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ANDRÉ PERMUTATIONS, RIGHT-TO-LEFT AND

LEFT-TO-RIGHT MINIMA

FILIPPO DISANTO*

Abstract. We provide enumerative results concerning right-to-left minima and left-
to-right minima in André permutations of the first and second kind. For both of
the two kinds, the distribution of right-to-left and left-to-right minima is the same.
We provide generating functions and associated asymptotic results. Our approach is
based on the tree-structure of André permutations.

1. Introduction

André permutations have been introduced in [4] and extensively studied in the liter-
ature, especially because of their relations with other combinatorial structures [5, 6, 7,
8, 12]. For instance, the cd -index of the Boolean algebra may be computed by summing
the cd -variation monomials of André permutations [12].

It is possible to distinguish among two types of André permutations: those of the first
kind A(1) and those of the second kind A(2). The two classes are equinumerous. The
n-th Euler number en = [zn] sec(z) + [zn] tan(z) counts André permutations of size n.
The first terms are e0 = 1, e1 = 1, e2 = 1, e3 = 2, e4 = 5, e5 = 16, . . . Classically, Euler
numbers only refer to secant numbers, the (even) coefficients of the Taylor expansion
of sec(z). The (odd) coefficients of the Taylor expansion of tan(z) are called tangent
numbers. Here, by an abuse of terminology, we let the term “Euler numbers” refer
to both sequences of numbers. Besides André permutations, Euler numbers give the
enumeration of several other combinatorial structures. In particular, they also count
rooted binary un-ordered increasing trees. In [4], the authors describe two bijections —
denoted here by φ1 and φ2 — which map André permutations of both kinds onto this
class of trees and vice versa. Based on this correspondence, two classical permutation
statistics, such as right-to-left minima (rlm) and left-to-right minima (lrm), have a
natural interpretation in terms of paths of the associated trees.

In the present paper, we indeed focus on the enumeration of André permutations
with respect to the parameters ‘number of right-to-left minima’ and ‘number of left-
to-right minima’. To the best of our knowledge, these permutation statistics have not
been investigated before in this context.

In Section 3.1, we show that the statistic ‘number of right-to-left minima’ has the

same distribution on each of the two sets A
(1)
n and A

(2)
n . The same holds for the

number of left-to-right minima and, more generally, for the joint distribution of the two
statistics. Without loss of generality, we then focus on one type of André permutations,
those of the second kind A = A(2). For the joint enumeration according to right-to-left
and left-to-right minima, a functional equation for the associated trivariate generating
function is provided.

*Email: fdisanto@uni-koeln.de, fdisanto@stanford.edu.
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In Section 3.2, we find the bivariate generating function which counts André permu-
tations A with respect to the size and the number of right-to-left minima. As a result,
fixing the number of right-to-left minima, we provide a combinatorial formula which
describes the desired enumeration in terms of Euler numbers. As a corollary to the
results of this section, we obtain a correspondence between the number of right-to-left
minima in André permutations and the number of cycles in the so-called cycle-up-down
permutations introduced in [1]. This will need to be further investigated.

In Section 3.3, we study the number of left-to-right minima. We give a functional
equation for the associated bivariate generating function. We show how the number of
permutations of size n+1 with two left-to-right minima is related to the total number of
right-to-left minima in permutations of size n. Finally, we study André permutations
with a generic — but fixed — number of left-to-right minima, providing asymptotic
estimates.

2. Preliminaries

The set of permutations of size n is denoted by Sn. If π = (π1π2 . . . πn) ∈ Sn, the set
of its left-to-right minima is denoted by lrm(π), and its elements are those entries πi
such that, if j < i, then πi < πj . We denote by rlm(π) the set of right-to-left minima,
and we remind the reader that πi ∈ rlm(π) if j > i implies πi < πj.

