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COUNTING GENUS ONE PARTITIONS AND PERMUTATIONS
ROBERT CORI AND GABOR HETYEI

ABSTRACT. We prove the conjecture by M. Yip stating that counting genus one par-
titions by the number of their elements and blocks yields, up to a shift of indices,
the same array of numbers as counting genus one rooted hypermonopoles. Our proof
involves representing each genus one permutation by a four-colored noncrossing par-
tition. This representation may be selected in a unique way for permutations con-
taining no trivial cycles. The conclusion follows from a general generating function
formula that holds for any class of permutations that is closed under the removal and
reinsertion of trivial cycles. Our method also provides a new way to count rooted
hypermonopoles of genus one, and puts the spotlight on a class of genus one permu-
tations that is invariant under an obvious extension of the Kreweras duality map to
genus one permutations.

INTRODUCTION

Noncrossing partitions, first defined in G. Kreweras’ seminal paper [11], have a vast
literature in areas ranging from probability theory through polyhedral geometry to the
study of Coxeter groups. Noncrossing partitions on a given number of elements are
counted by the Catalan numbers, if we also fix the number of blocks, the answer to the
resulting counting problem is given by the Narayana numbers.

A natural generalization of the problem of counting noncrossing partitions is to count
partitions of a given genus. The genus of a partition may be defined in terms of a
topological representation (see [1, Section 4.1] or [21] for example), but there exists
also a purely combinatorial definition of the genus of a hypermap (thought of as a pair
of permutations, generating a transitive permutation group) that can be specialized
first to hypermonopoles, or permutations (that is, hypermaps whose first component
is the circular permutation (1,2,...,n)), and then to partitions (that is, permutations
whose cycles may be written as lists whose elements are in increasing order). Counting
partitions of a given genus seems surprisingly hard, especially considering the fact that,
for the closely related hypermonopoles, a general machinery was built by S. Cautis and
D. M. Jackson [1] and explicit formulas were given by A. Goupil and G. Schaeffer [7].
It should be noted that for genus zero, i.e., noncrossing partitions, the notions of a
hypermonopole (in our language: permutation) and of a partition coincide (see [5,
Theorem 1]). Thus it seems hard to believe that the two notions would not only
diverge but also give rise to counting problems of different difficulty in higher genus.
Asymptotic estimates for the numbers of noncrossing partitions on various surfaces may
found in [14].
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Concerning partitions of a fixed genus, a great deal of numerical evidence was col-
lected in M. Yip’s master’s thesis, who made the following conjecture [21, Conjec-
ture 3.15]: the number of genus 1 partitions on n elements and k& blocks is the same
as the number of genus one permutations of n — 1 elements having £ — 1 cycles. In
this paper we prove this conjecture and provide further insight into the structure of
genus 1 partitions and permutations by representing them as four-colored noncrossing
partitions.

Our paper is structured as follows. After reviewing some basic terminology and re-
sults on the genus of partitions and permutations in Section 1, in Section 2 we develop
a theory of representing every permutation of genus 1 by a four-colored noncrossing
partition. The four colors form consecutive arcs in the circular order and prescribe a
relabeling that results in a permutation of genus at most one. The construction is not
unique, but we show that every permutation of genus 1 may be represented in such a
way. Moreover, as we show in Section 3, if the permutation of genus 1 is reduced in
the sense that it contains no cycle consisting of consecutive elements in the circular
order (we call these trivial cycles) then we may select a unique four-colored noncrossing
partition representation of our permutation which we call the canonical representation.
This uniqueness enables us to count reduced permutations and partitions of genus 1
in Section 4. We only need to account for the possibility of having trivial cycles. In
Section 5 we show how to do this, at the level of ordinary generating functions, for
any class of permutations that is closed under the removal and reinsertion of trivial
cycles. Since genus one permutations and partitions form such classes, we may combine
the formula stated in Theorem 5.3, with the generating function formulas stated in
Section 4, and obtain the generating function formulas counting genus 1 permutations
and partitions with given number of permuted elements and cycles. Since the resulting
formulas stated in Theorems 6.1 and 6.5 differ only by a factor of zy, the validity of
M. Yip’s conjecture is at this point verified. In Section 7 we show how to extract the
coefficients from our generating functions to find the number of partitions of genus 1.
It should be noted, that our paper thus also provides a new method to count permuta-
tions of genus 1, whose number was first found by A. Goupil and G. Schaeffer [7]. The
generalized formula stated in Section 7 links the problem of counting genus 1 permuta-
tions and partitions to the problem of counting type B noncrossing partitions, convex
polyominos and Jacobi configurations (at least numerically). The explanation of these
connections, together with ideas of possible simplifications and further questions, are
collected in the concluding Section 8.

1. ON THE GENUS OF PERMUTATIONS AND PARTITIONS

1.1. Hypermaps and permutations. Since the sixties combinatorialists considered
permutations as a useful tool for representing graphs embedded in a topological surface.
One of the main objects in this representation is the notion of a hypermap.

A hypermap is a pair of permutations (o,«) on a set of points {1,2,...,n}, such
that the group they generate is transitive, meaning that the graph with vertex set
{1,2,...,n} and edge set {i,a(7)}, {i,0(i)} is connected.
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It was proved (in [10]) that the number g(o, a) associated to a hypermap, and defined

by
n+2—2g(o,a) = z(0) + z(a) + z(a o), (1.1)

where z(«) denotes the number of cycles of the permutation «, is a non-negative integer.
It is called the genus of the hypermap.

Taking for o the circular permutation ¢, such that, for all 4, (,(i) = i + 1 (where
n + 1 means 1) allows one to define the genus of a permutation a € Sym (n) as that of
the hypermap ((,, ). Notice that the pair ((,, a) generates a transitive group for any
a since z((,) = 1; thus we may use the following definition.

Definition 1.1. The genus of a permutation « is the non-negative integer g(a) given
by
n+1-2g(a) = z(a) + 2(a”' ).

Notice that hypermaps of the form ((,,«) are often called hypermonopoles (for in-
stance in [1] or [21]). A different definition of the genus was given in [4], where the
genus h(a) of the permutation « is defined as the genus of the hypermap ((,, a™1¢,a).
In this definition a permutation is of genus 0 if and only if it is a power of (,; in
ours, permutations of genus 0 correspond to noncrossing partitions, a central object in
combinatorics.

1.2. Partitions of the set {1,2,...,n}. To a partition P = (F;);=1, x of the set
{1,2,...n} is associated the permutation ap which has k cycles, each one corresponding
to one of the P, written with elements in increasing order. This allows one to define
the genus of the partition P as that of the permutation ap.

It was shown in [5, Theorem 1] that a permutation « is of genus 0, if and only if
there exists a noncrossing partition P such that o = ap.

A noncrossing partition may be drawn as a circle on which we put the points
1,2,...,n in clockwise order and blocks of size p > 2 are represented by p-gons in-
scribed in the circle, blocks of size 2 by segments, and blocks of size 1 by isolated
points.

The partition P = ({1,5,7,8},{2,4},{3},{6}) is represented in Figure 1 below.

FiGURE 1. The noncrossing partition P
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1.3. The genus and the cycle structure. Since the genus of a permutation « is a
function of z(«), the number of its cycles, in the sequel we will consider permutations
as products of their cycles, and study the effect of minor changes in the cycle structure.
In particular, we will be interested in the change of the genus when we compose a
permutation with a single transposition. A transposition 7 € Sym (n), exchanging the
two elements 4,7, will be denoted by 7 = (i,7). It has n — 2 cycles of length 1 and
one of length 2, hence z(7) = n — 1. Note that we compose permutations right to left,
i.e., we define the product af of two permutations as the permutation which sends 7 to
a(B(7)).

We will often use the following lemma.

Lemma 1.2. The number of cycles of the products Ta. and a1 of a permutation o and
a transposition T = (i, ) differs from the number of cycles of a by 1. The sign of the
change depends on whether i and j belong to the same cycle of a or not. We have

z(ta) = z(at) = {

z(a)+ 1, if i and j belong to the same cycle of a;
z(a) =1, if i and j belong to different cycles of .

Definition 1.3. Two cycles in a permutation o are crossing if there exist two elements
a,a’ in one of them and b, b’ in the other such that a < b <a' <U.

