Recipe theorem for the Tutte polynomial for matroids, renormalization group-like approach

Nguyen Hoang Nghia

(in collaboration with Gérard Duchamp, Thomas Krajewski and Adrian Tanasă)

Laboratoire d'Informatique de Paris Nord,
Université Paris 13
arXiv:1301.0782 [math.CO] accepted by
Discrete Mathematics and Theoretical Computer Science Proceedings
70th Séminaire Lotharingien de Combinatoire March 25, 2013
(1) Matroids: The Tutte polynomial and the Hopf algebra
(2) Characters of the Hopf algebras of matroids
(3) Convolution formula for the Tutte polynomials for matroids
(4) Proof of the universality of the Tutte polynomials for matroids

Matroid theory - some definitions

Definition 1.1

A matroid $M=(E, \mathcal{I})$ is a pair (E, \mathcal{I})

- a finite set: E
- a collection of subsets of $\mathrm{E}: \mathcal{I}$
satisfying:

Matroid theory - some definitions

Definition 1.1

A matroid $M=(E, \mathcal{I})$ is a pair (E, \mathcal{I})

- a finite set: E
- a collection of subsets of $\mathrm{E}: \mathcal{I}$
satisfying:
- \mathcal{I} is non-empty,

Matroid theory - some definitions

Definition 1.1

A matroid $M=(E, \mathcal{I})$ is a pair (E, \mathcal{I})

- a finite set: E
- a collection of subsets of $\mathrm{E}: \mathcal{I}$
satisfying:
- \mathcal{I} is non-empty,
- every subset of every member of \mathcal{I} is also in \mathcal{I},

Matroid theory - some definitions

Definition 1.1

A matroid $M=(E, \mathcal{I})$ is a pair (E, \mathcal{I})

- a finite set: E
- a collection of subsets of $\mathrm{E}: \mathcal{I}$
satisfying:
- \mathcal{I} is non-empty,
- every subset of every member of \mathcal{I} is also in \mathcal{I},
- if $X, Y \in \mathcal{I}$ and $|X|=|Y|+1$, then $\exists x \in X-Y$ s.t. $Y \cup\{x\} \in \mathcal{I}$.

Matroid theory - some definitions

Definition 1.1

A matroid $M=(E, \mathcal{I})$ is a pair (E, \mathcal{I})

- a finite set: E
- a collection of subsets of $\mathrm{E}: \mathcal{I}$
satisfying:
- \mathcal{I} is non-empty,
- every subset of every member of \mathcal{I} is also in \mathcal{I},
- if $X, Y \in \mathcal{I}$ and $|X|=|Y|+1$, then $\exists x \in X-Y$ s.t. $Y \cup\{x\} \in \mathcal{I}$.

The set E : the ground set of the matroid
The members of \mathcal{I} : the independent sets of the matroid.

Uniform matroids

The uniform matroid $U_{k, n}$ is the matroid on n elements whose independent sets are all the subsets of size k.

Uniform matroids

The uniform matroid $U_{k, n}$ is the matroid on n elements whose independent sets are all the subsets of size k.

Example 1.2

Let $E=\{1\}$. One hase two uniform matroids

- $U_{0,1}=(E,\{\emptyset\})$;

Uniform matroids

The uniform matroid $U_{k, n}$ is the matroid on n elements whose independent sets are all the subsets of size k.

Example 1.2

Let $E=\{1\}$. One hase two uniform matroids

- $U_{0,1}=(E,\{\emptyset\})$;

- $U_{1,1}=(E,\{\emptyset,\{1\}\})$. \qquad

Uniform matroids

The uniform matroid $U_{k, n}$ is the matroid on n elements whose independent sets are all the subsets of size k.

Example 1.2

Let $E=\{1\}$. One hase two uniform matroids

- $U_{0,1}=(E,\{\emptyset\})$;

- $U_{1,1}=(E,\{\emptyset,\{1\}\})$. \qquad

Example 1.3

Let $E=\{1,2\}$ and $\mathcal{I}=\{\emptyset,\{1\},\{2\}\}$. One has the uniform matroid $U_{1,2}$.

Rank function

Definition 1.4

Let $M=(E, \mathcal{I})$ be a matroid and $A \subset E$. The rank function of A :

$$
\begin{equation*}
r(A)=\max \{|B|: B \in \mathcal{I}, B \subset A\} . \tag{1}
\end{equation*}
$$

Rank function

Definition 1.4

Let $M=(E, \mathcal{I})$ be a matroid and $A \subset E$. The rank function of A :

$$
\begin{equation*}
r(A)=\max \{|B|: B \in \mathcal{I}, B \subset A\} . \tag{1}
\end{equation*}
$$

The nullity function of A :

$$
\begin{equation*}
n(A)=|A|-r(A) . \tag{2}
\end{equation*}
$$

Loop-coloop

Definition 1.5

Let $e \in E$. The element e is called a loop if $r(\{e\})=0$.