A binary increasing tree is a rooted, un-ordered tree with nodes of outdegree 0, 1 or 2.
Nodes of outdegree 0 are also called the leaves of the tree. Moreover, for such a tree,
we require that each of the n nodes is bijectively labelled by a number in {1, 2, . . . , n}
in a way that, going from the root to any leaf, we always find an increasing sequence
of labels. If x and y are two nodes, we write x ≺ y when the label of x is less than
the label of y. The linear order ≺ naturally corresponds to a geometric ranking of the
nodes of a binary increasing tree. The smaller is the value of the label of a node the
closer is the node to the root of the tree, which is indeed labelled by 1. Thus, if x ≺ y
in a tree t, we will also say that x is placed above y (or y below x) in the ranking of
t. The set of binary increasing trees is denoted by B, while we use the symbol Bn to
denote the subset of B made of the trees with n nodes.

Observe that each tree in B can be drawn in the plane in a unique way respecting
the following two conditions:

(A2) if a node has only one child, then this child is drawn on the right of its direct
ancestor;

(B2) if a node x has two children y and z, with y ≺ z, then y is drawn on the right
of x, while z on the left.

In Figure 1 we show the trees belonging to B4, drawn respecting the previous two
conditions.

The pair of conditions (A2, B2) is not the only possible one that allows a unique
planar representation for each tree in B. Another pair of conditions is for instance:

(A1) if a node has only one child, then this child is drawn on the right of its direct
ancestor;

(B1) if a node x has two children y and z, let ty (respectively tz) be the set of nodes
in the subtree generated by y (respectively by z). If max(ty) ≺ max(tz), then z
is drawn on the right of x, while y on the left.
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Figure 1. The trees in B4 and the associated André permutations of
the second kind.

The sets of André permutations A(2) and A(1) can be defined in several equivalent
ways, see for instance Section 2 of [7]. Since they are both subsets of Sn equinumerous
with Bn, we choose to characterize their permutations with the help of two injective
maps φ2, φ1 : Bn → Sn (see [4]). For φ2 (respectively φ1), the procedure is:

(1) given t ∈ Bn, draw t according to (A2, B2) (respectively (A1, B1));
(2) each leaf collapses into its direct ancestor whose label is then modified receiving

on the left the label of the left child (if any) and on the right the label of its
right child. We obtain in this way a new tree whose nodes are labelled with
sequences of numbers;

(3) starting from the obtained tree go to step (2).

The algorithms φ2 and φ1 terminate when the tree t is reduced to a single node
whose label is then a permutation φ2(t), respectively φ1(t), of size n. Note that, without
considering step (1) but only (2) and (3), the procedures give a well-known [11] bijection
ψ between ordered binary increasing trees B̃n and the entire set of permutations of size n.

The sets A
(i)
n can be defined asA

(i)
n = {φi(t) ∈ Sn : t ∈ Bn} (with i = 2, 1). Inspecting

Figure 1, the corresponding permutations in A
(2)
4 are (from left to right) (4123), (1234),

(3412), (1423), and (3124). For the same size n = 4, the permutations in A
(1)
4 are

(2314), (1234), (2134), (1324), and (3124).

An equivalent definition of André permutations can be given in terms of the so-called
x-factorizations of permutations, see Definition 1 and Definition 2 of [8] and the related
references. The equivalence is easily seen by observing that — following notations of [8]
— the λ-part of the x-factorization of a permutation π corresponds to the left subtree
of the node x in the ordered binary increasing tree ψ−1(π). Similarly, the ρ-part of the
x-factorization corresponds to the right subtree of x in ψ−1(π).

André permutations, as binary increasing trees, are enumerated, with respect to size,
by the so called Euler numbers (en)n≥0 whose exponential generating function satisfies1

∫

E2 = 2E − z − 2,

and therefore is equal to

E(z) = sec(z) + tan(z).

The first terms of the sequence are 1, 1, 1, 2, 5, 16, 61, 272, 1385, . . . , and they correspond
to entry A000111 in [10]. Furthermore, expanding E(z) near the dominant singularity

1We will often adopt the notation
∫
f(z) =

∫
z

0
f(a) da.
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Figure 2. Recursive decomposition of ti = φ−1
i (πi), with πi ∈ A(i) (i =

2, 1). The min-node and max-node of each root subtree are highlighted.
The left corner of these subtrees can be empty according to the right
orientation of single nodes (conditions Ai).

z = π/2, we easily obtain an asymptotic approximation for the coefficients, namely

en
n!

∼
4

π

(
2

π

)n

. (2.1)

3. Enumeration of right-to-left minima and left-to-right minima

In this section we study enumerative properties of right-to-left minima and left-to-
right minima in André permutations. In Section 3.1, these statistics are jointly studied.
In Section 3.2, we focus on the number of right-to-left minima, while, in Section 3.3,
we investigate left-to-right minima.

3.1. Joint enumeration. Through the bijection ψ : B̃n → Sn described in Section 2,
we see that, for any given permutation π, the set rlm(π) corresponds to the nodes visited
in the tree ψ−1(π) starting from the root and performing only right-steps. Similarly,
the set lrm(π) corresponds to the nodes visited in the tree ψ−1(π) starting from the
root and performing only left-steps.

Let π2 ∈ A
(2)
n and π1 ∈ A

(1)
n , consider t2 = φ−1

2 (π2) and t1 = φ−1
1 (π1). If n > 1 then,

for i = 2, 1, the tree ti consists of two trees, ti,left and ti,right, appended to its root on
the left and on the right respectively. Clearly, rlm(φ−1

i (ti)) = 1 + rlm(φ−1
i (ti,right)) and

lrm(φ−1
i (ti)) = 1 + lrm(φ−1

i (ti,left)), see Figure 2.
Furthermore, observe that, in both cases i = 2, 1, there are exactly

(
|ti,left|+ |ti,right| − 1

|ti,left|

)

ways of merging the ranking (i.e., labelling) of ti,left with the ranking of ti,right that
create a tree drawn according to conditions (Ai, Bi). When i = 2, we have to put the
root of ti,right above the root of ti,left while, when i = 1, we put the max-node of ti,right
below the max-node of ti,left (the max-node is always a leaf). Also note that, when
|ti,left| = 0, the previous binomial expression returns 1.



ANDRÉ PERMUTATIONS, RIGHT-TO-LEFT AND LEFT-TO-RIGHT MINIMA 5

From these considerations, it follows that, from an enumerative point of view, the
same recursive construction describes the distribution of right-to-left minima and left-
to-right minima in André permutations of the first and second kind.

Without loss of generality, we decide to focus on André permutations of the second
kind. We thus set A = A(2), φ = φ2, and, if not specified otherwise, we draw each tree
t ∈ B according to (A2, B2).

The exponential generating function

H = H(x, y, z) =
∑

π∈A

xrylzn

n!
,

where r = |rlm(π)|, l = |lrm(π)|, and n = size(π), satisfies the functional equation

H = 1 + xyz +
∑

π1=tright 6=∅

∑

π2=tleft

xr1+1yl2+1 zn1+n2+1

(n1 + n2 + 1)!
·

(
n1 + n2 − 1

n2

)

.

Taking twice the derivative with respect to z, we obtain

∂2H

∂z2
= xy

∂H(x, 1, z)

∂z
H(1, y, z), (3.1)

which gives

H = 1 + xyz + xy

∫ ∫
∂H(x, 1, z)

∂z
H(1, y, z). (3.2)

Equation (3.2) can be used recursively to compute the polynomials

Hi(x, y) =
∑

π∈Ai

xryl.

For 0 ≤ i ≤ 5, we have

H0 = 1;

H1 = xy;

H2 = x2y;

H3 = x3y + x2y2;

H4 = x4y + 2x3y2 + x3y + x2y2;

H5 = x5y + 3x4y2 + 3x4y + 6x3y2 + x3y + x2y3 + x2y2.

Furthermore, taking into account that H(1, 1, z) = E(z) and that E ′(z) = 1
1−sin(z)

,

Equation (3.1) becomes

∂2H(x, 1, z)

∂z2
= x

∂H(x, 1, z)

∂z
E(z) (3.3)

when we take y = 1, while it gives

∂2H(1, y, z)

∂z2
= yE ′(z)H(1, y, z) (3.4)

when we take x = 1. In the following sections, we will study (3.3) and (3.4) as they
provide the enumeration of André permutations with respect to the number of right-
to-left minima and left-to-right minima, respectively.



6 FILIPPO DISANTO

3.2. Right-to-left minima. Here we focus on the right-to-left minima statistic us-
ing the symbol AR

n,r to denote the subset of An made of those permutations π with
|rlm(π)| = r.

Defining

F (x, z) =

(
1

1− sin(z)

)x

,

it is easy to check that

∂F (x, z)

∂z
= xF (x, z) ·E(z).

Thus, setting

F (x, z) =
1

x

∂H(x, 1, z)

∂z
,

we see thatH(x, 1, z) satisfies (3.3). The series F (1, z) provides the (shifted) exponential
generating function for Euler numbers. In other words, we have the following result.

Proposition 1. The (shifted) exponential generating function counting André permu-
tations with respect to the size n and the number of right-to-left minima r is given
by

F (x, z) =

(
1

1− sin(z)

)x

=
∑

π∈A

xr−1zn−1

(n− 1) !
.

The first terms of |AR
n,r| are thus given by the following table.

n/r 2 3 4 5 6 7 8 9 10
2 1 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0
4 1 3 1 0 0 0 0 0 0
5 2 7 6 1 0 0 0 0 0
6 5 20 25 10 1 0 0 0 0
7 16 70 105 65 15 1 0 0 0
8 61 287 490 385 140 21 1 0 0
9 272 1356 2548 2345 1120 266 28 1 0
10 1385 7248 14698 15204 8715 2772 462 36 1

Note that Euler numbers are the entries in the first column. Furthermore, observe that,
looking at the table column by column, we have

(
∂r F

∂xr

)

x=0

=

[

− log
(
1− sin(z)

)
]r

and
1

r!

[

− log
(
1− sin(z)

)
]r

=
∑

π:|rlm(π)|=r+1

zn−1

(n− 1)!
. (3.5)

Given that
∫
E(z) = − log

(
1− sin(z)

)
, as a corollary we obtain the following result.



ANDRÉ PERMUTATIONS, RIGHT-TO-LEFT AND LEFT-TO-RIGHT MINIMA 7

Proposition 2. For every fixed r ≥ 1, we have

1

r!

[
∑

n≥1

en−1

n!
zn

]r

=
∑

n≥l

|AR
n+1,r+1|

n!
zn, (3.6)

where e0 = 1, e1 = 1, e2 = 1, e3 = 2, e4 = 5, e5 = 16, e6 = 61, . . . are Euler numbers.

For a fixed r ≥ 2, the asymptotic behaviour of the sequence |AR
n,r| can also be

examined at this point. Observe that near the dominant singularity z = π/2, we have

− log
(
1− sin(z)

)
= log(2)− 2 log(z − π/2) + 1/12(z − π/2)2 +O

(
(z − π/2)4

)
,

from which the following approximation results:
[

− log
(
1− sin(z)

)]r

=
[

log(2)− 2 log(z − π/2)
]r

+O(z − π/2)

= 2r
[

− log(z − π/2)
]r

+ 2r−1r log(2)
[

− log(z − π/2)
]r−1

+O

([

− log(z − π/2)
]r−2

)

. (3.7)

Rewriting log(z − π/2) = log(−π/2) + log
(
1− 2z

π

)
, by Theorem VI.2 of [3] (see the

special case discussed in Formula (27) on page 387) we have

[zn]
[

− log(z − π/2)
]r

∼ (2/π)nn−1
[
C1 log

r−1(n) +O
(
logr−2(n)

)]
,

and similarly

[zn]
[

− log(z − π/2)
]r−1

∼ (2/π)nn−1
[
C2 log

r−2(n) +O
(
logr−3(n)

)]
,

where C1, C2 are positive constants.
Furthermore, by using Theorem VI.3 from [3] for the O-transfer, we have

[zn]
[

O

([

− log(z − π/2)
]r−2

)]

= O
(
(2/π)nn−1 logr−2(n)

)
.

Finally, by applying Theorem VI.4 from [3] to (3.7) and recalling (3.5), we obtain the
following result.

Proposition 3. For a fixed r ≥ 1 and n→ ∞, we have the asymptotic approximation

|AR
n+1,r+1|

n!
= [zn]

[

− log
(
1− sin(z)

)]r

∼ kr · n
−1

(
2

π

)n

logr−1(n), (3.8)

where kr is a positive constant depending on r.

We conclude this section by recalling that in Chapter 7 of [9] the author studies a
family of polynomials corresponding to the rows of the previous table. He also shows a
criterion according to which each row defines a partition of the set of up-down permuta-
tions of a given size. Furthermore, in [1] the authors prove that the rows of the previous
table also provide the enumeration of the so-called cycle-up-down permutations with
respect to the size and the number of cycles. It is then natural to ask for a bijection
between the permutations in An+1 and the cycle-up-down permutations of size n which
would explain the correspondence between right-to-left minima and cycles.
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Figure 3. Decomposition of a tree with two left-to-right minima.

3.3. Left-to-right minima. In the previous section we have enumerated the permu-
tations in A with respect to the size and the number of right-to-left minima. Here we
study the cardinality of AL

n,l, that is, the subset of An consisting of the permutations π
with |lrm(π)| = l.

Using the polynomialsHi of Section 3.1, we have computed the entries of the following
table showing, for all (n, l) ∈ {1, . . . , 10}2, the number of permutations in AL

n,l.

n/l 1 2 3 4 5 6 7 8 9 10
1 1 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 2 3 0 0 0 0 0 0 0 0
5 5 10 1 0 0 0 0 0 0 0
6 16 38 7 0 0 0 0 0 0 0
7 61 165 45 1 0 0 0 0 0 0
8 272 812 288 13 0 0 0 0 0 0
9 1385 4478 1936 136 1 0 0 0 0 0
10 7936 27408 13836 1320 21 0 0 0 0 0

In the first column we find (shifted) Euler numbers. It is also interesting to observe
that the entries in the second column,

1, 3, 10, 38, 165, 812, 4478, 27408, 184529, 1356256, 10809786, 92892928, . . . ,

belong to sequence A186367 of [10]. This sequence counts the number of cycles in
all cycle-up-down permutations of size n (see also [1]) and, furthermore, it is strongly
related to the total number of right-to-left minima in the permutations of A having
fixed size. Indeed, we will prove that the exponential generating function associated
with the non-zero entries of the column r = 2 of the table above is given by

(
∂F

∂x

)

x=1

=
− log

(
1− sin(z)

)

1− sin(z)
,

where F is the same series as in Proposition 1.
In order to prove the correspondence, we observe that each tree φ−1(π) such that

|lrm(π) = 2| can be decomposed as shown in Figure 3. In particular, note that tree t1
must contain at least one node (labelled by 2) while tree t2 could be empty. The class
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of trees consisting of a (possibly empty) tree appended to a node — denoted by k in
Figure 3 — is counted by the exponential generating function

ft2(z) =
∑

m>0

ẽmz
m

m!
=

∫

E(z) = − log(1− sin(z)) (with ẽm = em−1),

while

ft1(z) =
∑

n>0

enz
n

n!
= E(z)− 1

counts those trees having at least one node. Appending t1 of size n and t2 of size m− 1
as shown in Figure 3, we can build exactly

(
n+m−1

m

)
different trees. It follows that, in

the previous table, the entries n ≥ 1 of the column r = 2 correspond to the coefficients
of the exponential generating function

g2(z) =
∑

n>0

∑

m>0

enẽmz
n+m+1

(n +m)(n+m+ 1)(m!)(n− 1)!
.

