots, P_{n,s_n-1}^{(s)}(x)$  are compatible.

<ロ> (四) (四) (三) (三) (三)

Use induction. Base case: (x, 1) or (x, x) or  $(x^2, x)$ .

Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Use induction. Base case: (x, 1) or (x, x) or  $(x^2, x)$ .

Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Use induction. Base case: (x, 1) or (x, x) or  $(x^2, x)$ .  $\checkmark$  For i < j, we have  $\ell \leq k$ .

$$P_{n+1,i}^{(s)} = x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)})}_{\ell} + \dots + P_{n,k-1}^{(s)} + \dots + P_{n,s_n-1}^{(s)},$$
  
$$P_{n+1,j}^{(s)} = x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)} + \dots + P_{n,k-1}^{(s)})}_{k} + \dots + P_{n,s_n-1}^{(s)}.$$

Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

Use induction. Base case: (x, 1) or (x, x) or  $(x^2, x)$ .  $\checkmark$  For i < j, we have  $\ell \leq k$ .

$$P_{n+1,i}^{(s)} = x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)})}_{\ell} + \dots + P_{n,k-1}^{(s)} + \dots + P_{n,s_{n-1}}^{(s)},$$
  
$$P_{n+1,j}^{(s)} = x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)} + \dots + P_{n,k-1}^{(s)})}_{k} + \dots + P_{n,s_{n-1}}^{(s)}.$$

(i) 
$$P_{n+1,i}^{(s)}(x)$$
 and  $P_{n+1,j}^{(s)}(x)$  are compatible because  
 $\left\{xP_{n,\alpha}^{(s)}\right\}_{0\leqslant\alpha<\ell} \cup \left\{(c+dx)P_{n,\beta}^{(s)}\right\}_{\ell\leqslant\beta$ 

are pairwise compatible.

個 とくき とくきと

÷.

Now

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0 \leqslant \alpha < \ell} \cup \left\{(c + dx) P_{n,\beta}^{(s)}\right\}_{\ell \leqslant \beta < k} \cup \left\{P_{n,\gamma}^{(s)}\right\}_{k \leqslant \gamma < s_n}$$

are parwise compatible because of the following:

・ 同 ト ・ ヨ ト ・ ヨ ト

Now

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0 \leqslant \alpha < \ell} \cup \left\{(c + dx) P_{n,\beta}^{(s)}\right\}_{\ell \leqslant \beta < k} \cup \left\{P_{n,\gamma}^{(s)}\right\}_{k \leqslant \gamma < s_n}$$

are parwise compatible because of the following:

• Two polynomials from the same set are compatible by IH(i).

・ 同 ト ・ ヨ ト ・ ヨ ト

Now

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0 \leqslant \alpha < \ell} \cup \left\{(c + dx) P_{n,\beta}^{(s)}\right\}_{\ell \leqslant \beta < k} \cup \left\{P_{n,\gamma}^{(s)}\right\}_{k \leqslant \gamma < s_n}$$

are parwise compatible because of the following:

- Two polynomials from the same set are compatible by IH(i).
- $xP_{n,\alpha}^{(s)}$  and  $P_{n,\gamma}^{(s)}$  is compatible by IH(ii).

(過) (ヨ) (ヨ)

Now

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0 \leqslant \alpha < \ell} \cup \left\{(c + dx) P_{n,\beta}^{(s)}\right\}_{\ell \leqslant \beta < k} \cup \left\{P_{n,\gamma}^{(s)}\right\}_{k \leqslant \gamma < s_n}$$

are parwise compatible because of the following:

- Two polynomials from the same set are compatible by IH(i).
  xP<sub>n,x</sub><sup>(s)</sup> and P<sub>n,x</sub><sup>(s)</sup> is compatible by IH(ii).
- $xP_{n,\alpha}^{(s)}$  and  $(c + dx)P_{n,\beta}^{(s)}$  are compatible because
  - $xP_{n,\alpha}^{(s)}, xP_{n,\beta}^{(s)}, P_{n,\beta}^{(s)}$  are pairwise compatible.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Now

