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Introduction

1
As it has been seen exponentials of infinitesimal characters and their convolution
provide characters which have beautiful combinatorial counterparts. The set of
characters in a Hopf algebra is a group which has a natural structure of (infinite
dimensional) Lie group under certain conditions which are often fulfilled in
practice (grading). All these elements belong to the biggest dual one can consider
for a Hopf algebra, Sweedler’s dual. This dual is, in a certain way, related to
(finite state) automata theory. In the end of the talk, we study another case of
convergence.
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Some Hopf algebras relating to physics

These Hopf algebras are constructed on bases that are often graphic (contructions
on drawings) or discrete (Hopf algebra - of classes - of matroids, see Hoang’s talk).

Connes-Kreimer (basis : non planar rooted trees, contruction S(?))

Non-commutative Connes-Kreimer (basis : planar rooted trees, contruction
T (?))

Heisenberg-Weyl graphs
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Lie Algebra

The Hopf algebras DIAG,LDIAG of labeled diagrams in QFT of partitions
(see details below for LDIAG)
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(Non monoidal) Composition of Heisenberg-Weyl graphs

Figure: Composition of Heisenberg-Weyl graphs
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How and why LDIAG diagrams arise 1/3

Let H(?, ?) be the “Hadamard exponential coupling” of QFTP 1 defined by

H(F ,G ) = F

(

z
d

dx

)

G (x)

∣

∣

∣

∣

x=0

. (1)

one can check that, with F (z) =
∑

n≥0 an
zn

n! and G (z) =
∑

n≥0 bn
zn

n! , one has

H(F ,G ) =
∑

n≥0

anbn
zn

n!
(2)

1C. M. Bender, D. C. Brody, and B. K. Meister, Quantum field theory of partitions, J.
Math. Phys. Vol 40 (1999)
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How and why LDIAG diagrams arise 2/3

F (z) = exp

(

∞
∑

n=1

Ln
zn

n!

)

; G (z) = exp

(

∞
∑

n=1

Vn

zn

n!

)

(3)

H(F ,G ) =
∑

n≥0

zn

n!

∑

P1,P2∈UPn

L
Type(P1)V

Type(P2) (4)

where UPn is the set of unordered partitions of [1 · · · n]. The type of P ∈ UPn

(denoted above by Type(P)) is the multi-index (αi )i∈N+ such that αk is the
number of k-blocks, that is the number of members of P with cardinality k .

Gérard H. E. Duchamp (LIPN, Université Paris 13) Sweedler’s duals, Automata theory and Combinatorial Physics Ellwangen, SLC 70 7 / 18



How and why LDIAG diagrams arise 3/3
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A template example : non-commutative polynomials

Example 3.1

Let X be an alphabet and X ∗, the monoid freely generated by X (i.e. it is the set
of all words with letters in X endowed with the concatenation product). Its
algebra k[X ∗] = k〈X 〉 = k(X∗) has the dual kX∗

and the pairing is given by

〈f |g〉 =
∑

w∈X∗

f (w)g(w) (5)

for f ∈ kX∗

, g ∈ k(X∗) . Identifying the words with their characteristic function,
we get f (w) = 〈f |w〉 and f =

∑

w∈X∗ f (w)w (non-commutative series).
We describe the Hopf algebra (k〈X 〉, conc , 1X∗ ,∆⊔⊔ , ǫ, S), its (finely gradeda)
dual (k〈X 〉, ⊔⊔ , 1X∗ ,∆conc , ǫ, S) and the greatest dual

(k rat〈〈X 〉〉, ⊔⊔ , 1X∗ ,∆conc , ǫ, S) .

aIn the case when the alphabet is infnite, one has
∑

x∈X x in the dual for the grading by total
degrees.
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Abe’s theorem

In order to grasp what happens in all these situations, we need to go at a more
general level.

Eiichi Abe, Hopf algebras, Cambridge University Press, 1977.
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Abe’s theorem, cont’d

Let k be a field and f ∈ kS (S is a semigroup). One defines the shifts of f by

x f (y) = f (yx) ; fz(y) = f (zy) ; x fz(y) = f (zyx) ; (6)

Theorem 4.1

(Abe’s theorem reformulation)
Let f ∈ kS TFAE
i) (x f )x∈S is of finite rank
ii) (fz)z∈S is of finite rank
iii) (x fz)x,z∈S is of finite rank
iv) There exists a matrix representation of S, ρ : S → kn×n, a row vector
λ ∈ k1×n and a column vector γ ∈ kn×1 s.t. for all s ∈ S

f (s) = λρ(s)γ (7)

v) There are functions f
(1)
i , f

(2)
i , i = 1..n s.t. for all x , y ∈ S

f (xy) =

n
∑

i=1

f
(1)
i (x)f

(2)
i (y) (8)
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Remark 4.2

(iv) is the basis of automata theory with multiplicities in a field. One can (at the
cost of the equivalence) reformulate (iv) for a semiring and as one can construct a
(weighted) graph from λ, ρ, γ. This has very much to do with the theory of
languages (where k = B = {0, 1}, the boolean semiring).

