# Counting Proper Mergings 

Henri Mühle<br>Universität Wien

March 26, 2013

## Outline

©
Motivation
©
Characterization
© Enumeration

- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain


## OUTLINE

MotivationCharacterizationEnumeration- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain


## Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of $P$ as tasks
for $p, p^{\prime} \in P$, consider $p<p p^{\prime}$ as saying that the execution of $p$ has to be finished before the execution of $p^{\prime}$ can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and $\leq_{P}$ can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset
How many different schedules exist such that
we call such a schedule a

## Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of $P$ as tasks

- for $p, p^{\prime} \in P$, consider $p<p p^{\prime}$ as saying that the execution of $p$ has to be finished before the execution of $p^{\prime}$ can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and $\leq_{P}$ can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset
- How many different schedules exist such that
$\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are executed "in parallel"
no restrictions of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are violated or added no two tasks are executed at the same time?
we call such a schedule a


## Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of $P$ as tasks
for $p, p^{\prime} \in P$, consider $p<p p^{\prime}$ as saying that the execution of $p$ has to be finished before the execution of $p^{\prime}$ can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and $\leq_{P}$ can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset
How many different schedules exist such that

$$
\left(P, \leq_{P}\right) \text { and }\left(Q, \leq_{Q}\right) \text { are executed "in parallel", }
$$

$$
\text { no restrictions of }\left(P, \leq_{P}\right) \text { and }\left(Q, \leq_{Q}\right) \text { are violated or added }
$$

no two tasks are executed at the same time?
we call such a schedule a

## Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of $P$ as tasks
for $p, p^{\prime} \in P$, consider $p<p p^{\prime}$ as saying that the execution of $p$ has to be finished before the execution of $p^{\prime}$ can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and $\leq_{P}$ can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset
How many different schedules exist such that ( $P, \leq_{P}$ ) and ( $Q, \leq_{Q}$ ) are executed "in parallel", and no restrictions of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are violated or added? no two tasks are executed at the same time?
we call such a schedule a

## Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of $P$ as tasks
for $p, p^{\prime} \in P$, consider $p<p p^{\prime}$ as saying that the execution of $p$ has to be finished before the execution of $p^{\prime}$ can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and $\leq_{P}$ can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset
How many different schedules exist such that ( $P, \leq_{P}$ ) and ( $Q, \leq_{Q}$ ) are executed "in parallel", and no restrictions of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are violated or added? no two tasks are executed at the same time?
we call such a schedule a merging of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

## Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of $P$ as tasks
for $p, p^{\prime} \in P$, consider $p<p p^{\prime}$ as saying that the execution of $p$ has to be finished before the execution of $p^{\prime}$ can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and $\leq_{P}$ can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset
How many different schedules exist such that

$$
\left(P, \leq_{P}\right) \text { and }\left(Q, \leq_{Q}\right) \text { are executed "in parallel", }
$$

no restrictions of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are violated or added,
no two tasks are executed at the same time?
we call such a schedule a proper merging of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

## ExAMPLE



## OUTLINE



## Motivation

CharacterizationEnumeration- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain


## CHARACTERIZATION

let $G, G^{\prime}, M, M^{\prime}$ be sets, and let $I \subseteq G \times M, I^{\prime} \subseteq G^{\prime} \times M^{\prime}$ be two binary relations
row of $I$ : the set $g^{\prime}=\{m \in M \mid(g, m) \in I\}$ for $g \in G$
column of $I$ : the set $m^{\prime}=\{g \in G \mid(g, m) \in I\}$ for $m \in M$

- intent of $I$ : an intersection over a subset of the rows of $I$
- extent of $I$ : an intersection over a subset of the columns of $I$
- bond between $I$ and $I^{\prime}$ : a binary relation $R \subseteq G \times M^{\prime}$ such that for all $g \in G$, the row $g^{R}$ is an intent of $I^{\prime}$, and for all $m \in M^{\prime}$, the column $m^{R}$ is an extent of $I$


## ExAMPLE

|  | $p_{1}$ | $p_{2}$ | $p_{3}$ | $p_{4}$ | $q_{1}$ | $q_{2}$ | $q_{3}$ | $q_{4}$ | $q_{5}$ | $q_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $p_{1}$ | $\times$ |  | $\times$ | $\times$ |  |  |  |  |  |  |
| $p_{2}$ |  | $\times$ | $\times$ | $\times$ |  |  |  |  |  |  |
| $p_{3}$ |  |  | $\times$ | $\times$ |  |  |  |  |  |  |
| $p_{4}$ |  |  |  | $\times$ |  |  |  |  |  |  |
| $q_{1}$ |  |  |  |  | $\times$ |  | $\times$ | $\times$ | $\times$ | $\times$ |
| $q_{2}$ |  |  |  |  |  | $\times$ |  | $\times$ |  | $\times$ |
| $q_{3}$ |  |  |  |  |  |  | $\times$ |  | $\times$ | $\times$ |
| $q_{4}$ |  |  |  |  |  |  |  | $\times$ |  | $\times$ |
| $q_{5}$ |  |  |  |  |  |  |  |  | $\times$ |  |
| $q_{6}$ |  |  |  |  |  |  |  |  |  | $\times$ |



## Example

|  | $p_{1}$ | $p_{2}$ | $p_{3}$ | $p_{4}$ | $q_{1}$ | $q_{2}$ | $q_{3}$ | $q_{4}$ | $q_{5}$ | $q_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $p_{1}$ | $\times$ |  | $\times$ | $\times$ |  |  | $\times$ |  | $\times$ | $\times$ |
| $p_{2}$ |  | $\times$ | $\times$ | $\times$ |  |  |  | $\times$ |  | $\times$ |
| $p_{3}$ |  |  | $\times$ | $\times$ |  |  |  |  |  | $\times$ |
| $p_{4}$ |  |  |  | $\times$ |  |  |  |  |  |  |
| $q_{1}$ |  |  |  |  | $\times$ |  | $\times$ | $\times$ | $\times$ | $\times$ |
| $q_{2}$ |  |  |  |  |  | $\times$ |  | $\times$ |  | $\times$ |
| $q_{3}$ |  |  |  |  |  |  | $\times$ |  | $\times$ | $\times$ |
| $q_{4}$ |  |  |  |  |  |  |  | $\times$ |  | $\times$ |
| $q_{5}$ |  |  |  |  |  |  |  |  | $\times$ |  |
| $q_{6}$ |  |  |  |  |  |  |  |  |  | $\times$ |

## Example

|  | $p_{1}$ | $p_{2}$ | $p_{3}$ | $p_{4}$ | $q_{1}$ | $q_{2}$ | $q_{3}$ | $q_{4}$ | $q_{5}$ | $q_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $p_{1}$ | $\times$ |  | $\times$ | $\times$ |  |  | $\times$ |  | $\times$ | $\times$ |
| $p_{2}$ |  | $\times$ | $\times$ | $\times$ |  |  |  | $\times$ |  | $\times$ |
| $p_{3}$ |  |  | $\times$ | $\times$ |  |  | $\times$ |  |  | $\times$ |
| $p_{4}$ |  |  |  | $\times$ |  |  |  |  |  |  |
| $q_{1}$ |  |  |  |  | $\times$ |  | $\times$ | $\times$ | $\times$ | $\times$ |
| $q_{2}$ |  |  |  |  |  | $\times$ |  | $\times$ |  | $\times$ |
| $q_{3}$ |  |  |  |  |  |  | $\times$ |  | $\times$ | $\times$ |
| $q_{4}$ |  |  |  |  |  |  |  | $\times$ |  | $\times$ |
| $q_{5}$ |  |  |  |  |  |  |  |  | $\times$ |  |
| $q_{6}$ |  |  |  |  |  |  |  |  |  | $\times$ |