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0 \leqslant \alpha < \ell} \cup \left\{(c + dx) P_{n,\beta}^{(s)}\right\}_{\ell \leqslant \beta < k} \cup \left\{P_{n,\gamma}^{(s)}\right\}_{k \leqslant \gamma < s_n}$$

are parwise compatible because of the following:

- Two polynomials from the same set are compatible by IH(i).
  xP<sub>n,x</sub><sup>(s)</sup> and P<sub>n,x</sub><sup>(s)</sup> is compatible by IH(ii).
- $xP_{n,\alpha}^{(s)}$  and  $(c + dx)P_{n,\beta}^{(s)}$  are compatible because •  $xP_{n,\alpha}^{(s)}, xP_{n,\beta}^{(s)}, P_{n,\beta}^{(s)}$  are pairwise compatible.
- $(c + dx)P_{n,\beta}^{(s)}$  and  $P_{n,\gamma}^{(s)}$  are compatible because
  - $P_{n,\beta}^{(s)}, xP_{n,\beta}^{(s)}, P_{n,\gamma}^{(s)}$  are pairwise compatible.

< 回 > < 回 > < 回 > .

(i) Thus, 
$$P_{n+1,i}^{(s)}(x)$$
 and  $P_{n+1,j}^{(s)}(x)$  are compatible because  
 $\left\{xP_{n,\alpha}^{(s)}\right\}_{0\leqslant \alpha<\ell} \cup \left\{(c+dx)P_{n,\beta}^{(s)}\right\}_{\ell\leqslant\beta$ 

are pairwise compatible.

ヨト イヨト

ъ

(i) Thus, 
$$P_{n+1,i}^{(s)}(x)$$
 and  $P_{n+1,j}^{(s)}(x)$  are compatible because  
 $\left\{xP_{n,\alpha}^{(s)}\right\}_{0\leqslant\alpha<\ell} \cup \left\{(c+dx)P_{n,\beta}^{(s)}\right\}_{\ell\leqslant\beta$ 

are pairwise compatible. ✓

ヨト イヨト

ъ

(i) Thus,  $P_{n+1,i}^{(s)}(x)$  and  $P_{n+1,j}^{(s)}(x)$  are compatible because

$$\left\{x \mathsf{P}_{n,\alpha}^{(s)}\right\}_{0 \leqslant \alpha < \ell} \cup \left\{(c + dx) \mathsf{P}_{n,\beta}^{(s)}\right\}_{\ell \leqslant \beta < k} \cup \left\{\mathsf{P}_{n,\gamma}^{(s)}\right\}_{k \leqslant \gamma < s_n}$$

are pairwise compatible. 🗸

(ii)  $xP_{n+1,i}^{(s)}(x)$  and  $P_{n+1,j}^{(s)}(x)$  are also compatible and can be shown in a similar way.

通 とく ヨ とく ヨ とう

(i) Thus,  $P_{n+1,i}^{(s)}(x)$  and  $P_{n+1,j}^{(s)}(x)$  are compatible because

$$\left\{x \mathsf{P}_{n,\alpha}^{(s)}\right\}_{0 \leqslant \alpha < \ell} \cup \left\{(c + dx) \mathsf{P}_{n,\beta}^{(s)}\right\}_{\ell \leqslant \beta < k} \cup \left\{\mathsf{P}_{n,\gamma}^{(s)}\right\}_{k \leqslant \gamma < s_n}$$

are pairwise compatible. 🗸

(ii)  $xP_{n+1,i}^{(s)}(x)$  and  $P_{n+1,j}^{(s)}(x)$  are also compatible and can be shown in a similar way.  $\checkmark$ 

通 とく ヨ とく ヨ とう

## Outline



- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
- 2 A novel approach to Eulerian polynomials
  - s-inversion sequences and s-Eulerian polynomials
  - Our main result
  - The proof using compatible polynomials