Observe that if such elements exist they may be taken such that ¢’ = a(a) and
b = a(b).

An element ¢ of 1,2,...,n is a back point of the permutation « if a(i) < ¢ and «(7)
is not the smallest element in its cycle (i.e., there exists k such that of(i) < a(4)).

Definition 1.4. A twisted cycle in a permutation is a cycle containing a back point.

The genus of a permutation may be determined by counting back points as the
following variant of [2, Lemma 5] shows.

Lemma 1.5. For any permutation o € Sym (n), the sum of the number of back points
of the permutation o and the number of those of a=1(, is equal to 2g(«).

Proof. As usual, for a permutation a € Sym (n), let EXC(«) denote the set of excedances
of , i.e., the set of elements i such that «(i) > ¢. The number of back points of « is
then n — |[EXC(«a)| — z(a). After replacing 2g(«) by its expression in Definition 1.1, our
lemma is equivalent to

[EXC(a)| + [EXC(a~'¢)| = n — 1.

In order to prove this equation, observe first that, for all 7 satisfying i # a~1(1), the
relation i € EXC(a) is equivalent to a(i) — 1 ¢ EXC(a~'¢,). Thus, the number of
excedances of « in the set {a™*(2),...,a7*(n)} plus the number of excedances of a~1(,
in the set {1,...,n—1} is n — 1. Finally, @~ *(1) is not an excedance of a, and n is not
an excedance of any permutation in Sym (n). O]

Notice that a permutation is associated with a partition if and only if it contains no
back point, moreover, the partition and the associated permutation are of genus 0 if
and only if there are no crossing cycles. Noncrossing partitions were extensively studied
(see for instance [15]).
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2. GENUS ONE PERMUTATIONS AND FOUR-COLORED NONCROSSING PARTITIONS

We define a four-colored noncrossing partition of the set {1,2,...,n} as a noncrossing
partition of this set, together with a partitioning of the n elements into four pairwise
disjoint color sets A, B, C', D, subject to the following conditions:

(1) each color set consists of consecutive elements in the circular order;

(2) the color sets A, B, C, and D follow each other in circular order, and 1 belongs
to A;

(3) the set C' is allowed to be empty, but all other color sets are nonempty.

We may visualize such a four-coloring by subdividing a circle into four circular arcs in
such a way that no element of {1,2,...,n} is the endpoint of any of these arcs and each
arc contains exactly one of the sets A, B, C, or D. Keeping this visualization in mind,
we will refer to the color sets as “arcs”. We will denote a 4-coloring of a noncrossing
partition by v = (A, B, C, D). Equivalently, a four-coloring may be defined by 4 integers
defining the numberings of the points in the four arcs. Theseare 1 <1< j <k </l < n,
giving

A={+1,...,n,1,...,i}, B={i+1,...,5}

C={j+1,... k}, D={k+1,...,¢},

where C' is empty when j = k. In this notation, A = {1,...,i} holds when ¢ = n.

(2.1)

Definition 2.1. We call the sequence (i, j,k,{), marking the right endpoints of the
color sets in (2.1), a sequence of coloring points for the partition P.

To any four-colored noncrossing partition (P,~y) (where v = (A, B,C, D)) we asso-
ciate a permutation a = ®(P, ), in which cycles are obtained from the blocks of P by
renumbering the points in the following way:

We leave the numbering of the points in A unchanged and we continue labeling in
such a way that the elements of A are followed by the points in D, then by the points
in C, and finally by the points in B. Within each color set, points are numbered in
clockwise order. Thus the elements of A are numbered by £+ 1,0+ 2,...,n,1,2,...1,
the elements of D are numbered from i+ 1 to ¢ + ¢ — k, the elements of C' are numbered
from i+ ¢ —k+1toi+ ¢ — j and the elements of B are numbered from ¢ + ¢ — j + 1
to £. After introducing

a=i,b=i+l—k,c=i1+¢—j, and d=1/, (2.2)

we obtain that the color sets, in terms of the relabeled elements, are given by

B {{1,2,...,a,d+ 1,....n}, ifd+#n,

{1,2,...,a}, otherwise;
B={c+1l,c+2,...,d}; D={a+1,a+2,...,b}; (2.3)
o_ {b+1,b+2,...,c}, if c#b,

0, otherwise.

Let us also note for future reference that the linear map taking (i, j, k,¢) to (a,b,c,d)
is its own inverse, i.e., we have

t=a,j=a+d—c,k=a+d—-b and (=d. (2.4)
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Once the points are renumbered, each cycle of « is obtained from a block P, =

{z1,29,...,2,} of P by writing the numbering of the corresponding points z1, xa, . . . , Zp,
where the z;’s are in clockwise order.
D D

¢ 75

|

F1GURE 2. A four-coloring of P and the induced renumbering of points

For the example shown in Figure 2 we obtain the following permutation of genus 1:
a=o(P,y)=(1,4,3,8)(2,7)(5)(6).

In the sequel, it will be convenient to say that a point p has color X, with X =
A, B,C,D if p € X, a block P, will be unicolored, bicolored, three-colored, or four-
colored, depending on the number of different colors its points have.

Remark 2.2. A unicolored block of a noncrossing partition P gives rise to a cycle in
®(P,~y) which does not cross any other cycle and is not twisted. A bicolored block with
points in two different colors X and Y is not twisted but it crosses any cycle coming
from a block that has points of color X as well as at least one point whose color is
neither X nor Y. A bicolored block with points of colors X and Y does not cross any
block that is contained in or is disjoint from X UY . A three- or four-colored block gives
rise to a twisted cycle.

The main point in this section is the following characterization.

Theorem 2.3. If (P,7) is a four-colored noncrossing partition, then ®(P,~v) is a per-
mutation of genus 0 or 1. It is of genus 1 if and only if at least one of the following
two conditions is satisfied:
(1) There exists a block P, which is three or four-colored.
(2) There exist two blocks Py, P, which are two-colored and share a common color;
more precisely, there are three different colors X,Y, Z such that

PNX#0, P,NY #0, P,CXUY
and P,NX#0, PPNZ#0, P.CXUZ.



COUNTING GENUS ONE PARTITIONS AND PERMUTATIONS 7

Proof. Let i, j, k, ¢ define the four-coloring ~, and let 5 be the permutation associated
with the partition P. Furthermore, set a = ®(P,v). The renumbering of the points
around the circle may be considered in two ways:

The first way is conjugation. Consider the permutation ¢ that takes each x to its
new label after the renumbering operation. We then have o = ¢3¢~!. Note that ¢ is
given by the coloring points (i, j, k, £) via the formula

x, if ©z € A;
x4+l — 7, if x € B;
= 2.5
o) r4+1+L0—75—k, ifxed, (2:5)
41—k, if x eD.

Although this formula is unimportant for this proof, we will have good use of it later
in the proof of the converse of our present statement. Now let § = ¢(,¢~!. Since
conjugation does not change the number of cycles we have

g(Cnvﬁ) = 9(070‘) =0. (26)

Since 6 has only one cycle, just as (,, the above equation, together with formula (1.1),
yields
n+1—z(a) = z(a ). (2.7)

The second way is multiplication by transpositions. It is easy to check that
0=(1,2,...;a,c+1,....,d;b+1,....,c;a+1,...,b,d+1,...,n), (2.8)

where a, b, ¢, d are given by (2.2). Hence 6 = (,(a, ¢)(b,d). We are now able to compute
the genus of the permutation a. By Definition 1.1, we have

29(a) =n+1—z2(a) + 2(a'¢).
Using (2.7), we may rewrite the last equation as
2g(a) = z(a10) — 2(a”1¢,).

But since o™ 16 is obtained from a~1¢,, by multiplying by two transpositions, by Lem-
ma 1.2, the difference of their number of cycles is 0, 2 or —2. Since the genus is a
non-negative integer, we see that g(«) is 0 or 1. If any of the conditions given above are
satisfied, then « has a twisted cycle or two crossing cycles, hence it cannot be of genus
0, ending the proof. If none of them is satisfied, then o has no twisted cycle and no two
crossing cycles, it is then of genus 0 (a permutation of a noncrossing partition). OJ

To state a converse of Theorem 2.3, we introduce the following notion.

Definition 2.4. Let a be a permutation of genus 1. We say that the sequence of integers
(a,b,c,d) is a sequence of separating points for «, if the permutation 6 = (,(a,c)(b,d)
has the property that the genus of the hypermap (0, «) is zero and

a<b<c<d. (2.9)

Notice that (2.9) implies that € is a circular permutation. Equations (2.6) and (2.8)
have the following consequence.
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Remark 2.5. If a permutation « of genus 1 is represented as a = ®(P,v) by a four-
colored noncrossing partition (P, ), then the sequence of coloring points (4, j, k, £) gives
rise to the sequence of separating points (a, b, ¢,d) given by (2.2).

Proposition 2.6. Let o be a permutation of genus 1 on n elements that has a sequence
of separating points (a,b,c,d). Then there are a noncrossing partition P and a four-
coloring v = (A, B,C, D) representing o as a = ®(P,v) whose sequence of coloring
points (i, j, k, L) is obtained from (a,b,c,d) via (2.4).

Proof. Since 6 = (,(a, c)(b, d) is circular, there is a permutation ¢ satisfying ¢¢,¢ ! = 6.
We make this map ¢ unique by requiring ¢(1) = 1. It is easy to verify that ¢ is given
by (2.5) for the sequence (3, 7, k, £) given by (2.4). The permutation 8 = ¢~ 'a¢ satisfies

9(Ca, B) = 9(¢7'09, 0 ) = g(0, ) = 0,
hence [ determines a noncrossing partition P. As a consequence of (2.1) and (2.5), the
four-coloring ~y associated with (i, j, k, ¢) satisfies a = ®(P, 7). O

Definition 2.7. We call the representation described in Proposition 2.6 the four-
colored noncrossing partition representation induced by the sequence of separating
points (a, b, ¢, d).

Now we are ready to state the converse of Theorem 2.3.

Theorem 2.8. For any permutation o of genus 1, there exist a noncrossing partition
P and a four-coloring vy such that o = ®(P, 7).

Proof. By Proposition 2.6 it suffices to show that every permutation of genus 1 has a
sequence (a, b, c,d) of separating points. Let a be a permutation of genus 1, then the
permutation o = a~1(, is also of genus 1. Thus o has two crossing cycles or a twisted
cycle or both.
(1) If o has two crossing cycles, then one of these cycle contains two points a, c,
and the other one two points b, d such that a < b < ¢ < d.

Clearly 0 = (,(a,c)(b,d) is circular. Moreover a6 is obtained from a~!(,
by multiplying it by two transpositions exchanging elements belonging to the
same cycle, hence z(a'0) = z(a~'(,) + 2. By the definition of the genus, since
2(0) = 2(Ca), we get g(6,a) = g(a) — 1 = 0.

(2) If o has a twisted cycle, this can be written (a, z1, ..., 2y, d,b,y1,...,y,), where
a is the smallest element of the cycle and d > b, giving a < b < d. Consider
the two transpositions (a,b) and (b,d). It is easy to check that the product
0 = (u(a,b)(b,d) is equal to: (1,2,...,a,b+1,....,dja+1,...,b,d+1,...,n).
Moreover, the permutation «/(a,b)(b,d) has the same cycles as o’ except the
one containing a, b, d which is broken into three cycles,

(a,v1,-..,9q) (b) (d,21,...,2p),
showing that again
z(a™0) = z(a™'¢,) +2
and g(0, @) = (¢, @) — 1 =0 hold.
We obtained that, in the first case (a,b,c,d), and in the second case (a,b,b,d), is a
sequence of separating points for a. ]
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It is easy to detect in a four-colored noncrossing partition representation of a permu-
tation of genus 1 whether it is a partition, or whether it has twisted cycles, as we will
see in the following observations.

Corollary 2.9. A permutation o of genus 1 is a partition if and only if it may be
represented by a four-colored noncrossing partition (Q,~) that has no three or four-
colored part. A four-colored noncrossing partition representing a genus 1 partition must
have at least two two-colored blocks.

Indeed, a three or four-colored block would give rise to a twisted cycle, which a
partition cannot have. Without twisted cycles, a permutation of genus 1 must have a
pair of crossing cycles, which can only be represented by two-colored blocks.

Remark 2.10. For future reference we also note that every genus 1 partition o € Sym (n)
has a three-colored non-crossing partition representation, that is, a four-colored repre-
sentation with C' = (). Indeed, since o does not have any back point, by Lemma 1.5,
a~1¢, must have two back points. We may use the construction presented in the second
case of the proof of Theorem 2.8 to construct a three-colored noncrossing partition. A
variant of this observation was also made in [21, p. 63].

Remark 2.11. Theorem 2.8 has an interesting topological interpretation. Let us repre-
sent a torus with a square whose parallel sides are identified. Draw a large circle whose
center coincides with the center of this square and whose diameter is larger than the
side length of the square, see Figure 3. The block of the circle that belongs to the
square is a somewhat unusual visual representation of a simple closed curve, arising as
a union of four apparently disjoint arcs, whose endpoints are identified according to the
identification of the sides of the square. If we put n numbered points on this curve in
cyclic order, the visual order of these numbered points in the picture will correspond
to the visual order of the points in a four-colored representation, after the renumbering
of the points. The four color classes correspond to the four arcs. Thus, for example,
the four-colored representation of the permutation (1438)(27)(5)(6), given in Figure 2,
naturally induces a representation of the same permutation on the torus as a union of
“polygons” with noncrossing edges. If we transform the picture given in Figure 3 into a

FIGURE 3. A representation of a genus 1 permutation on the torus

diagram drawn on an actual torus, we may replace the straight line segments delimiting
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our polygons by geodesics. We obtain that every genus 1 permutation (and thus every
genus 1 partition), may be drawn on a torus in such a way that the permuted elements
are on a simple closed curve in the correct cyclic order and the cycles are represented
by noncrossing polygons bounded by geodesic lines.

To state our next observation, we introduce the notion of simply and doubly twisted
cycles.

Definition 2.12. A cycle of « is simply twisted if it contains exactly one back point
and it is doubly twisted if it has two back points.

Remark 2.13. In a four-colored noncrossing partition representation of a permutation
of genus 1, three colored blocks correspond to simply twisted cycles, and four-colored
blocks correspond to doubly twisted cycles.

Proposition 2.14. In a permutation o of genus 1, all cycles are either not twisted or
simply or doubly twisted. Moreover, exactly one of the following assertions is satisfied:

(1) « has no twisted cycle, hence it corresponds to a partition,
(2) « has a unique simply twisted cycle;

(3) a has a unique doubly twisted cycle;

(4) « has two simply twisted cycles.

There is an example of a permutation of genus 1 for each of the above four types.

Proof. By Lemma 1.5, a permutation of genus 1 may have at most two back points.
If o has no back points then it is a partition. If it has one back point then it has a
unique simply twisted cycle. If it has two back points, then these are either on the
same (doubly twisted) cycle, or on two separate (simply twisted) cycles. An example
of a permutation of each type is sketched using a four-colored noncrossing partition
representation in Figure 4. |

3. REDUCED PERMUTATIONS AND PARTITIONS

Definition 3.1. A trivial cycle in a permutation is a cycle consisting of consecutive
points on the circle, i.e., a cycle C; = (i,i+ 1,...,i 4+ p) where elements are taken
modulo n. A permutation is reduced if it contains no trivial cycle.

Lemma 3.2. Let 0 and « be two permutations in Sym (n) such that 0 is circular and
g(0,a) = 0. If an integer x satisfies

alr) = 0%(x), for 1<k<n,
then there exists a cycle of v consisting of consecutive points in the sequence
0(x),0%(x),...,0 ().