## Example

|  | $p_{1}$ | $p_{2}$ | $p_{3}$ | $p_{4}$ | $q_{1}$ | $q_{2}$ | $q_{3}$ | $q_{4}$ | $q_{5}$ | $q_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $p_{1}$ | $\times$ |  | $\times$ | $\times$ |  |  | $\times$ |  | $\times$ | $\times$ |
| $p_{2}$ |  | $\times$ | $\times$ | $\times$ |  |  | $\times$ | $\times$ | $\times$ | $\times$ |
| $p_{3}$ |  |  | $\times$ | $\times$ |  |  | $\times$ |  | $\times$ | $\times$ |
| $p_{4}$ |  |  |  | $\times$ |  |  |  |  |  |  |
| $q_{1}$ |  |  |  |  | $\times$ |  | $\times$ | $\times$ | $\times$ | $\times$ |
| $q_{2}$ |  |  |  |  |  | $\times$ |  | $\times$ |  | $\times$ |
| $q_{3}$ |  |  |  |  |  |  | $\times$ |  | $\times$ | $\times$ |
| $q_{4}$ |  |  |  |  |  |  |  | $\times$ |  | $\times$ |
| $q_{5}$ |  |  |  |  |  |  |  |  | $\times$ |  |
| $q_{6}$ |  |  |  |  |  |  |  |  |  | $\times$ |

## CHARACTERIZATION

let $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ be disjoint posets, and let $R \subseteq P \times Q$, and $T \subseteq Q \times P$
for $p, q \in P \cup Q$, define $p \leftarrow R, T q$ if and only if

$$
p \leq_{P} q \text { or } p \leq_{Q} q \text { or }(p, q) \in R \text { or }(p, q) \in T
$$

- merging of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ : a pair $(R, T)$ such that $(P \cup Q, \leftarrow R, T)$ is a quasi-ordered set
- proper merging of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ : a merging $(R, T)$ such that $R \cap T^{-1}=\emptyset$


## CHARACTERIZATION

## Proposition (MESCHKE, 2011)

Let $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ be disjoint posets, and let $R \subseteq P \times Q$ and $T \subseteq Q \times P$. The relation $\leftarrow_{R, T}$ is reflexive and transitive if and only if all of the following are satisfied:

1. $R$ is a bond between $\not ¥_{P}$ and $\not ¥_{Q}$,
2. $T$ is a bond between $\not ¥_{Q}$ and $\not ¥_{P}$,
3. $R \circ T$ is contained in $\leq_{P}$,
4. $T \circ R$ is contained in $\leq_{Q}$.

Moreover, $\leftarrow_{R, T}$ is antisymmetric if and only if $R \cap T^{-1}=\emptyset$.

## CHARACTERIZATION

## Proposition (Meschke, 2011)

Let $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ be disjoint posets, and let $R \subseteq P \times Q$ and $T \subseteq Q \times P$. The relation $\leftarrow_{R, T}$ is reflexive and transitive if and only if all of the following are satisfied:

1. $R$ is a bond between $\not ¥_{P}$ and $\not ¥_{Q}$,
2. $T$ is a bond between $\not ¥_{Q}$ and $\not ¥_{P}$,
3. $R \circ T$ is contained in $\leq p$,
4. $T \circ R$ is contained in $\leq_{Q}$.

Moreover, $\leftarrow_{R, T}$ is antisymmetric if and only if $R \cap T^{-1}=\emptyset$.
in other words, $(P \cup Q, \leftarrow R, T)$ is a poset if and only if $(R, T)$ is a proper merging of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

## A Lattice Structure

let $\mathfrak{M}_{P, Q}$ denote the set of mergings of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$
define a partial order via

$$
(R, T) \preceq\left(R^{\prime}, T^{\prime}\right) \text { if and only if } R \subseteq R^{\prime} \text { and } T \supseteq T^{\prime} \text {, }
$$

## A Lattice Structure

let $\mathfrak{M}_{P, Q}^{\bullet}$ denote the set of proper mergings of $\left(P, \leq_{P}\right)$ and $(Q, \leq Q)$
define a partial order via

$$
(R, T) \preceq\left(R^{\prime}, T^{\prime}\right) \text { if and only if } R \subseteq R^{\prime} \text { and } T \supseteq T^{\prime} \text {, }
$$