# 3 Applications

- h\*-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

・ 同 ト ・ ヨ ト ・ ヨ

The *Ehrhart series* of a polytope  $\mathcal{P}$  in  $\mathbb{R}^n$  is the series

$$\sum_{t \ge 0} \mathfrak{i}(\mathcal{P}, t) x^t,$$

where  $t\mathcal{P}$  is the t-fold *dilation* of  $\mathcal{P}$ :

$$\mathbf{t}\boldsymbol{\mathcal{P}} = \{(\mathbf{t}\lambda_1, \mathbf{t}\lambda_2, \dots, \mathbf{t}\lambda_n) \mid (\lambda_1, \lambda_2, \dots, \lambda_n) \in \boldsymbol{\mathcal{P}}\},\$$

and  $i(\boldsymbol{\mathcal{P}},t)$  is the number of points in  $t\boldsymbol{\mathcal{P}},$  all of whose coordinates are integer:

$$\mathfrak{i}(\mathfrak{P},\mathfrak{t})=|\mathfrak{t}\mathfrak{P}\cap\mathbb{Z}^n|.$$

個 とくき とくきと

If all vertices of  ${\cal P}$  are integer, then  $i({\cal P},t)$  is a polynomial in t and the Ehrhart series of  ${\cal P}$  has the form

$$\sum_{t \ge 0} \mathfrak{i}(\mathcal{P}, t) x^t = \frac{h(x)}{(1-x)^n},$$

for a polynomial

$$h(x) = h_0 + h_1 x + \cdots + h_d x^d$$

known as the  $h^*$ -polynomial of  $\mathcal{P}$ . Here d is the dimension of  $\mathcal{P}$ .

個 と く ヨ と く ヨ と …

# h\*-polynomial of the s-lecture hall polytope

#### Definition (s-lecture hall polytope)

$$\mathfrak{P}_n^{(s)} = \left\{\lambda \in \mathbb{R}^n : 0 \leqslant \frac{\lambda_1}{s_1} \leqslant \frac{\lambda_2}{s_2} \leqslant \cdots \leqslant \frac{\lambda_n}{s_n} \leqslant 1\right\}.$$

Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials

ヘロン 人間 とくほ とくほ とう

ъ

# h\*-polynomial of the s-lecture hall polytope

#### Definition (s-lecture hall polytope)

$$\mathfrak{P}_n^{(s)} = \left\{ \lambda \in \mathbb{R}^n : \mathbf{0} \leqslant \frac{\lambda_1}{s_1} \leqslant \frac{\lambda_2}{s_2} \leqslant \cdots \leqslant \frac{\lambda_n}{s_n} \leqslant \mathbf{1} \right\}.$$

#### Theorem (Savage, Schuster)

For any sequence s of positive integers,

$$\sum_{t \ge 0} \mathfrak{i}(\mathcal{P}_n^{(s)}, t) x^t = \frac{\mathcal{E}_n^{(s)}(x)}{(1-x)^{n+1}}.$$

Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials

イロト イポト イヨト イヨト

# h\*-polynomial of the s-lecture hall polytope

#### Definition (s-lecture hall polytope)

$$\mathfrak{P}_n^{(s)} = \left\{ \lambda \in \mathbb{R}^n : \mathbf{0} \leqslant \frac{\lambda_1}{s_1} \leqslant \frac{\lambda_2}{s_2} \leqslant \cdots \leqslant \frac{\lambda_n}{s_n} \leqslant \mathbf{1} \right\}.$$

#### Theorem (Savage, Schuster)

For any sequence s of positive integers,

$$\sum_{t\geq 0} \mathfrak{i}(\mathfrak{P}_n^{(s)}, t) x^t = \frac{\mathfrak{E}_n^{(s)}(x)}{(1-x)^{n+1}}.$$

Our theorem for  $\mathcal{E}_n^{(s)}(x)$  implies:

#### Corollary (Savage, V.)

For any sequence s of positive integers, the  $h^*$ -polynomial of the s-lecture hall polytope has all roots real.