Proof. Use conjugation by a permutation ¢ such that ¢0¢—! = ¢,,. Then the statement
follows by repeated use of the following, trivial observation: if a noncrossing partition
contains a block a; < as < --- < a, such that one of the a;’s satisfies a;; > a; +1, then
there is another block contained in the set {a; + 1,a; + 2,...,a;41 — 1}. Applying the
same observation repeatedly, we end up with a block consisting of consecutive integers
greater than a; and less than a;,1. ]
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FI1GURE 4. The four types of genus 1 permutations

As a consequence of Lemma 3.2, a permutation « of genus 1 is reduced if and only
if each of its cycles either crosses another one or is twisted. Indeed, by Remark 2.2, a
cycle that does not cross any other cycle and is not twisted corresponds to a unicolored
block in a four-colored noncrossing partition representing «, and, by Lemma 3.2, the
same color set contains a block consisting of consecutive points, which represents a
trivial cycle. Thus the representation of a reduced « cannot have unicolored blocks.

We now define for a reduced permutation « of genus 1 a canonical sequence of separat-
ing points and the canonical representation of it as a four-colored noncrossing partition.

Definition 3.3. Let a be a reduced permutation of genus 1. The canonical sequence of
separating points (a, b, ¢,d) of a is defined by:
(1) a is the smallest integer such that a(a) # a + 1;
(2) b is the smallest integer satisfying b > a and such that either a(b) > a(a) or
a(b) =1 holds;
(3) c=ala) —1;



12 ROBERT CORI AND GABOR HETYEI

(4) d=n if a(b) =1 and d = a(b) — 1 otherwise.
We call the four-colored noncrossing partition representation induced by the canonical
sequence of separating points the canonical representation of a.

In the proof of Proposition 3.5 below we will show that the canonical sequence of
separating points exists, it is unique, and it is indeed a sequence of separating points,
giving rise to a four-colored noncrossing partition representation. Our proof relies on
the following lemma.

Lemma 3.4. Let a be a permutation of Sym (n) such that for some a satisfying a+1 <
ala), the set X1 = {a+1,a+2,...,a(a)—1} is a union of cycles of . Then o may be
split into two permutations ay acting on Xy and oo acting on Xo = {1,2,...,n}\ X
such that

g(a) = g(on) + g(a).

Proof. Let ny be the number of elements of X; and ns be that of X5. Consider the
transposition 7 exchanging a and ¢ = a(a) — 1. Then (,7 has two cycles of lengths
ny and ng, respectively, permuting the elements of X; and X, respectively. Since
a~1¢.(c) = a, we have
2(a 7)) = 2(a71¢,) + 1.

Moreover,

z(a) = z(a1) + 2(ag) and z(a (7)) = 2(a] G ) + 2(ay ' Cny),
where (,, = (a+ 1,a+2,...,a(a) — 1) and (,, is the analogous circular permutation
on X,. Computing the genus of a; and an we get

2g(ay) = ny — z(ay) — z(a;*Cy,) + 1 and 2g(ag) = ny — 2(ag) — 2(a5 'Cn,) + 1.
Adding the two equations and using the preceding relations, we get
2(g(n)) + glaz)) = ny +nz — z(a) — z(a” ') + 2.

Since n; + ng = n and z(a"'¢,7) = z(a7'¢,) + 1, we obtain the expected relation
between the genuses of a, ay, as. O

Proposition 3.5. Every reduced permutation of genus 1 has a unique canonical se-
quence (a,b,c,d) of separating points, as defined in Definition 3.3, that induces a four-
colored moncrossing partition representation.

Proof. 1t is easy to see that an element a, as defined in Definition 3.3, exists since, if
a(i) = i+1 for all i < n, then « is of genus 0. An element b > a such that a(b) > «(a) or
a(b) = 1 exists as well since there is at least an element j > a such that a(j) = 1. The
minimality requirement stated in conditions (1) and (2) guarantees the uniqueness of a
and b. Afterwards, ¢ and d are given by modulo n subtractions that can be performed
in exactly one way. It remains to show that (a, b, ¢, d) is a sequence of separating points.
To show that a < b < ¢ < d holds, notice that, if for all i such that a < i < a(a), we also
have a < a(i) < a(a), then one of oy or ay given in Lemma 3.4 will have genus 0 and
hence contain a trivial cycle, contradicting the fact that « is reduced. Thus there is an ¢
strictly between a and a(a) such that either a(i) > a(a) or a(i) < a holds. In the latter
case we must have (i) = 1, since, by the definition of a, we have a=1(j) = j — 1 for all
j €42,3,...,a}. To show that g((,(a,c)(b,d),a) = 0, observe first that a = a~'(,(c)
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and ¢ belong to the same cycle of a~!(,, similarly b = a~!(,(d) and d belong to the
same cycle of a~!(,. Moreover, by a = a~!(,(c), the cycle decomposition of a~'(,(a, c)
is obtained by deleting a from the cycle of a~!(, containing it and turning it into a
fixed point. Thus b and d are also on the same cycle of a~'(,(a,c). Using Lemma 1.2
twice, we obtain z(a~'(,(a,c)(b,d)) = z(a"1(,) + 2. O

Proposition 3.6. Let a = ®(5,v) be the representation of the reduced permutation
a of genus 1 induced by its canonical sequence of separating points (a,b,c,d), and let
(A, B,C, D) denote the sequence of color sets of the coloring induced by (a,b,c,d) via
(2.3). This representation has the following properties:
(1) a<b<c<dandala)=c+1,a(b)=d+1 (mod n).
(2) If x and a(x) are in the same subset A, B, C, or D, then a(z) = z+1 (mod n).
(3) There is no cycle of a containing elements in both A and D except the one
containing b and d + 1.
(4) There is no cycle of a containing elements in both B and D except if this cycle
15 twisted and contains b € D,d+1 € A and an element x € B.

Proof. (1) is a direct consequence of Definition 3.3 and Proposition 3.5.

(2) comes from the fact that, if x and a(z) are in the same color class X, and
a(x) # x+1, then, by Lemma 3.2, there is a trivial cycle of 5 which contains consecutive
points in X, giving rise to a trivial cycle of «, thus contradicting the fact that the
permutation « is reduced.

To prove (3), observe that, if there is a cycle bicolored by A and D, then there is
an element x of this cycle such that + € D and a(z) in A. But all elements in D are
less than or equal to b, thus x # b would contradict the fact that b was chosen as the
smallest such that «(b) € AU B.

For (4), if there is a cycle containing elements in B and D, this implies that there is
an element x in D such that a(x) € AU B. As above x = b. Furthermore, the cycle
contains elements in A, B, D, hence it is twisted. O

Proposition 3.7. Let a be a reduced permutation of genus 1, represented as o = ®(3, )
by a four-colored moncrossing partition. If this representation satisfies the properties
stated in Proposition 3.6, then it is the representation induced by the canonical sequence
of separating points.

Proof. Let (A, B,C, D) denote the sequence of color sets of the coloring induced by
the canonical sequence (a,b,c,d) of separating points via (2.3). Suppose that there
exists another representation induced by the sequence of separating points (a’, ', ', d’)
satisfying the properties stated in Proposition 3.6, and let (A’, B, C’, D’) denote the
sequence of sets of colors in the induced coloring. Then a = o’ since both are the
smallest = such that a(x) # x 4+ 1. This gives also ¢ = ¢ = a(a) — 1. Observe next
that b < ¥/, since a(b') = d' + 1 (mod n) satisfies a(b') = 1 or a(b') > a(a). Thus it
is not in the interval [a + 1, a(a)] (from here on we will use [x,y] as a shorthand for
{z,x+1,...,y}), and b is the smallest integer with this property. It suffices to show
that b cannot be strictly less than ¢/, afterwards d = d’ follows from the fact that both
are congruent to a(b) — 1 modulo n.
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Assume, by way of contradiction, that b < o'. As a consequence of a < b < V', we
must have b € D', since all the elements in B’ and C” are greater than ¥, and those in
A'N[1, V] are less than a, hence satisfy a(x) = x+1. By property (3) in Proposition 3.6,
we cannot have a(b) € A’, and, by property (4), we cannot have a(b) € B’ either. If
a(b) € D', then, by property (2), we must have d + 1 = a(b) = b+ 1, in contradiction
with b < d. Finally, if a(b) € C' = [)'+1,¢] C [’ +1, a(a’) — 1], then «(b) is not outside
the interval [a 4 1, a(a)], in contradiction with the definition of a canonical sequence of
separating points. 0

Corollary 3.8. The canonical four-colored noncrossing partition representation of a re-
duced permutation o of genus 1 may be equivalently defined by requiring that the sequence
of separating points inducing it must satisfy the four conditions of Proposition 3.60.

4. COUNTING REDUCED PARTITIONS AND PERMUTATIONS
4.1. Counting reduced partitions of genus 1.

Lemma 4.1. A reduced partition of genus 1 having k blocks is determined by a subset

of 2k integers in {1,2,...,n} and a sequence of four non-negative integers whose sum
sk — 2.

D
.b A

</
”

FIGURE 5. A reduced partition

Proof. By Corollary 2.9 and as a consequence of Proposition 3.6, in the canonical repre-
sentation of a reduced partition each block is bicolored and contains exactly two points
x; and y; such that a(x;) # x; + 1 and «a(y;) # y; + 1. There is exactly one block bicol-
ored by A and B that contains a,c + 1 and exactly one block bicolored by A, D that
contains b,d 4+ 1. There is no other block bicolored by A, D and there is no block bicol-
ored by D, B. The partition is determined by the elements z;,y; and by the numbers
of the blocks bicolored by (A, B), (A,C), (B,C), or (C, D), respectively, see Figure 5.

OJ
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Theorem 4.2. The number ro(n, k) of reduced partitions of genus 1 of the set {1,... ,n},

having k blocks 1is
n\(k+1
ro(n, k) = (Qk)( 3 )

Moreover, the ordinary generating function of these partitions is given by

2,4 3
y*x* (1l — )
RO(x7y> = TO(n7k)$nyk = 4 (41>
Z (1 =) —ya?)
Proof. To obtain the first part, observe that there are (2’2) ways to select the 2k integers

k+1

3 ) ways as the sum of four non-negative

and that the number £ —2 may be written in (
integers.

To obtain a formula for the generating function, we will use the following variant of
the binomial theorem for (1 —u)™™ %

m

> n n u

n=m

Using this formula first for u = x and m = 2k, we obtain

VR ST S CAEES o (G e =t

k>2 n>2k k>2

SR )

k>2

By (4.2) with u = y2?/(1 — x)? and m = 3, this becomes
y? \°
(1 — .CE) <(1—z)2>

y:v2 x2 v
(1- =)

Simplification by the factors of (1 — ) yields the stated formula. O

Ro(z,y) =

Substitution of y = 1 in (4.1) allows us to find the ordinary generating function of
all reduced genus one partitions of a given size, regardless of the number of blocks.

Corollary 4.3. Let ro(n) be the number of all reduced genus 1 partitions on {1,... ,n}.
Then the generating function Ro(z) =3_, -, ro(n)a™ is given by

e _$>3

Ro(z) =z (1= 22)"

As a consequence, the ordinary generating function of the sequence ro(4),79(5),. ..
is (1 —z)3/(1 — 2x)*. This sequence is listed as sequence A049612 in the Encyclopedia
of Integer Sequences [13]. It is noted in [13] that the same numbers appear as the
third row of the array given as sequence A049600. Essentially the same array is called
the array of asymmetric Delannoy numbers d,,, in [8], where they are defined as the
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number of lattice paths from (0,0) to (m,n + 1) having steps (z,y) € N x P. (Here P
denotes the set of positive integers.) It is easy to show that

- —4 —4 —4
ro(n) = dgng = 274 + 3(” , )2"5 + 3(” ) )2"6 + (n ; )2"7. (4.3)

4.2. Counting reduced permutations of genus 1.

Theorem 4.4. The number of reduced permutations of genus 1 of Sym (n) with k cycles

18 equal to:
= (T2 B1)  (n+1Y)(k+1
U= ok 2)\ 3 ok +2)\ 2 )

More precisely, for j = 0,1,2, the number r;(n, k) of reduced permutations of genus 1
of Sym (n) with j back points and k cycles is given by the formulas

e G)() -2
and T1(n,k) = (2161 1) ((k—§2> ) (k;l))

Proof. We count the four types of permutations listed in Proposition 2.14 in a similar
manner as we counted the partitions of genus 1.

(1) The reduced permutations with no twisted cycles. These correspond to the
partitions, their number is given in Theorem 4.2.

(2) The reduced permutations with two back points. These may belong to the same
doubly twisted cycle, or on two separate simply twisted cycles. Let us count
first the permutations with one doubly twisted cycle.

FIGURE 6. A reduced permutation with one doubly twisted cycle

The general shape of such a permutation is represented in Figure 6. Note that
the number of points i such that «(i) # i+1 is 4 for the doubly twisted cycle and
2 for each of the k£ — 1 non-twisted cycles, giving a total number of 2k 42 points.
Moreover, knowing these points of the permutation is completely determined
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by the number of bicolored cycles having points in (A, B), (B, C), (C, D) and
a sequence of three non-negative integers with sum equal to kK — 1. Since the

. k41 . .
number of such sequences is ( ;’ ), the number of such permutations is

(2kn+ 2) <k ; 1)'

Next we count the reduced permutations with two simply twisted cycles. By (3)

FIGURE 7. A reduced permutation with two simply twisted cycles

and (4) of Proposition 3.6, the general shape of such a permutation is represented
in Figure 7. Note that the number of points ¢ such that (i) # ¢ + 1 is 3 for
each of the two simply twisted cycles and 2 for each of the £ — 2 non twisted
cycles, giving a total number of 2k + 2 such points. Moreover, if we know
these points, then the permutation is completely determined by the number of
bicolored cycles having points in (A, B), (B, C), (A,C),(C, D) and a sequence
of four non-negative integers with sum equal to £ — 2. Since the number of such
sequences is (k+1), the number of such permutations is

BRI

We obtained that the number of all reduced permutations with two back points

ra(n,k) = (Qk:n+ 2) (k J2r 1) * (21@1 2> (k ;r 1)’

and the stated equality follows from Pascal’s formula.
The reduced permutations with only one simply twisted cycle.

The general shape of such a permutation is represented in Figure 8. There
are three different cases depending on whether the twisted cycle is colored by
A, B,C, or A,C,D, or A, B,D. Note that the number of points 7 such that
a(i) # i+ 1 is 3 for the simply twisted cycle and 2 for each of the the k£ — 1
non-twisted cycles, giving a total number of 2k 4+ 1 such points. In the first two
situations, it suffices to know these points and the number of bicolored cycles
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F1GURE 8. Three reduced permutations with one simply twisted cycle

having points in (A, B), (B,C), (A,C), (C,D). Knowing the number of these
bicolored cycles amounts to knowing a sequence of four non-negative integers
whose sum is k — 2, since in the first case there is exactly one cycle colored
(A, D) and in the second case there is at least one cycle colored (A, B). In
the third situation there are no cycles with elements colored A, C', hence only 3
non-negative integers need to be known there. Therefore, the number of such
sequences is (k'gl) in the first two cases and (k;I) in the third one. Altogether,
we conclude that the number of such permutations is

ri(n k) = <2kn+ 1) (Q(kgl) i (k—;» |

The stated equality follows by Pascal’s formula.
Finally, addition of the equations for the r;(n, k) yields

(n, k) n\(k+1 . n k42 n k41 n n k42
r«(n, k) = .
2k 3 2k+1 3 3 2k +2 3
Using Pascal’s formula two more times leads to the stated result. U
Proposition 4.5. The ordinary generating function for the reduced permutations of
genus 1, counting the number of points and cycles, is given by
3 2

yr’(l —x)*(1 —z +zy

R*(Q?, y) = ( ) 5 2\4 )
(1 —z)? —ya?)

More precisely, for j = 0,1,2, the ordinary generating function for the reduced permu-
tations of genus 1 with j back points, counting the number of points and cycles, is given
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by
o) = yrt(1 — )3 o) = yrt(1l — )3
e U (s
and  Ry(r.y) = yr*(1 — 2)*((1 — 2)* + ya?)

((1-2)? —ya?)’

Proof. We derive our formulas from the expressions for the numbers r;(n, k) stated
in Theorem 4.4. The formula for Ry(x,y) was shown in the proof of Theorem 4.2.
Comparison of the expressions for ro(n, k) and ro(n, k) yields ra(n, k) = ro(n, k + 1),
implying yRs(x,y) = Ro(z,y). We are left to show the formula for R;(x,y), the formula
for R,(x,y) may then be obtained by taking the sum of the equations for R;(z,y) where
j=0,1,2.

We may derive the formula for R;(z,y) in a way that is completely analogous to the
computation of Ry(x,y) given in the proof of Theorem 4.2, using (4.2) several times,
as outlined below:

wen =2 (50 (3) 2, G)

S (EYREp T
S () R )

k>1 k>2
e \?
(1—-2)* 1 <(1—ac)2>
y*ad oy <1 yﬁ)
- (1-x)?
Simplification by the factors of (1 — x) yields the stated formula. O

5. REDUCING PERMUTATIONS AND REINSERTING TRIVIAL CYCLES

To count all partitions and permutations of genus 1, we first count the reduced
objects in each class, and then count all objects obtained by inserting trivial cycles (see
Definition 3.1) in all possible ways. In this section we describe in general how such a
counting process may be performed.

Definition 5.1. A trivial reduction ©’ of a permutation = of {1,2,...,n} is a per-
mutation obtained from m by removing a trivial cycle (i,1 + 1,...,j) from its cycle
decomposition, and then decreasing allk € {j+1,j+1,...,n} byi—j+1 if this trivial
cycle does not contain both 1 and n, or else decreasing all k ¢ {i,i+1,...,5} by j.

Note that a trivial cycle may consist of a single fixed point when i = j; also when
the trivial cycle contains both 1 and n our notation assumes j < i. Clearly 7 is
a permutation of {1,...,n'} for n’ = n — |{i,i + 1,...,j}| and has the same genus
(if we replace ¢, by (/). Conversely we will say that 7 is a trivial extension (or an
extension) of 7. For example, a trivial reduction of (1,6)(2,3,4)(5,7) is (1,3)(2,4).
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Clearly a permutation is reduced exactly when it has no trivial reduction. In order
to avoid having to treat permutations of genus zero differently, we postulate that the
empty permutation is a reduced permutation of the empty set.

Proposition 5.2. For a permutation © of any genus there is a unique reduced permu-
tation 7' that may be obtained by performing a sequence of reductions on w. If m has
genus zero, then this reduced permutation is the empty permutation on the empty set.

Proof. There is at least one reduced permutation that we may reach by performing
reductions until no reduction is possible. We only need to prove the uniqueness of the
resulting permutation.

Let us call a cycle (iy,...,ix) of m removable if it has the following properties:
(1) the cyclic order of the elements (i1,...,1) is the restriction of the cyclic order
of ¢ to the set {iy,...,ix};
(2) no other cycle of m crosses (i1, ..., ix);

(3) the cycles whose elements belong to one of the generalized intervals [i1, i5], [ia, i3],
..., Or [ig_1,1x] are not twisted;

(4) no cycle whose elements belong to one of the generalized intervals [iy, is], [i2, i3],
..., Or [ix_1,15] crosses any other cycle of 7.

We claim that a cycle of 7 gets removed in any and every reduction process that leads
to a reduced permutation, exactly when the cycle is removable. On the one hand it
is easy to see directly that any cycle that gets removed in the reduction process must
be removable: assume that, after a certain number of reductions, the cycle (iq,. .., i)
becomes the trivial cycle (i,i+1,. .., j), where i corresponds to i;. Applying a reduction
or an extension does not change the fact whether a cycle, present in both permutations
is obtained by restricting the cyclic order of all elements, this proves property (1).
Neither the previously removed cycles, nor the cycles surviving after the removal of
(1,...,1) can cross (iy,...,i). The last two properties follow from the fact that the
cycles whose elements belong to one of the generalized intervals [i1, 5], [i2,43], ..., or
lik—1, k| all become trivial cycles in the reduction process.

On the other hand, it is easy to show by induction on the number of cycles located
on the generalized intervals [iy, is], [i2,43], ..., [ix_1, 1] of a removable cycle that every
removable cycle ends up being removed in the reduction process. The basis of this
induction is that a removable cycle containing no other cycles on its generalized intervals
is trivial. Any other removable cycle becomes trivial after the removal of all cycles
contained on the generalized intervals [iy,ds], [i2,43], ..., [ik—1,%]: these cycles are
easily seen to be removable due to properties (3) and (4), and, if we list the elements
of each such cycle (ji,...,J;) in the order they appear on the respective generalized
interval [i,, i541], then the set of cycles contained on the generalized intervals [j1, jo], - . .,
[71-1, 1] is a proper subset of the cycles contained on the generalized interval [is, is1].
The induction hypothesis thus becomes applicable.

We found that the exact same cycles get removed in every reduction process that
yields a reduced permutation, even if the order of the reduction steps may vary. After
each reduction step, the surviving elements get relabeled, and the new label depends
on the actual reduction step. However, it is easy to find the final label of each element ¢
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located in a cycle that “survives” the entire reduction process: i gets decreased exactly
by the number of all elements of {1,...,7 — 1} that belong to a removable cycle.
Clearly a permutation has genus zero exactly when all of its cycles are removable. [

As a consequence of Proposition 5.2, if a class of permutations is closed under reduc-
tions and extensions, then we are able to describe this class reasonably well by describing
the reduced permutations in the class. Examples of such permutation classes include:

— the class of all partitions;
— the class of all permutations of a given genus;
— the class of all partitions of a given genus.

The main result of this section shows that knowing the reduced permutations allows not
only to describe but also to count the permutations in the class closed under reductions
and extensions that they generate. To state our main result, we will need to use the
generating function

l—z—ay— /(v +ay—1)2— 42y
2-x

of noncrossing partitions. This function is the formal power series solution of the

quadratic equation

D(z,y)=1+2zy-D(z,y)+x- (D(x,y) — 1)D(z,y), (5.2)

whose other solution is only a formal Laurent series. As is well-known (see [13, se-
quence A001263)), the coefficient [z"y*]D(x,y) is the number of noncrossing partitions
of the set {1,...,n} having k blocks. (From here on we will denote by [z"y*]f(z,y) the
coefficient of 2"y* in the formal power series f(z,y) of  and y.) Note that we deviate
from the usual conventions by defining the constant term to be 1, i.e., we consider that
there is one noncrossing partition on the empty set and it has zero blocks. Our main
result is the following.

D(x,y) = +1 (5.1)

Theorem 5.3. Consider a class C of permutations that is closed under trivial reductions
and extensions. Let p(n, k) and r(n, k), respectively, be the number of all, respectively
all reduced permutations of {1,...,n} in the class having k cycles. Then the generating
functions P(x,y) = 3, 5000, k)z™y" and R(x,y) = 3, so7(n, k)z"y"* satisfy the
equation

T = R(z - D(x . x-—%D<x’y)
P(x,y) = R(x - D(x,y),y) <1+ Dlry) )

Here, D(x,y) is the generating function of noncrossing partitions given in (5.1).

Proof. Consider an arbitrary permutation 7 of {1,...,n} in the class having k cycles.
We distinguish two cases, and describe the generating function of the permutations
belonging to each case. The term “removable cycle” we use here is the one that was
defined in the proof of Proposition 5.2.

Case 1. The element 1 does not belong to a removable cycle. After reducing the
permutation to the reduced permutation 7/, we obtain a reduced permutation on the
set {1,...,n1} having k; blocks for some n; < n and k; < k. The cycles of 7 that
were removed have n — ny elements, and they form n; noncrossing partitions on the
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generalized intervals created by the elements appearing in 7/. They also have k — k;
blocks. Thus there are exactly [z" ™ y*~¥1]D(x, )™ permutations that may be reduced
to the same reduced partition. The number of permutations counted in this case is

D>l k) My R D(a, )™

n12>4 k1>2

Using the fact that, for any formal power series f(x, ), the coefficient [x"~1¢*=*] f(x, 1)
is the same as [z"y*]a™y* f(x,y), we see that the above sum is exactly the coefficient
of z"y* in R(x - D(z,y),v).

