Counting smaller trees in the Tamari order

Grégory Chatel, Viviane Pons

March 25, 2013

3 N

Introduction

- Basic definitions
- Tamari lattice
- Goal

Our work

- Main result
- Example
- Sketch of our proof

Basic definitions Tamari lattice Goal

Permutations and the weak order

Permutations

A permutation σ is a word of size *n* where every letter of $\{1, \ldots, n\}$ appear only once. Ex : 1234, 15234, 4231.

Weak order: partial order on permutations

At each step, we exchange two increasing consecutives values.

Basic definitions Tamari lattice Goal

Binary trees

Binary trees

Canonical labelling

Basic definitions Tamari lattice Goal

From permutations to binary trees The binary search tree insertion

4

・ 同 ト ・ ヨ ト ・ ヨ ト

э

15324 \rightarrow

Basic definitions Tamari lattice Goal

From permutations to binary trees The binary search tree insertion

伺 ト く ヨ ト く ヨ ト

Basic definitions Tamari lattice Goal

From permutations to binary trees The binary search tree insertion

Basic definitions Tamari lattice Goal

From permutations to binary trees The binary search tree insertion

Basic definitions Tamari lattice Goal

From permutations to binary trees The binary search tree insertion

Basic definitions Tamari lattice Goal

Order relation

XXC \rightarrow AyABBC

Grégory Chatel, Viviane Pons Counting smaller trees in the Tamari order

Basic definitions Tamari lattice Goal

The Tamari lattice

Figure: The Tamari lattices of size 3 and 4.

Basic definition Tamari lattice Goal

The Tamari lattice as a quotient of the weak order

Basic definitions Tamari lattice Goal

Our objective

Goal

We want a formula that computes, for any given tree T the number of trees smaller than T in the Tamari order.

Example : how many trees are smaller than or equal to this one ?

Introduction Our work Main result Example Sketch of our proof

Introduction

- Basic definitions
- Tamari lattice
- Goal

2 Our work

- Main result
- Example
- Sketch of our proof

Main result Example Sketch of our proof

Tamari polynomials

Tamari polynomials

Given a binary tree T, we define:

$$\mathcal{B}_{\emptyset} := 1 \tag{1}$$

$$\mathcal{B}_{T}(x) := x \mathcal{B}_{L}(x) \frac{x \mathcal{B}_{R}(x) - \mathcal{B}_{R}(1)}{x - 1} \tag{2}$$
with $T = \mathcal{L} \mathcal{B}_{R}$

- **→** → **→**

3.5

Main result Example Sketch of our proof

Main theorem

Theorem

Let T be a binary tree. Its Tamari polynomial $\mathcal{B}_T(x)$ counts the trees smaller than or equal to T in the Tamari order according to the number of nodes on their left border. In particular, $\mathcal{B}_T(1)$ is the number of trees smaller than T.

・ 同 ト ・ ヨ ト ・ ヨ ト

Main result Example Sketch of our proof

Example

A B + A B +

Main result Example Sketch of our proof

Example

→ 3 → < 3</p>

Main result Example Sketch of our proof

Example

• • = • • = •

Main result Example Sketch of our proof

Example

Main result Example Sketch of our proof

Example

Main result Example Sketch of our proof

Example

Main result Example Sketch of our proof

Example

Main result Example Sketch of our proof

Example

$$\mathcal{B}_{\emptyset} := 1$$

$$\mathcal{B}_{T}(x) := x \mathcal{B}_{L}(x) \frac{x \mathcal{B}_{R}(x) - \mathcal{B}_{R}(1)}{x - 1}$$

$$\mathbf{O}_{T}(x) = \mathcal{B}_{4}(x) = x(x^{2} + x^{3}) \frac{x \mathcal{B}_{6}(x) - \mathcal{B}_{6}(1)}{x - 1}$$

イロン イロン イヨン イヨン

æ

Main result Example Sketch of our proof

Example

伺 ト く ヨ ト く ヨ ト

Main result Example Sketch of our proof

Example

伺 ト く ヨ ト く ヨ ト

Main result Example Sketch of our proof

Example

伺 ト く ヨ ト く ヨ ト

Main result Example Sketch of our proof

Example

• • = • • = •

Main result Example Sketch of our proof

Example

Main result Example Sketch of our proof

Example

Main result Example Sketch of our proof

Sketch of our proof Increasing and decreasing forests

Main result Example Sketch of our proof

Sketch of our proof Increasing and decreasing forests

* E > * E >

Main result Example Sketch of our proof

Sketch of our proof Increasing and decreasing forests

3

-

Main result Example Sketch of our proof

Sketch of our proof Increasing and decreasing forests

3

Main result Example Sketch of our proof

Initial and final intervals as linear extensions

Main result Example Sketch of our proof

Initial and final intervals as linear extensions

Main result Example Sketch of our proof

Initial and final intervals as linear extensions

Main result Example Sketch of our proof

Linear extensions of any interval

-

Main result Example Sketch of our proof

Linear extensions of any interval

∃ → < ∃</p>

Main result Example Sketch of our proof

Linear extensions of any interval

-

Main result Example Sketch of our proof

Linear extensions of any interval

э

∃ → < ∃</p>

Main result Example Sketch of our proof

Sketch of proof Back to the functional equation

$${\mathcal B}_T(x) = x {\mathcal B}_L(x) rac{x {\mathcal B}_R(x) - {\mathcal B}_R(1)}{x-1}$$

Since it is defined on *binary* trees, see it as *bilinear* map.

$$\mathcal{B}(f,g) = xf(x)\frac{xg(x) - g(1)}{x - 1}$$

同 ト イ ヨ ト イ ヨ ト

Main result Example Sketch of our proof

Sketch of proof Combinatorial interpretation of \mathcal{B}

Lift the bilinear map to take intervals as arguments.

$$\sum_{T' \leq T} [T', T] = \mathbb{B}(\sum_{L' \leq L} [L', L], \sum_{R' \leq R} [R', R])$$

伺 ト く ヨ ト く ヨ ト

Main result Example Sketch of our proof

Definition of \mathbb{B} on an example

э

伺 と く ヨ と く ヨ と

4

Main result Example Sketch of our proof

Definition of $\mathbb B$ on an example

・ 同 ト ・ ヨ ト ・ ヨ ト …

Main result Example Sketch of our proof

Definition of $\mathbb B$ on an example

伺 ト く ヨ ト く ヨ ト

Main result Example Sketch of our proof

Definition of $\mathbb B$ on an example

伺 ト く ヨ ト く ヨ ト

Main result Example Sketch of our proof

Definition of \mathbb{B} on an example

→ 3 → < 3</p>

Our work Sketch of our proof	Introduction Our work	
------------------------------	--------------------------	--

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

æ

Introduction Main result	
Our work Example Sketch of our pro	of

Grégory Chatel, Viviane Pons Counting smaller trees in the Tamari order

+

Introduction Our work	
	Sketch of our proof

・ロト ・回ト ・ヨト ・ヨト

æ

Introduction Our work	
	Example Sketch of our proof
	Shelen of our proof

Grégory Chatel, Viviane Pons Counting smaller trees in the Tamari order

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで