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A NOTE ON THE NUMBER OF k-ROOTS IN Sn

YUVAL ROICHMAN

Abstract. The number of k-roots of an arbitrary permutation is expressed as an
alternating sum of µ-unimodal k-roots of the identity permutation.

1. A Combinatorial Identity

1.1. Outline. µ-unimodality, which was introduced in computations of Iwahori–Hecke
algebra characters [9, 13, 14], was applied most recently to prove conjectures of Regev
regarding induced characters [6] and of Shareshian and Wachs regarding Stanley’s chro-
matic symmetric function [5]. In this note it will be shown that the number of k-roots
of a permutation of cycle type µ is equal to an alternating sum of µ-unimodal k-roots
of the identity permutation.

1.2. µ-unimodal permutations. Let µ = (µ1, . . . , µt) be a partition of n with t
nonzero parts. Write

µ(0) := 0

µ(i) :=
i∑

j=1

µi (1 ≤ i ≤ t)

and

(1) S(µ) := (µ(1), . . . , µ(t)).

A permutation π ∈ Sn is µ-unimodal if for every i with 0 ≤ i < t there exists ı with
0 ≤ ı ≤ µi+1 such that

π(µ(i) + 1) > π(µ(i) + 2) > · · · > π(µ(i) + ı) < π(µ(i) + ı + 1) < · · · < π(µ(i+1)).

Denote the set of µ-unimodal permutations in Sn by Uµ.

For example, let µ = (µ1, µ2, µ3) = (4, 3, 1) then S(µ) = (µ(1), µ(2), µ(3)) = (4, 7, 8).
The permutations 53687142 and 35687412 are µ-unimodal, but 53867142 and 53681742
are not.

Note that U(1,...,1) = Sn.

1.3. k-roots in Sn. For n ≥ 1 and k ≥ 0, we write

Ikn := {π ∈ Sn : πk = 1}
for the set of k-roots of the identity permutation in Sn.

Theorem 1.1. For every n ≥ 1, k ≥ 0, partition µ ` n, and π ∈ Sn of cycle type µ,
we have

(2) #{σ ∈ Sn : σk = π} =
∑

σ∈Ikn∩Uµ

(−1)|Des(σ)\S(µ)|.
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It follows that the set of k-roots of the identity permutation is a fine set in the sense
of [3]. The case k = 2 follows from [2, Prop.1.5]. Note that the proof there does not
apply to a general k.

2. Proof of Theorem 1.1

2.1. Induced representations. For every n ≥ 1 and k ≥ 0, let θk,n : Sn −→ N ∪ {0}
be the enumerator of k-roots of a permutation π in Sn,

θ(k,n)(π) := #{σ ∈ Sn : σk = π}.

Clearly, θ(k,n) is a class function. By a classical result of Frobenius and Schur, θ(2,n) is
not virtual, see e.g. [11, §4]. It was conjectured by Kerber and proved by Scharf [16]
that, for every k ≥ 0, θ(k,n) is a non-virtual character.

Let Zλ be the centralizer of a permutation of cycle type λ in Sn. Zλ is isomorphic to
the direct product ×ni=1Ci o Smi , where mi is the multiplicity of the part i in λ. Denote
by ρi the one-dimensional representation of Ci oSmi indexed by the i-tuple of partitions
(∅, (mi), ∅, . . . , ∅). Let

ρλ :=
n⊗
i=1

ρi

be a one-dimensional representation of Zλ, and

ψλ = ρλ ↑SnZλ
the corresponding induced Sn-representation.

Denote by φk,n the representation whose character is θ(k,n). The following theorem
implies that φk,n is not virtual.

Theorem 2.1 ([16]). For every n ≥ 1 and k ≥ 0, we have

φk,n =
⊕
λ`n

all parts divide k

ψλ.

See also [18, Cor. 5.2] and [17, Ex. 7.69(c)]. Note that by letting k = 2 one obtains
the well known construction of Inglis, Richardson, and Saxl of a Gelfand model for
Sn [10].

2.2. Descents over conjugacy classes. Let Cλ be the conjugacy class of cycle type
λ in Sn and SYT(ν) be the set of all standard Young tableaux of shape ν. Denote the
multiplicity of the Specht module Sν in ψλ by m(ν, λ). The following is a reformulation
of [8, Thm. 2.1], see also [12].

Theorem 2.2. For every λ ` n, we have

(3)
∑
π∈Cλ

xDes(π) =
∑
ν`n

m(ν, λ)
∑

T∈SYT(ν)

xDes(T ).