L+ ba+ a

Lstart

L+ ba+ a+ ǫ

L+ a

a

b

b

a

a

b

a

b

Figure: Automaton of (right) shifts of L = A
∗(aba + aa).

Gérard H. E. Duchamp (LIPN, Université Paris 13) Sweedler’s duals, Automata theory and Combinatorial Physics Ellwangen, SLC 70 12 / 18



1λ1

2

3 γ3

a|α11

b|β11

a|α12

a|α13

a|α22

b|β23

This (weighted) automaton above corresponds to the representation

a 7→





α11 α12 α13

0 α22 0
0 0 0



 b 7→





β11 0 0
0 0 β23

0 0 0





λ = (λ1, 0, 0) ; γT = (0, 0, γ3) (9)
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Characters, Dual elements

1 (Convolution) Let (H, µ, 1H,∆, ǫ, S) be a Hopf algebra. For f , g ∈ H∗,,one
defines f ∗ g as the linear form such that

〈f ∗ g |x〉 = 〈f ⊗ g |∆(x)〉⊗ 2 (10)

2 (Characters) A morphism of k-algebras H → k . We denote their set X(H).

3 (Group of characters) The set of characters with the convolution (X(H), ∗)
forms a group.

4 (Infinitesimal Characters) A linear form δ ∈ H∗ such that

δ(xy) = δ(x)ǫ(y) + ǫ(x)δ(y) (11)

their set is closed for the (convolutional) Lie bracket.

Remark 5.1

All these elements are in the Sweedler’s dual H0 : a character is of rank (the
dimension of the orbit by shifts) one and an infinitesimal character is of rank less
than two.
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Hausdorff group, Direct elements

1 (Group-like elements) x ∈ H is said group-like iff

∆(x) = x ⊗ x ; ǫ(x) = 1 (12)

→֒ they form a group Haus(H).

2 (Primitive elements)
∆(x) = x ⊗ 1 + 1⊗ x (13)

→֒ their set, a subspace, is closed by the Lie bracket [x , y ] = xy − yx .
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Results, log↔ exp correspondence

Let (H, µ, 1H,∆, ǫ, S) be a Hopf algebra, we define I+ as the projector
x 7→ x − ǫ(x)1H and ∆+ = (I+ ⊗ I+)∆. It is standard that ∆+ is co-associative.

Theorem 5.2

Let (H, µ, 1H,∆, ǫ, S) be a Hopf algebra be a Hopf algebra as above. We suppose
that ∆+ is nilpotenta then,
i) given any infinitesimal character δ ∈ X

inf (H), the sum
∑

n≥0
1
n! δ

∗n

converges locally (i.e. for all x ∈ H, n 7→ δ∗n(x) is finitely supported) and its sum
(call it exp∗(δ)) is a character of H.
ii) given a character χ ∈ X(H), the series

∑

n≥1
(−1)n−1

n
(χ− ǫ)∗n

converges locally in the preceding sense (i.e. for all x ∈ H, n 7→ (χ− ǫ)∗n(x) is
finitely supported) and the sum, which we could denote log∗(χ) is an infinitesimal
character of H.
iii) The two correspondences are mutually inverse.

ameans that, for all x ∈ H, it exists N > 0 such that ∆
(N)
+ (x) = 0
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Concluding Remarks

2

i) Provided that ch(k) = 0, in the locally finite case (∆+ is nilpotent), which
includes all the graded Hopf algebras and also the enveloping algebras (which may
not be graded) we have a good

log←→ exp

correspondence between characters and infinitesimal characters.
ii) In the other case, one must be careful with the convergence within the field of
coefficients (see Laurent polynomials, k[X ,X−1] with ∆(X ) = X ⊗ X and
ǫ(X ) = 1).
iii) Group-like elements appear in Hopf algebras where k is not a field in the
context of the theory of iterated integrals and to perform Schützenberger’s
factorization of the identity which gives the local coordinates of the Hausdorff
group of noncommutative series.
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Thank you for your attention!
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