## A Lattice Structure

let $\mathfrak{M}_{P, Q}^{\bullet}$ denote the set of proper mergings of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$
define a partial order via

$$
(R, T) \preceq\left(R^{\prime}, T^{\prime}\right) \text { if and only if } R \subseteq R^{\prime} \text { and } T \supseteq T^{\prime} \text {, }
$$

## Theorem (Meschke, 2011)

Let $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ be disjoint posets. The poset $\left(\mathfrak{M}_{P, Q}, \preceq\right)$ is in fact a distributive lattice, where the least element is
$(\emptyset, P \times Q)$ and the greatest element is $(P \times Q, \emptyset)$.
Moreover, the poset $\left(\mathfrak{M}_{P, Q}^{\bullet}, \preceq\right)$ is a distributive sublattice of the previous.

## Outline



## Motivation



Characterization
(3) Enumeration

- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain


## EnUMERATION

- Is it easy to determine the number of (proper) mergings of two posets $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ ?
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$


## EnUMERATION

Is it easy to determine the number of (proper) mergings of two posets $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ ? In general, no!
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

## Enumeration

- Is it easy to determine the number of (proper) mergings of two posets $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ ? In general, no!
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$


## Enumeration

- Is it easy to determine the number of (proper) mergings of two posets ( $P, \leq_{P}$ ) and ( $Q, \leq_{Q}$ ) ? In general, no!
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots .0$ |
| $\AA$ | 1 | 18 | 230 | 2676 | 30386 | 344748 |
| $\vdots$ | 1 | 15 | 155 | 1443 | 12899 | 113235 |

## Enumeration

- Is it easy to determine the number of (proper) mergings of two posets ( $P, \leq_{P}$ ) and ( $Q, \leq_{Q}$ ) ? In general, no!
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

|  |  |  | 0 | $\vdots$ | $\vdots$ | $\vdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | $\vdots$ | $!$ | $\vdots$ | $\vdots$ |
| $\vdots$ | 1 | 18 | 142 | 723 | 2782 | 8796 |
| $!$ | 1 | 15 | 105 | 409 | 1764 | 5292 |

## EnUMERATION

- Is it easy to determine the number of (proper) mergings of two posets $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ ? In general, no!
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$
we present the enumeration of three special cases:

1. proper mergings of two chains
2. proper mergings of two antichains
3. proper mergings of an antichain and a chain

## Outline



## Motivation

 Characterization

Enumeration

- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain


## Preparation

```
let C}={\mp@subsup{c}{1}{},\mp@subsup{c}{2}{},\ldots,\mp@subsup{c}{n}{}}\mathrm{ be a set and define }\mp@subsup{c}{i}{}\mp@subsup{\leq}{c}{}\mp@subsup{c}{j}{}\mathrm{ if and only if \(i \leq j\)
```

```
we notice that }\mp@subsup{c}{i}{}\not\mp@subsup{Z}{c}{}\mp@subsup{c}{j}{}\mathrm{ if and only if i<j, or equivalently
ci}<\mp@subsup{}{c}{}\mp@subsup{c}{j}{}\mathrm{ for all }i,j\in{1,2,\ldots,n
```

thus, the extents of $\not \chi_{c}$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ for some $k \in\{0,1, \ldots, n\}$ and the intents are of the form $\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$ for some $k \in\{1,2, \ldots, n+1\}$

## Preparation

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{c} c_{j}$ if and only if $i \leq j \rightsquigarrow \mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ is a chain

```
we notice that ci}\mp@subsup{\}{c}{}\mp@subsup{c}{j}{}\mathrm{ if and only if i<j, or equivalently
ci}<\mp@subsup{}{c}{}\mp@subsup{c}{j}{}\mathrm{ for all }i,j\in{1,2,\ldots,n
```

thus, the extents of $\not Z_{c}$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ for some $k \in\{0,1, \ldots, n\}$ and the intents are of the form $\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$ for some $k \in\{1,2, \ldots, n+1\}$