Case 2. The element 1 belongs to a removable cycle. Let j+1, respectively :—1, be the
smallest, respectively largest element that does not belong to a removable cycle. The
generalized interval {i,i + 1,...,n,1,...,j} is then a union of elements of removable
cycles. (Here we allow ¢ — 1 = n, then ¢ = 1 and n does not belong to the generalized
interval). Let us denote the number of elements of this generalized interval by ny, and
assume that the noncrossing partition formed by the removable cycles whose elements
belong to this generalized interval has ko blocks. As in the previous case, let n; be
the number of elements belonging to non-removable cycles, and assume that there are
k1 non-removable cycles. There are r(nq, k1) ways to select the reduced permutation,
[z"2y*2] D(x, y) ways to select the noncrossing partition on the generalized interval {4, i+
1,...,n,1,...,7} containing 1, and ny ways to select the position of 1 in its generalized
interval. We need to fill in the remaining n — n; — ny elements of removable cycles and
group them into noncrossing partitions on the n; — 1 other generalized intervals created
by the ny elements of not removable cycles. We also need to make sure that the number
of these other removable cycles is k — k; — k3. The number of permutations counted in
this case is

Z Z Z Z r(nl, k’l) (n2[$”2yk2]D(x,y)) . ([xn—nl—nka—lcl—k:g]D(x7 y)"l_l) ‘

n1>4 ki1>2n2>1ky>1

Note that n,[2"2y*?]D(x,y) in the above sum is the coefficient of z"2y*2 in z- -2 D(z, ).
Using the same observation as the one at the end of the previous case, we obtain that
the number of partitions counted in this case is

2y (z%cf~z><x,y>,y>'a:~EEfZSELQE)

O

We conclude this section with rewriting the factor 1+ -2 D(z,y)/D(z,y), appearing
in Theorem 5.3, in an equivalent form.

Proposition 5.4. We have
2Dy 1-aDy
D(z,y) Ve + oy —1)2 — 4oy
Proof. We may rewrite (5.2) as
x-D(x,y)*+ (zy — 1 —2)D(z,y) +1 = 0.

1+z
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Taking the partial derivative with respect to  on both sides we obtain

D(a,y) ~ (1 = )D(a.y) — (1+2 —9)+- Dz ) =0

0
D(l’,y)z—2l’D(£C,y>a _I

T
Using this equation, we may express %D(x, y) in the form

d D(z,y)(D(z,y) +y—1)

%D(m’ v) = 14+x—xy—22D(x,y) (5:3)
This equation directly implies
0
b x%ﬁ;xy’)y) 1+ xl— wzlz(;;czg(x, y) (54)
Finally, as a direct consequence of (5.1) we have
1+ —ay—2eD(x,y) = /(z + 2y — 1)2 — 422y. (5.5)
Combining (5.4) and (5.5), we obtain the claimed equality. O

Corollary 5.5. The formula stated in Theorem 5.3 is equivalent to
Vit oy —1)2 — 42y

P(l’,y) - R(J? ’ D<I7y)7y) ’

Remark 5.6. The numbers
2 D(x,y)
J(n, k) = [z"y* | @ 22—
(n. k) = e"y'] ( D(z,y)

are tabulated as entry A103371 in [13]. It is stated in the work of A. Laradji and
A. Umar [12, Corollary 3.10] referenced therein, that

- ()6

6. COUNTING ALL PARTITIONS AND PERMUTATIONS OF GENUS ONE

In this section we find the ordinary generating function for the numbers py(n, k) of
all partitions of genus one the set {1,...,n}, having k blocks, and prove an analogous
result for permutations of genus one. Our main result is the following.

Theorem 6.1. Let po(n, k) be the number of all partitions of {1,...,n} of genus one
having k blocks. Then the generating function

PO($7 y) = Z ZpO(na k)xnyk
n>4 k>2
15 given by the equation
2iy?

o) = T3 T e+ 2 —




24 ROBERT CORI AND GABOR HETYEI

We will see in Section 7 that Theorem 6.1 is equivalent to an explicit formula for
the numbers py(n, k), given in (7.2) below, originally conjectured by M. Yip [21, Con-
jecture 3.15]. We will prove Theorem 6.1 by combining Theorem 5.3 with the formula
(4.1) for the generating function Ry(z,y) of reduced partitions of genus one. We use the
equivalent form of Theorem 5.3 stated in Corollary 5.5 and use Proposition 6.2 below to
simplify Ro(z - D(x,y),y). Theorem 6.1 thus follows from Theorem 5.3, by multiplying
the formulas given in Propositions 5.4 and 6.2.

Proposition 6.2. The generating function Ry(z,y) of reduced partitions of genus one

satisfies the equality

242

o D@00 = (D i 9~ 17 12

Proof. We will use D as a shorthand for D(z,y). Using (4.1), we may write
y*r*DY(1 — zD)3

(1—2D)? — ya? D)1

Ro(x - D,y) = (6.1)

An equivalent form of (5.2) is

zyD = (D —1)(1 —xD), (6.2)
which may be used to eliminate the variable y in the denominator on the right-hand
side of (6.1). Thus we obtain

y*x*DY(1 — zD)3 _ yA'D'(1—zD)?
(1—2D)? = (D —-1)(1—zD)xD)* ((1—2zD)(1 —xD?))*
Simplification by the factors of (1 — zD) yields
2.4 4
Rolw-D.y) = (1y—:;D) ’ (1—1351)2) ‘

We are left to show that the second factor is ((z + zy — 1)* — 42%y)~2. By (5.5), this is
equivalent to showing

R0<xDJy) =

1 —aD?
D )
which is a rearranged version of (5.2). O

l+z—2y—22D =

Substitution of y = 1 into the formula given in Theorem 6.1 has the following conse-
quence.

Corollary 6.3. The number po(n) of all partitions of {1,...,n} of genus one has the
ordinary generating function

ZL’4

2 po(n)a" = G
e (1 —4x)5/
The coefficient of 2™ in the above formula is easily extracted.

Corollary 6.4. The number of all genus one partitions on {1,...,n} is

_(-5/2 nd gt (2n —5)!
po(n) = (n_4><_1) B = s o im =
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The sequence pg(4),po(5),. .. is listed as sequence A002802 in [13] and referred to
(essentially) as the number of permutations of genus one. See also [20, Formula (13)].
Now we see that partitions of genus one are counted by the same sequence, shifted by
one.

Next we follow an analogous procedure to count all permutations of genus 1.

Theorem 6.5. Let p.(n, k) be the number of all permutations in Sym (n) of genus one
having k cycles. Then the generating function Pi(z,y) = Y, 1s0P«(n, k)z"y" is given
by the equation o
3y

(1 —=2(1+y)z + 22(1 —y)?)5/2

More precisely, for j =0,1,2, let p;(n, k) be the number of all permutations in Sym (n)
of genus one having k cycles and j back points. Then the generating functions P;(z,y) =
> nisoPi(n, k)z™y* are given by the formulas

P.(z,y) =

4,2
Po(z,y) = aal
o (1—2(1+y)z +22(1 —y)2)5/2
xty
P. =
2('%.73/) (1—2(1+y)l’+$2(1—y>2>5/2’
3
1 — gy —
and Pi(z,y) = 7y Ty — )

(1—=2(1+y)z +22(1 —y)?)>2

The formula for Py(z,y) was shown in Theorem 6.1 above. As noted in the proof of
Proposition 4.5, the generating function Ry(x,y) differs from Ry(z,y) only by a factor
of y. After reproducing the same calculation to obtain Py(z,y) from Ry(z,y), we find
that Py(z,y) = yPy(z,y). Therefore, to prove Theorem 6.5 above, it suffices to show
the formula for Pi(z,y), the equation for P.(z,y) will then arise as the sum of the
equations for the P;(x,y).

Similarly to the proof of Theorem 6.1, we may show this formula by combining
Corollary 5.5 with the formula for Ry(x,y) given in Proposition 4.5. We may use
Proposition 6.6 below to simplify Ri(x - D(x,y),y).