## Outline



- Eulerian polynomials
- Permutations and inversion sequences
- An Eulerian statistic on inversion sequences
- 2 A novel approach to Eulerian polynomials
  - s-inversion sequences and s-Eulerian polynomials
  - Our main result
  - The proof using compatible polynomials

## 3 Applications

- h\*-polynomials of s-lecture hall polytope
- Generalized Eulerian polynomials and q-analogs

< 回 > < 三 > < 三

The fact that  $\mathcal{E}_n^{(s)}(x)$  has only real roots implies several results.

伺 とく ヨ とく ヨ と

The fact that  $\mathcal{E}_n^{(s)}(x)$  has only real roots implies several results.

• s = (1, 2, ..., n): the Eulerian polynomial,  $\mathfrak{S}_n(x)$ ,

The fact that  $\mathcal{E}_n^{(s)}(x)$  has only real roots implies several results.

- s = (1, 2, ..., n): the Eulerian polynomial,  $\mathfrak{S}_n(x)$ ,
- s = (2, 4, ..., 2n): the type B Eulerian polynomial,  $B_n(x)$ ,

The fact that  $\mathcal{E}_n^{(s)}(x)$  has only real roots implies several results.

- s = (1, 2, ..., n): the Eulerian polynomial,  $\mathfrak{S}_n(x)$ ,
- s = (2, 4, ..., 2n): the type B Eulerian polynomial,  $B_n(x)$ ,
- s = (k, 2k, ..., nk): the descent polynomial for the wreath products, G<sub>n,r</sub>(x),

通 とくほ とくほ とう

The fact that  $\mathcal{E}_n^{(s)}(x)$  has only real roots implies several results.

- s = (1, 2, ..., n): the Eulerian polynomial,  $\mathfrak{S}_n(x)$ ,
- s = (2, 4, ..., 2n): the type B Eulerian polynomial,  $B_n(x)$ ,
- s = (k, 2k, ..., nk): the descent polynomial for the wreath products, G<sub>n,r</sub>(x),
- s = (k, k,..., k): the ascent polynomial for words over a k-letter alphabet {0, 1, 2, ..., k − 1},

(日本) (日本) (日本) 日

The fact that  $\mathcal{E}_n^{(s)}(x)$  has only real roots implies several results.

- s = (1, 2, ..., n): the Eulerian polynomial,  $\mathfrak{S}_n(x)$ ,
- s = (2, 4, ..., 2n): the type B Eulerian polynomial,  $B_n(x)$ ,
- s = (k, 2k, ..., nk): the descent polynomial for the wreath products, G<sub>n,r</sub>(x),
- s = (k, k,..., k): the ascent polynomial for words over a k-letter alphabet {0, 1, 2, ..., k − 1},
- s = (k + 1, 2k + 1, ..., (n 1)k + 1): the 1/k-Eulerian polynomial,  $x^{\text{exc }\pi}(1/k)^{\text{cyc }\pi}$ ,

・ロット (雪) ( き) ( き) ( き)
## Variations on a theme: Eulerian polynomials

The fact that  $\mathcal{E}_n^{(s)}(x)$  has only real roots implies several results.

- s = (1, 2, ..., n): the Eulerian polynomial,  $\mathfrak{S}_n(x)$ ,
- s = (2, 4, ..., 2n): the type B Eulerian polynomial,  $B_n(x)$ ,
- s = (k, 2k, ..., nk): the descent polynomial for the wreath products, G<sub>n,r</sub>(x),
- s = (k, k, ..., k): the ascent polynomial for words over a k-letter alphabet {0, 1, 2, ..., k − 1},
- s = (k + 1, 2k + 1, ..., (n 1)k + 1): the 1/k-Eulerian polynomial,  $x^{exc \pi}(1/k)^{cyc \pi}$ ,
- s = (1, 1, 3, 2, 5, 3, 7, 4, ..., 2n 1, n): the descent polynomial for the multiset  $\{1, 1, 2, 2, ..., n, n\}$

イロト 不得 とくほ とくほ とうほ

## Variations on a theme: Eulerian polynomials

The fact that  $\mathcal{E}_n^{(s)}(x)$  has only real roots implies several results.