Loop-coloop

Definition 1.5

Let $e \in E$. The element e is called a loop if $r(\{e\})=0$. The element e is called a coloop if $r(E-\{e\})=r(E)-1$.

Two operations [1]

Definition 1.6 (Deletion)

One sets the collection of subsets that

$$
\begin{equation*}
\mathcal{I}^{\prime}=\{I \subset E-T: I \in \mathcal{I}\} . \tag{3}
\end{equation*}
$$

Then one has that the pair $\left(E-T, \mathcal{I}^{\prime}\right)$ is a matroid, called that the deletion of T from M.
\hookrightarrow One denotes that $M \backslash_{T}$

Two operations [2]

Definition 1.7 (Contraction)

One sets the collection of subsets that

$$
\begin{equation*}
\mathcal{I}^{\prime \prime}=\left\{I \subset E-T: I \cup B_{T} \in \mathcal{I}\right\}, \tag{4}
\end{equation*}
$$

where B_{T} is a maximal independent subset of T.
Then one has that the pair $\left(E-T, \mathcal{I}^{\prime \prime}\right)$ is a matroid, called that the contraction of T from M.
\hookrightarrow One denotes that M / T

Tutte polynomial for matroids

Definition 1.8

The Tutte polynomial of matroid M :

$$
\begin{equation*}
T_{M}(x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{n(A)} \tag{5}
\end{equation*}
$$

Tutte polynomial for matroids

Definition 1.8

The Tutte polynomial of matroid M :

$$
\begin{equation*}
T_{M}(x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{n(A)} \tag{5}
\end{equation*}
$$

Example 1.9

$$
\begin{equation*}
T_{U_{1,2}}(x, y)=x+y . \tag{6}
\end{equation*}
$$

Tutte polynomial for matroids

Definition 1.8

The Tutte polynomial of matroid M :

$$
\begin{equation*}
T_{M}(x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{n(A)} \tag{5}
\end{equation*}
$$

Example 1.9

$$
\begin{equation*}
T_{U_{1,2}}(x, y)=x+y . \tag{6}
\end{equation*}
$$

Theorem 1.10

Deletion-contraction relation:

$$
\begin{equation*}
T_{M}(x, y)=T_{M / e}(x, y)+T_{M \backslash e}(x, y) \tag{7}
\end{equation*}
$$

Hopf algebra on matroids

(H. Crapo and W. Schmitt. A free subalgebra of the algebra of matroids. EJC, 26(7), 05.)

Coproduct

$$
\begin{gathered}
\Delta(M)=\sum_{A \subseteq E} M \mid A \otimes M / A . \\
\epsilon(M)=\left\{\begin{array}{l}
1, \text { if } M=U_{0,0}, \\
0 \text { otherwise. }
\end{array}\right. \\
\Delta\left(U_{1,2}\right)=1 \otimes U_{1,2}+2 U_{1,1} \otimes U_{0,1}+U_{1,2} \otimes 1 .
\end{gathered}
$$

$(k(\widetilde{\mathcal{M}}), \oplus, \mathbf{1}, \Delta, \epsilon)$ is bialgebra.
Moreover, this bialgebra is graded by the cardinal of the ground set, then it is a Hopf algebra.

Two infinitesimal characters

Let us define two linear forms.

$$
\begin{gather*}
\delta_{\text {loop }}(M)=\left\{\begin{array}{l}
1_{\mathbb{K}} \text { if } M=U_{0,1}, \\
0_{\mathbb{K}} \text { otherwise } .
\end{array}\right. \tag{9}\\
\delta_{\text {coloop }}(M)=\left\{\begin{array}{l}
1_{\mathbb{K}} \text { if } M=U_{1,1}, \\
0_{\mathbb{K}} \text { otherwise } .
\end{array}\right. \tag{10}
\end{gather*}
$$

Two infinitesimal characters

Let us define two linear forms.

$$
\begin{gather*}
\delta_{\text {loop }}(M)=\left\{\begin{array}{l}
1_{\mathbb{K}} \text { if } M=U_{0,1}, \\
0_{\mathbb{K}} \text { otherwise } .
\end{array}\right. \tag{9}\\
\delta_{\text {coloop }}(M)=\left\{\begin{array}{l}
1_{\mathbb{K}} \text { if } M=U_{1,1}, \\
0_{\mathbb{K}} \text { otherwise } .
\end{array}\right. \tag{10}
\end{gather*}
$$

One has

$$
\begin{gathered}
\delta_{\text {loop }}\left(M_{1} \oplus M_{2}\right)=\delta_{\text {loop }}\left(M_{1}\right) \epsilon\left(M_{2}\right)+\epsilon\left(M_{1}\right) \delta_{\text {loop }}\left(M_{2}\right) . \\
\delta_{\text {coloop }}\left(M_{1} \oplus M_{2}\right)=\delta_{\text {coloop }}\left(M_{1}\right) \epsilon\left(M_{2}\right)+\epsilon\left(M_{1}\right) \delta_{\text {coloop }}\left(M_{2}\right) .
\end{gathered}
$$

Two infinitesimal characters

Let us define two linear forms.

$$
\begin{gather*}
\delta_{\text {loop }}(M)=\left\{\begin{array}{l}
1_{\mathbb{K}} \text { if } M=U_{0,1}, \\
0_{\mathbb{K}} \text { otherwise },
\end{array}\right. \tag{9}\\
\delta_{\text {coloop }}(M)=\left\{\begin{array}{l}
1_{\mathbb{K}} \text { if } M=U_{1,1}, \\
0_{\mathbb{K}} \text { otherwise },
\end{array}\right. \tag{10}
\end{gather*}
$$

One has

$$
\begin{gathered}
\delta_{\text {loop }}\left(M_{1} \oplus M_{2}\right)=\delta_{\text {loop }}\left(M_{1}\right) \epsilon\left(M_{2}\right)+\epsilon\left(M_{1}\right) \delta_{\text {loop }}\left(M_{2}\right) . \\
\delta_{\text {coloop }}\left(M_{1} \oplus M_{2}\right)=\delta_{\text {coloop }}\left(M_{1}\right) \epsilon\left(M_{2}\right)+\epsilon\left(M_{1}\right) \delta_{\text {coloop }}\left(M_{2}\right) .
\end{gathered}
$$

Theorem 2.1

$\exp _{*}\left\{a \delta_{\text {coloop }}+b \delta_{\text {loop }}\right\}$ is a Hopf algebra character.

$$
\begin{equation*}
\exp _{*}\left\{a \delta_{\text {coloop }}+b \delta_{\text {loop }}\right\}(M)=a^{r(M)} b^{n(M)} . \tag{11}
\end{equation*}
$$

A mapping α

Let us define

$$
\begin{align*}
\alpha(x, y, s, M): & =\exp _{*} s\left\{\delta_{\text {coloop }}+(y-1) \delta_{\text {loop }}\right\} \\
& * \exp _{*} s\left\{(x-1) \delta_{\text {coloop }}+\delta_{\text {loop }}\right\}(M) . \tag{12}
\end{align*}
$$

A mapping α

Let us define

$$
\begin{align*}
\alpha(x, y, s, M): & =\exp _{*} s\left\{\delta_{\text {coloop }}+(y-1) \delta_{\text {loop }}\right\} \\
& * \exp _{*} s\left\{(x-1) \delta_{\text {coloop }}+\delta_{\text {loop }}\right\}(M) . \tag{12}
\end{align*}
$$

Proposition 3.1

α is a Hopf algebra character. Moreover, one has

$$
\begin{equation*}
\alpha(x, y, s, M)=s^{|E|} T_{M}(x, y) \tag{13}
\end{equation*}
$$

A convolution formula for Tutte polynomials

The character α can be rewritten:

$$
\begin{aligned}
\alpha(x, y, s, M) & =\exp _{*}\left(s\left(\delta_{\text {coloop }}+(y-1) \delta_{\text {loop }}\right)\right) * \exp _{*}\left(s\left(-\delta_{\text {coloop }}+\delta_{\text {loop }}\right)\right) \\
& * \exp _{*}\left(s\left(\delta_{\text {coloop }}-\delta_{\text {loop }}\right)\right) * \exp _{*}\left(s\left((x-1) \delta_{\text {coloop }}+\delta_{\text {loop }}\right)\right)(14)
\end{aligned}
$$

A convolution formula for Tutte polynomials

The character α can be rewritten:

$$
\begin{aligned}
\alpha(x, y, s, M) & =\exp _{*}\left(s\left(\delta_{\text {coloop }}+(y-1) \delta_{\text {loop }}\right)\right) * \exp _{*}\left(s\left(-\delta_{\text {coloop }}+\delta_{\text {loop }}\right)\right) \\
& * \exp _{*}\left(s\left(\delta_{\text {coloop }}-\delta_{\text {loop }}\right)\right) * \exp _{*}\left(s\left((x-1) \delta_{\text {coloop }}+\delta_{\text {loop }}\right)\right)(14)
\end{aligned}
$$

Corollary 3.2 (Theorem 1 of [KRS99])

The Tutte polynomial satisfies

$$
\begin{equation*}
T_{M}(x, y)=\sum_{A \subset E} T_{M \mid A}(0, y) T_{M / A}(x, 0) . \tag{15}
\end{equation*}
$$

國 W. Kook, V. Reiner, and D. Stanton. A Convolution Formula for the Tutte Polynomial. Journal of Combinatorial Series (99)

Differential equation of character α

Proposition 4.1

The character α is the solution of the differential equation:

$$
\begin{equation*}
\frac{d \alpha}{d s}(M)=\left(x \alpha * \delta_{\text {coloop }}+y \delta_{\text {loop }} * \alpha+\left[\delta_{\text {coloop }}, \alpha\right]_{*}-\left[\delta_{\text {loop }}, \alpha\right]_{*}\right)(M) \tag{16}
\end{equation*}
$$

We take a four-variable matroid polynomial $Q_{M}(x, y, a, b)$ which has the following properties:

- a multiplicative law

$$
\begin{equation*}
Q_{M_{1} \oplus M_{2}}(x, y, a, b)=Q_{M_{1}}(x, y, a, b) Q_{M_{2}}(x, y, a, b), \tag{17}
\end{equation*}
$$

- if e is a coloop, then

$$
\begin{equation*}
Q_{M}(x, y, a, b)=x Q_{M \backslash e}(x, y, a, b) \tag{18}
\end{equation*}
$$

- if e is a loop, then

$$
\begin{equation*}
Q_{M}(x, y, a, b)=y Q_{M / e}(x, y, a, b) \tag{19}
\end{equation*}
$$

- if e is a nonseparating point, then

$$
\begin{equation*}
Q_{M}(x, y, a, b)=a Q_{M \backslash e}(x, y, a, b)+b Q_{M / e}(x, y, a, b) . \tag{20}
\end{equation*}
$$

A mapping β

$$
\begin{equation*}
\beta(x, y, a, b, s, M):=s^{|E|} Q_{M}(x, y, a, b) \tag{21}
\end{equation*}
$$

A mapping β

$$
\begin{equation*}
\beta(x, y, a, b, s, M):=s^{|E|} Q_{M}(x, y, a, b) . \tag{21}
\end{equation*}
$$

Lemma 4.2

The mapping β is a matroid Hopf algebra character.

A mapping β

$$
\begin{equation*}
\beta(x, y, a, b, s, M):=s^{|E|} Q_{M}(x, y, a, b) . \tag{21}
\end{equation*}
$$

Lemma 4.2

The mapping β is a matroid Hopf algebra character.

Proposition 4.3

The character β satisfies the following differential equation:

$$
\begin{equation*}
\frac{d \beta}{d s}(M)=\left(x \beta * \delta_{\text {coloop }}+y \delta_{\text {loop }} * \beta+b\left[\delta_{\text {coloop }}, \beta\right]_{*}-a\left[\delta_{\text {loop }}, \beta\right]_{*}\right)(M) . \tag{22}
\end{equation*}
$$

A mapping β

$$
\begin{equation*}
\beta(x, y, a, b, s, M):=s^{|E|} Q_{M}(x, y, a, b) \tag{21}
\end{equation*}
$$

Lemma 4.2

The mapping β is a matroid Hopf algebra character.

Proposition 4.3

The character β satisfies the following differential equation:

$$
\begin{equation*}
\frac{d \beta}{d s}(M)=\left(x \beta * \delta_{\text {coloop }}+y \delta_{\text {loop }} * \beta+b\left[\delta_{\text {coloop }}, \beta\right]_{*}-a\left[\delta_{\text {loop }}, \beta\right]_{*}\right)(M) . \tag{22}
\end{equation*}
$$

Sketch of the proof: Using the definitions of the infitesimal character $\delta_{\text {loop }}$ and $\delta_{\text {coloop }}$ and the conditions of the polynomial $Q_{M}(x, y, a, b)$, one can get the result.

Main theorem

From the propositions 3.1, 4.1 and 4.3, one gets the result

Theorem 4.4

$$
\begin{equation*}
Q(x, y, a, b, M)=a^{n(M)} b^{r(M)} T_{M}\left(\frac{x}{b}, \frac{y}{a}\right) . \tag{23}
\end{equation*}
$$

Thank you for your attention!

