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Matroid theory - some definitions

Definition 1.1

A matroid M = (E , I) is a pair (E , I)

a finite set: E

a collection of subsets of E: I
satisfying:

I is non-empty,

every subset of every member of I is also in I,

if X ,Y ∈ I and |X | = |Y |+ 1, then ∃ x ∈ X − Y s.t. Y ∪ {x} ∈ I.

The set E : the ground set of the matroid
The members of I : the independent sets of the matroid.
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Uniform matroids

The uniform matroid Uk,n is the matroid on n elements whose independent sets
are all the subsets of size k .

Example 1.2

Let E = {1}. One hase two uniform matroids

U0,1 = (E , {∅});

U1,1 = (E , {∅, {1}}).

Example 1.3

Let E = {1, 2} and I = {∅, {1}, {2}}. One has the uniform matroid U1,2.
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Rank function

Definition 1.4

Let M = (E , I) be a matroid and A ⊂ E . The rank function of A:

r(A) = max{|B| : B ∈ I,B ⊂ A}. (1)

The nullity function of A:
n(A) = |A| − r(A). (2)
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Loop-coloop

Definition 1.5

Let e ∈ E . The element e is called a loop if r({e}) = 0.

The element e is called a coloop if r(E − {e}) = r(E )− 1.
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Two operations [1]

Definition 1.6 (Deletion)

One sets the collection of subsets that

I ′ = {I ⊂ E − T : I ∈ I}. (3)

Then one has that the pair (E − T , I ′) is a matroid, called that the deletion of T
from M.
↪→ One denotes that M\T
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Two operations [2]

Definition 1.7 (Contraction)

One sets the collection of subsets that

I ′′ = {I ⊂ E − T : I ∪ BT ∈ I}, (4)

where BT is a maximal independent subset of T .
Then one has that the pair (E − T , I ′′) is a matroid, called that the contraction
of T from M.
↪→ One denotes that M/T

Nguyen Hoang-Nghia (LIPN, Université Paris 13) Recipe theorem for the Tutte polynomial for matroids, renormalization group-like approachEllwangen, SLC 70 8 / 18



Tutte polynomial for matroids

Definition 1.8
The Tutte polynomial of matroid M:

TM(x , y) =
∑
A⊆E

(x − 1)r(E)−r(A)(y − 1)n(A). (5)

Example 1.9

TU1,2 (x , y) = x + y . (6)

Theorem 1.10
Deletion-contraction relation:

TM(x , y) = TM/e(x , y) + TM\e(x , y). (7)
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Hopf algebra on matroids

(H. Crapo and W. Schmitt. A free subalgebra of the algebra of matroids. EJC, 26(7), 05.)

Coproduct

∆(M) =
∑
A⊆E

M|A⊗M/A. (8)

ε(M) =

{
1, if M = U0,0,

0 otherwise.

∆(U1,2) = 1⊗ U1,2 + 2U1,1 ⊗ U0,1 + U1,2 ⊗ 1.

(k(M̃),⊕, 1,∆, ε) is bialgebra.
Moreover, this bialgebra is graded by the cardinal of the ground set, then it is a
Hopf algebra.
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Two infinitesimal characters

Let us define two linear forms.

δloop(M) =

{
1K if M = U0,1,

0K otherwise .
(9)

δcoloop(M) =

{
1K if M = U1,1,

0K otherwise .
(10)

One has
δloop(M1 ⊕M2) = δloop(M1)ε(M2) + ε(M1)δloop(M2).

δcoloop(M1 ⊕M2) = δcoloop(M1)ε(M2) + ε(M1)δcoloop(M2).

Theorem 2.1

exp∗{aδcoloop + bδloop} is a Hopf algebra character.

exp∗{aδcoloop + bδloop}(M) = ar(M)bn(M). (11)
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Nguyen Hoang-Nghia (LIPN, Université Paris 13) Recipe theorem for the Tutte polynomial for matroids, renormalization group-like approachEllwangen, SLC 70 11 / 18



Two infinitesimal characters

Let us define two linear forms.

δloop(M) =

{
1K if M = U0,1,

0K otherwise .
(9)

δcoloop(M) =

{
1K if M = U1,1,

0K otherwise .
(10)

One has
δloop(M1 ⊕M2) = δloop(M1)ε(M2) + ε(M1)δloop(M2).

δcoloop(M1 ⊕M2) = δcoloop(M1)ε(M2) + ε(M1)δcoloop(M2).

Theorem 2.1

exp∗{aδcoloop + bδloop} is a Hopf algebra character.

exp∗{aδcoloop + bδloop}(M) = ar(M)bn(M). (11)
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A mapping α

Let us define

α(x , y , s,M) := exp∗s{δcoloop + (y − 1)δloop}
∗exp∗s{(x − 1)δcoloop + δloop}(M). (12)

Proposition 3.1

α is a Hopf algebra character. Moreover, one has

α(x , y , s,M) = s |E |TM(x , y). (13)
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A convolution formula for Tutte polynomials

The character α can be rewritten:

α(x , y , s,M) = exp∗ (s(δcoloop + (y − 1)δloop)) ∗ exp∗ (s(−δcoloop + δloop))

∗ exp∗ (s(δcoloop − δloop)) ∗ exp∗ (s((x − 1)δcoloop + δloop)) .(14)

Corollary 3.2 (Theorem 1 of [KRS99])

The Tutte polynomial satisfies

TM(x , y) =
∑
A⊂E

TM|A(0, y)TM/A(x , 0). (15)

W. Kook, V. Reiner, and D. Stanton. A Convolution Formula for the Tutte
Polynomial. Journal of Combinatorial Series (99)
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Differential equation of character α

Proposition 4.1

The character α is the solution of the differential equation:

dα

ds
(M) = (xα ∗ δcoloop + yδloop ∗ α + [δcoloop, α]∗ − [δloop, α]∗)(M). (16)
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We take a four-variable matroid polynomial QM(x , y , a, b) which has the following
properties:

a multiplicative law

QM1⊕M2 (x , y , a, b) = QM1 (x , y , a, b)QM2 (x , y , a, b), (17)

if e is a coloop, then

QM(x , y , a, b) = xQM\e(x , y , a, b), (18)

if e is a loop, then

QM(x , y , a, b) = yQM/e(x , y , a, b), (19)

if e is a nonseparating point, then

QM(x , y , a, b) = aQM\e(x , y , a, b) + bQM/e(x , y , a, b). (20)
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A mapping β

β(x , y , a, b, s,M) := s |E |QM(x , y , a, b). (21)

Lemma 4.2
The mapping β is a matroid Hopf algebra character.

Proposition 4.3

The character β satisfies the following differential equation:

dβ

ds
(M) = (xβ ∗ δcoloop + yδloop ∗ β + b[δcoloop, β]∗ − a[δloop, β]∗) (M). (22)

Sketch of the proof: Using the definitions of the infitesimal character δloop and
δcoloop and the conditions of the polynomial QM(x , y , a, b), one can get the result.
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Main theorem

From the propositions 3.1, 4.1 and 4.3, one gets the result

Theorem 4.4

Q(x , y , a, b,M) = an(M)br(M)TM(
x

b
,
y

a
). (23)
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Thank you for your attention!
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