Proof. Denote by Lλ the image of ψλ under the Frobenius characteristic map. For an
explicit description of this symmetric function, see e.g. [17, Ex. 7.89]. For J ⊆ [n− 1],
let zJ be the skew Schur function which corresponds to the zigzag skew shape with down
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steps on positions which belong to J . For example, in French notation, J = {1, 4, 5} ⊆
[7] corresponds to the shape

1
2 3 4

5
6 7 8

.

By [8, Thm. 2.1], the coefficient of xJ in the left-hand side of Equation (3), which is
the number of permutations of cycle type λ and descent set J , is equal to 〈Lλ, zJ〉.

Now,

〈Lλ, zJ〉 = 〈Lλ,
∑
ν`n

〈sν , zJ〉sν〉 =
∑
ν`n

〈Lλ, sν〉〈sν , zJ〉 =
∑
ν`n

m(ν, λ)〈sν , zJ〉.

Since 〈sν , zJ〉 is equal to the number of standard Young tableaux of shape ν and descent
set J [7, Thm. 7] (see also [1, Thm. 4.1]), this is equal to the coefficient of xJ in the
right-hand side of Equation (3). �

Corollary 2.3. For every partition µ ` n, the value of ψλ at a permutation of cycle
type µ is

(4) ψλµ =
∑

σ∈Cλ∩Uµ

(−1)|Des(σ)\S(µ)|.

Proof. For partitions µ and ν of n, let χνµ be the character value of the Specht module
Sν on a conjugacy class of cycle type µ. A standard Young tableau T of size n is
µ-unimodal if Des(T ) \S(µ) is a disjoint union of intervals of the form [µ(i) + 1, µ(i) + ı]
for some 0 ≤ ı < µi+1. For example, the standard Young tableau

T =
5
2 4
1 3 6

has Des(T ) = {1, 3, 4}, and is therefore (3, 3)-unimodal but not (4, 2)-unimodal.
By [14, Theorem 4] [13], we have

χνµ =
∑

T∈SYT(ν)∩SYTµ

(−1)|Des(T )\S(µ)|,

where SYT(ν) is the set of all standard Young tableaux of shape ν and SYTµ is the set
of µ-unimodal standard Young tableaux of size n.

Combining this with Theorem 2.2 gives

ψλµ =
∑
ν`n

m(ν, λ)χνµ =
∑
ν`n

m(ν, λ)
∑

T∈SYT(ν)∩SYTµ

(−1)|Des(T )\S(µ)|

=
∑

σ∈Cλ∩Uµ

(−1)|Des(σ)\S(µ)|.

�
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2.3. Conclusion. By Theorem 2.1 together with Corollary 2.3, for every π ∈ Sn of
cycle type µ, we have

#{σ ∈ Sn : σk = π} = θ(k,n)(π) =
∑
λ`n

all parts divide k

ψλµ

=
∑
λ`n

all parts divide k

∑
σ∈Cλ∩Uµ

(−1)|Des(σ)\S(µ)| =
∑

σ∈Ikn∩Uµ

(−1)|Des(σ)\S(µ)|,

completing the proof of Theorem 1.1. �

3. Remarks and questions

It is desirable to prove Theorem 1.1 via generalizations of the explicit combinatorial
construction of Gelfand models described in [2].

Question 3.1. Find a “simple” Sn-linear action on a basis of φk,n indexed by Ikn, which
implies the character formula given on the right-hand side of Equation (2).

Another desirable approach to prove Theorem 1.1 is purely combinatorial.

Question 3.2. Define, for any given partition µ of n, an involution on the set of k-
roots of the identity permutation, which changes the parity of Des(·)\S(µ) on non-fixed
points, such that the cardinality of the fixed point set is equal to the left-hand side of
Equation (2).

The case µ = (n) was recently solved by Archer [4].

Question 3.3. Prove Theorem 2.2 by constructing a map from Cλ to standard Young
tableaux of size n, under which for every ν ` n and T ∈ SYT(ν) the cardinality of the
preimage of T is exactly m(ν, λ).

Note that for λ = (2k, 1n−2k), 0 ≤ k ≤ n/2, the Robinson–Schensted–Knuth map
satisfies this property.

Finally, a natural objective is to extend the setting of the current note to other finite
groups. Complex reflection groups are of special interest.

Question 3.4. Generalize Theorem 1.1 to other Coxeter and complex reflection groups.

This question is intimately related to the problem of characterizing the finite groups
for which the character θ(k,n) is non-virtual. For wreath products, see [15].
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