Finally, observe that

g′′2 = ft2 · f
′
t1
= log

(
1

1− sin(z)

)

·

(
1

1− sin(z)

)

=

(
∂F

∂x

)

x=1

.

Given the above calculations, we obtain the following result.

Proposition 4. For all n ≥ 2, we have

|AL
n+1,2| =

∑

r≥2

(r − 1) · |AR
n,r|

= (n− 1)! · [zn−1]

(

− log
(
1− sin(z)

)

1− sin(z)

)

.

As a corollary, we obtain the following result.

Corollary 5. For n ≥ 2, we have

|AL
n+1,2|+ |An| =

∑

r≥2

r · |AR
n,r|, (3.9)

and therefore the expected number of right-to-left minima in a random permutation of
An is given by 1 + |AL

n+1,2|/|An|.

3.3.1. Fixing the number of left-to-right minima. It is interesting to investigate in more
detail what happens when we fix the number of left-to-right minima in An. Let

Gl(z) =
∑

n

|AL
n,l|

n!
· zn

and
G(y, z) =

∑

l≥0

ylGl(z).

Thus G = H(1, y, z) and, from (3.4), we see that

∂2G

∂z2
= yE ′(z) ·G, (3.10)
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where E ′(z) = 1
1−sin(z)

.

From (3.10) we may derive a recursion for Gl.

Proposition 6. The family of generating functions (Gl)l satisfies

Gl(z) =

∫ ∫

Gl−1(z) ·E
′(z), (3.11)

where E ′(z) = 1
1−sin(z)

and G1(z) =
∫
E(z) = − log

(
1− sin(z)

)
.

Unfortunately, Equation (3.10) does not give an explicit solution for G. Still, as we
will see later, it can be used to explore the structure of the solution in a neighbourhood
of the singularity z = π/2.

Let us now focus on the exact computation of Gl. To do so, one can apply the result
of Proposition 6 together with the fact that E = E(z) satisfies

∫
E2 = 2E−z−2. Here

we compute explicitly the generating functions Gl for the first values of l, say l = 1, 2, 3,
elucidating the correspondence with the generating function for Euler numbers. If we
define

∫ (i)

f =

i times
︷ ︸︸ ︷∫ ∫

. . .

∫

f,

for l = 1, 2 we have

G1 =

∫

E

G2 =

(
∫ (2)(∫

E

)

E ′

)

=

(∫ (

E

∫

E

))

−

∫ (2)

E2

=
1

2
·

(∫

E

)2

−

∫

(2E − z − 2)

=
1

2
·

(∫

E

)2

− 2

(∫

E

)

+
z2

2
+ 2z,
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while, for l = 3, we obtain

G3 =

(
∫ (2) (

∫
E)2

2
E ′

)

− 2

(
∫ (2)(∫

E

)

E ′

)

+

(
∫ (2)(z2

2
+ 2z

)

E ′

)

=

(∫

E
(
∫
E)2

2

)

−

(
∫ (2)

E2

(∫

E

))

− 2

[(∫

E

(∫

E

))

−

∫ (2)

E2

]

+

(
z2

2
+ 2z

)(∫

E

)

+ (−2z − 4)

(
∫ (2)

E

)

+ 3

(
∫ (3)

E

)

=
1

6
·

(∫

E

)3

−

[(∫

(2E − z − 2)

(∫

E

))

−

(
∫ (2)

(2E − z − 2)E

)]

− 2

[

1

2
·

(∫

E

)2

−

∫

(2E − z − 2)

]

+

(
z2

2
+ 2z

)(∫

E

)

+ (−2z − 4)

(
∫ (2)

E

)

+ 3

(
∫ (3)

E

)

=
1

6

(∫

E

)3

− 2

(∫

E

)2

+

(

8 + 2z +
z2

2

)(∫

E

)

− 2z2 − 8z

+ (−2z − 4)

(
∫ (2)

E

)

+ 4

(
∫ (3)

E

)

.