Proposition 6.6. The generating function Ri(x,y) of reduced permutations of genus
1 having one back point satisfies the equality

y(l —xy — x)
(1 —2D(z,y))((z + zy — 1)> — 4a?y)*’
Proof. We will use D as a shorthand for D(x,y). Using Proposition 4.5, we may write

2*D3*(1 — xD)?((1 — xD)? + ya?D?
(1 =aD)* —ya>D?)
Just as in the proof of Proposition 6.2, we may use (6.2) to eliminate the variable y in
the denominator and get
yx*D*(1 —xD)*((1 — xD)* + y2*D?)  ya*D3((1 — xD)* + ya*D?)
(1 =2D)(1 —xzD?))* N (1 —2D)*(1 —axD?)4

R1<J} ' D(xvy)7y) =

Rl(xDay):



26 ROBERT CORI AND GABOR HETYEI

We use (6.2) again to rewrite the factor ((1 —xD)? 4+ y2?D?) in the numerator and get

Rl(xD7y):

yz’D*(1 — 22D +xD?)  ya®(1 — 22D + xD?) D :
(1—-axD)(1—xzD>4 (1—-xD)D (1 —xD?)
We have seen at the end of the proof of Proposition 6.2 that the last factor is

((z + 2y — 1)® — 42?y)~2. Taking this fact into account, comparing the last equation
with the proposed statement, we see that we only need to show the equality

1—2xD + 2D? 1
=1—uzy—u.
D Y
This last equation is a rearranged version of (5.2). O

7. EXTRACTING THE COEFFICIENTS FROM OUR GENERATING FUNCTIONS

In this section we will show how to extract the coefficients from our generating func-
tions to obtain explicit formulas for the numbers of genus 1 partitions and permutations.
Our main tool is a generalization of the equation

e i) 5 () () o

n_

According to this equation, M. Yip’s conjecture [21, Conjecture 3.15], stating

=) )67

is equivalent to our Theorem 6.1 and thus true. Since, by Theorem 6.5, the generating
function of genus one permutations only differs by a factor of xy, we also obtain a new
way to count these objects, thus providing a new proof of the result first stated by
A. Goupil and G. Schaeffer [7].

After dividing both sides by z*y? and shifting n and k& down by two, we obtain the
following equivalent form of equation (7.1):

1-2(1+y)x i 22(1— y)2)p2 ; é <n er 2> x“:;_: (k: Z 2) (Z) v (73)

This equation is the special case (when m = 2) of the following equation, which holds
for all m € N:

n

L (") (") (ETY ——
=201+ )z 1 (1= g)2) eV -y y b Py T (1)

n>m k>0

Equation (7.4) may be obtained from [6, Eq. (2)], after substituting o = (2m + 1)/2
and replacing each appearance of y by zy in that formula (on the right-hand side, one
also needs to replace the summation indices ¢ and j, respectively, by n —m — k and k,
respectively). As pointed out by Strehl [17, p. 180] (see also [6, p. 64]), [6, Eq. (2)] is a
consequence of classical results in the theory of special functions.
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Remark 7.1. Equation (7.4) may also be derived directly from classical results as follows.
Take the mth derivative with respect to u of the generating function ), ., L, (u)t" of the
Legendre polynomials (given in [3, Ch. V, (2.34)]), multiply both sides by 2™ /(t™m!),
use [19, Eq. (4.21.2)] to express L, (u), substitute u = (1 +y)/(1 —y) and t = z(1 —y),
and use the Chu—Vandermonde identity.

We conclude this section by providing explicit formulas for the number of all permu-
tations of genus 1, with given numbers of points, cycles, and back points.

Theorem 7.2. The number of all permutations of genus 1 of Sym (n) with k cycles is

equal to
1/m+1\/n—1\/n—-1
p*<n’k)_6( 2 )(k+1)<kz—1>

More precisely, for j = 0,1,2, the number p;(n, k) of permutations of genus 1 of Sym (n)
with j back points and k cycles is given by

e AR o
=30

Proof. The formulas for py(n, k), pa(n, k), and p.(n, k) are all direct consequences of
Theorems 6.5 and Equation (7.4). Using the same results to find p;(n, k) amounts to
using the obvious equality

b1 <n7 k) = D« (77,, k) - (pg(’l"b, k) + pg(ﬂ, k)>7

which is equivalent to showing that the sum of the stated values of the p;(n, k) gives
the stated value of p.(n, k). For that purpose note that

s 25800 (G2 (),

which, by Pascal’s formula, gives

i 258000 e () 7)) o

A similar use of Pascal’s formula yields

o) + PG = S 0) G20 () = 1020 () 09

The sum of (7.5) and (7.6) is

gw,m:@(ﬁ) (k1)

as required. O
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8. CONCLUDING REMARKS

Our four-colored noncrossing partition representation of permutations of genus 1
is reminiscent of the use of three types of crossing hyperedges in the hypermonopole
diagram representing a genus 1 partition in M. Yip’s master’s thesis [21]. This analogy
becomes even more explicit in the light of Remark 2.10 stating that, for partitions of
genus 1, three colors suffice. On the other hand, Remark 2.11 seems to indicate that
this analogy cannot be pushed beyond all limits. In either approach, non-uniqueness of
the representation makes direct counting difficult.

Lemma 1.5 establishes a relationship between o and a~!¢,. It is worth noting that,
in the case when g(a) = 0, the permutation !¢, is the permutation representing the
Kreweras dual of the noncrossing partition represented by a. G. Kreweras [11] used this
correspondence to show that the lattice of noncrossing partitions is self-dual. M. Yip
has shown that the poset of genus 1 partitions is rank-symmetric [21, Proposition 4.5],
but not self dual [21, Proposition 4.6] for n > 6. Lemma 1.5 suggests that maybe true
duality could be found between genus 1 partitions and permutations with 2 back points,
after defining the proper partial order on the set of all genus 1 permutations. In this
setting, permutations with exactly one back point would form a self-dual subset. Their
number p;(n, k), given in Theorem 7.2, may be rewritten as

pi(n, k) = @) N(n—2k—1),

where N(n — 2,k — 1) is a Narayana number. It is a tantalizing thought that this
simple formula could have a very simple proof. If this is the case, then the formulas for
po(n, k) and pi(n, k) could be easily derived, using Lemma 1.5 and Yip’s rank-symmetry
result [21, Proposition 4.5] to establish py(n, k) = po(n, k+ 1), and then the formula for
p«(n, k) already stated by A. Goupil and Schaeffer [7] to complete a setting in which
the formula for py(n, k) may be shown by induction on k. A “numerically equivalent”
conjecture (albeit for sets of partitions) was stated by M. Yip [21, Conjecture 4.10].

Equation (7.4) naturally inspires the question: what other combinatorial objects are
counted by the coefficients of 2™y* in the Taylor series of

(1—2(1+y)z +a(1—y)*) o2,
when m is some other nonnegative integer. For m = 0, we obtain

1 N\’
(1= 2(1 + y)a + 22(1 — y)?)12 ~ > 2 (k) "y

n>m k>0

These coefficients are listed as sequence A008459 in [13]. Among others, they count
the type B noncrossing partitions of rank k of an n-element set. In [16], R. Simion
constructed a simplicial polytope in each dimension whose h vector entries are the
squares of the binomial coefficients. The number of j-element faces of the n-dimensional
polytope is f;_1 = (”;”) Another class of simplicial polytopes with the same face
numbers was defined in [9] as the class of all simplicial polytopes arising by taking any
pulling triangulation of the boundary complex of the Legendrotope. The Legendrotope
is combinatorially equivalent to the intersection of a standard crosspolytope with any
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hyperplane passing through its center that does not contain any of its vertices. For all
these polytopes, the polynomial

F(u) = Z:fj—l (u ; 1)j

is a Legendre polynomial, and the squares of the binomial coefficients are their h-vector
entries. For higher values of m, taking the mth derivative of F(u) (see Remark 7.1)
corresponds to summing over the links of all (m — 1) dimensional faces. It is not evident
from this interpretation why sums of face numbers divided by ( m) should be integers,

2
and it seems an interesting question to see whether for the type B associahedron or for
some very regular triangulation of the Legendrotope, symmetry reasons would explain
the integrality. For m = 1, I. Gessel has shown [6] that the coefficients count convex
polyominos. Finally, for general m, the coefficients have a combinatorial interpretation
in the work of V. Strehl [18] on Jacobi configurations. Even though V. Strehl uses
exponential generating functions, the use of the same coefficients becomes apparent
by comparing his summation formula on page 303 with [6, Eq. (2)]. It seems worth
exploring whether deeper connections exist between the above listed models.
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