- s = (1, 2, ..., n): the Eulerian polynomial,  $\mathfrak{S}_n(x)$ ,
- s = (2, 4, ..., 2n): the type B Eulerian polynomial,  $B_n(x)$ ,
- s = (k, 2k, ..., nk): the descent polynomial for the wreath products, G<sub>n,r</sub>(x),
- s = (k, k,..., k): the ascent polynomial for words over a k-letter alphabet {0, 1, 2, ..., k − 1},
- s = (k + 1, 2k + 1, ..., (n 1)k + 1): the 1/k-Eulerian polynomial,  $x^{exc \pi}(1/k)^{cyc \pi}$ ,
- s = (1, 1, 3, 2, 5, 3, 7, 4, ..., 2n 1, n): the descent polynomial for the multiset  $\{1, 1, 2, 2, ..., n, n\}$

have only real roots.

イロト 不得 とくほ とくほ とうほ

# Euler–Mahonian extensions (q-analogs)

Conjectures of Chow-Gessel, Chow-Mansour

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

## Euler–Mahonian extensions (q-analogs)

Conjectures of Chow-Gessel, Chow-Mansour

#### Theorem (Savage, V.)

The MacMahon–Carlitz q-analog

$$\mathfrak{S}_n(x,q) = \sum_{\pi \in \mathfrak{S}_n} x^{\text{des}(\pi)} q^{\text{maj}(\pi)}$$

has only real roots for  $q \ge 0$ .

・ロト ・四ト ・ヨト ・ヨト

# Euler-Mahonian extensions (q-analogs)

Conjectures of Chow-Gessel, Chow-Mansour

#### Theorem (Savage, V.)

The MacMahon–Carlitz q-analog

$$\mathfrak{S}_n(x, q) = \sum_{\pi \in \mathfrak{S}_n} x^{\mathsf{des}(\pi)} q^{\mathsf{maj}(\pi)}$$

has only real roots for  $q \ge 0$ .

Our result also holds for

- the hyperoctahedral group (type B), and
- the generalized symmetric group (wreath product  $\mathfrak{S}_n \wr C_r$ ), and
- other q-statistics (finv, comaj).

イロト イ押ト イヨト イヨトー



Carla D. Savage, Mirkó Visontai On the Roots of Generalized Eulerian Polynomials

イロン イロン イヨン イヨン

 We studied a novel generalization of Eulerian polynomials using statistics over s-inversion sequences.

・ 回 ト ・ ヨ ト ・ ヨ ト

#### Summary

- We studied a novel generalization of Eulerian polynomials using statistics over *s*-inversion sequences.
- We showed that the *s*-Eulerian polynomials have only real roots, for any sequence *s*, using the powerful technique of *compatible polynomials*.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Summary

- We studied a novel generalization of Eulerian polynomials using statistics over s-inversion sequences.
- We showed that the *s*-Eulerian polynomials have only real roots, for any sequence *s*, using the powerful technique of *compatible polynomials*.
- Our results unify several existing results and also settle conjectures of Chow–Gessel and Chow–Mansour (on real-rootedness of q-analogs).

・ 同 ト ・ ヨ ト ・ ヨ ト

### Summary

- We studied a novel generalization of Eulerian polynomials using statistics over s-inversion sequences.
- We showed that the *s*-Eulerian polynomials have only real roots, for any sequence *s*, using the powerful technique of *compatible polynomials*.
- Our results unify several existing results and also settle conjectures of Chow–Gessel and Chow–Mansour (on real-rootedness of q-analogs).

Question:

・ 同 ト ・ ヨ ト ・ ヨ ト

### Summary

- We studied a novel generalization of Eulerian polynomials using statistics over s-inversion sequences.
- We showed that the *s*-Eulerian polynomials have only real roots, for any sequence *s*, using the powerful technique of *compatible polynomials*.
- Our results unify several existing results and also settle conjectures of Chow–Gessel and Chow–Mansour (on real-rootedness of q-analogs).

Question:

 Is there an s-inversion sequence which will give the type D Eulerian polynomial?

ヘロト 人間 ト ヘヨト ヘヨト