Recalling that

[zn]

(
∫ (i)

E(z)

)

=
en−i

n!
,

the previous calculations express |AL
n,l| (l = 1, 2, 3) in terms of Euler numbers en.

For values of l greater than 3 the computation of Gl becomes more difficult. In these
cases, we can still use the results of Proposition 6 to obtain asymptotic estimates of the
coefficients [zn]Gl(z). Using standard methods of analytic combinatorics (see [3]), it is
sufficient to know an approximation of the function Gl near its dominant singularity to
describe the behaviour of [zn]Gl(z) for n → ∞. In this case, the idea is to iteratively
compute an approximation for Gl+1 by integration of an approximation for (Gl · E

′).
Near the dominant singularity z = π/2 we have

E ′(z) =
1

1− sin(z)
=

2
(
π
2
− z
)2 +O(1) , (3.12)

and, for every A > 0,

G1 =

∫

E(z) = log

(
1

1− sin(z)

)

= −2 log
(π

2
− z
)

+O(1) = O

((π

2
− z
)−A

)

.

(3.13)
Then, as a first approximation, one has

(G1 · E
′)(z) = O

((π

2
− z
)−2−A

)

,
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which gives by Proposition 6 and Theorem VI.9 from [3] (see Case (i))

G2(z) = O

((π

2
− z
)−A

)

.

We remark that, by the mentioned theorem, we can obtain a singular expansion of G2

by integrating, according to classical rules, the singular expansion of (G1 ·E
′). Iterating

the procedure one has that, independently of l, for every A > 0

Gl(z) = O

((π

2
− z
)−A

)

. (3.14)

Applying Theorem VI.3 of [3] to (3.14) gives the following bound.

Proposition 7. When n is large, for every A > 0 and independently of l, we have

|AL
n,l|

n!
= [zn]Gl(z) = O

((
2

π

)n

· nA−1

)

. (3.15)

Recalling that |An|
n!

∼ 4
π

(
2
π

)n
(see (2.1)), Equation (3.15) gives a measure of how

strong the effect of fixing the number of left-to-right minima in André permutations is.

Structural properties of G near the singularity. To conclude our asymptotic analysis, we
go back to Equation (3.10) to describe a structural property of the solution G. Indeed,
treating y as a constant, we can apply Theorem VII.9 of [3] to find that near the regular
singular point z = π/2 the desired solution G can be expressed as

G = ay ·
(π

2
− z
) 1+

√

1+8y

2

Ay

(

z −
π

2

)

+ by ·
(π

2
− z
) 1−

√

1+8y

2

By

(

z −
π

2

)

,

where y could in principle appear in ay, Ay(z), by, By(z), and the functions Ay(z), By(z)
are analytic at z = 0.

It is interesting to note that, taking ay = 0 and by = By = 1, one obtains

Gα =
(π

2
− z
) 1−

√

1+8y

2

,

whose expansion at y = 0 reads

Gα = 1− 2y log(π/2− z) + y2
(
4 log(π/2− z) + 2 [log(π/2− z)]2

)

+ y3
(

−16 log(π/2− z)− 8 log2(π/2− z)−
4

3
log3(π/2− z)

)

+ · · · .

Based on the approximation for
∫
E given in (3.13), this reflects the asymptotic be-

haviour of the expressions for G1, G2, and G3 which have been previously computed.
This can be justified by observing that Gα satisfies

∂2Gα

∂z2
= y ·

2

(π/2− z)2
·Gα,

which is obtained by substituting 2/(π/2 − z)2 for E ′(z) (the former being the main
part of the singular expansion (3.12)) in (3.10), i.e., the defining equation for G.
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