## PREPARATION

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{\mathfrak{c}} c_{j}$ if and only if $i \leq j \rightsquigarrow c=\left(C, \leq_{c}\right)$ is a chain
we notice that $c_{i} \not ¥_{c} c_{j}$ if and only if $i<j$, or equivalently $c_{i}<_{c} c_{j}$ for all $i, j \in\{1,2, \ldots, n\}$
thus, the extents of $\not \chi_{c}$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ for some $k \in\{0,1, \ldots, n\}$ and the intents are of the form $\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$ for some $k \in\{1,2, \ldots, n+1\}$

## PREPARATION

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{c} c_{j}$ if and only if $i \leq j \rightsquigarrow \mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ is a chain
we notice that $c_{i} \not \bigotimes_{c} c_{j}$ if and only if $i<j$, or equivalently $c_{i}<_{\mathfrak{c}} c_{j}$ for all $i, j \in\{1,2, \ldots, n\}$

thus, the extents of $\not ¥_{c}$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ for some $k \in\{0,1, \ldots, n\}$ and the intents are of the form $\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$ for some $k \in\{1,2, \ldots, n+1\}$

## PREPARATION

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{c} c_{j}$ if and only if $i \leq j \rightsquigarrow \mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ is a chain
we notice that $c_{i} \not \varliminf_{\mathfrak{c}} c_{j}$ if and only if $i<j$, or equivalently $c_{i}<_{c} c_{j}$ for all $i, j \in\{1,2, \ldots, n\}$


| $\leq_{\mathbf{c}}$ | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ | $\times$ | $\times$ | $\times$ | $\times$ |
| $c_{2}$ |  | $\times$ | $\times$ | $\times$ |
| $c_{3}$ |  |  | $\times$ | $\times$ |
| $c_{4}$ |  |  |  | $\times$ |

thus, the extents of $\not ¥_{c}$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ for some $k \in\{0,1, \ldots, n\}$ and the intents are of the form


## PREPARATION

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{c} c_{j}$ if and only if $i \leq j \rightsquigarrow \mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ is a chain
we notice that $c_{i} \not \varliminf_{\mathfrak{c}} c_{j}$ if and only if $i<j$, or equivalently $c_{i}<_{c} c_{j}$ for all $i, j \in\{1,2, \ldots, n\}$


| $\leq_{\mathbf{c}}$ | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ | $\times$ | $\times$ | $\times$ | $\times$ |
| $c_{2}$ |  | $\times$ | $\times$ | $\times$ |
| $c_{3}$ |  |  | $\times$ | $\times$ |
| $c_{4}$ |  |  |  | $\times$ |


| $\not \mathcal{Z}_{\mathbf{c}}$ | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ |  | $\times$ | $\times$ | $\times$ |
| $c_{2}$ |  |  | $\times$ | $\times$ |
| $c_{3}$ |  |  |  | $\times$ |
| $c_{4}$ |  |  |  |  |

thus, the extents of $\not ¥_{c}$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ for some $k \in\{0,1, \ldots, n\}$ and the intents are of the form $\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$ for some $k \in\{1,2$

## PREPARATION

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{c} c_{j}$ if and only if $i \leq j \rightsquigarrow \mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ is a chain
we notice that $c_{i} \not ¥_{\mathfrak{c}} c_{j}$ if and only if $i<j$, or equivalently $c_{i}<_{c} c_{j}$ for all $i, j \in\{1,2, \ldots, n\}$


| $\leq_{\mathbf{c}}$ | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ | $\times$ | $\times$ | $\times$ | $\times$ |
| $c_{2}$ |  | $\times$ | $\times$ | $\times$ |
| $c_{3}$ |  |  | $\times$ | $\times$ |
| $c_{4}$ |  |  |  | $\times$ |


| $Z_{\mathbf{c}}$ | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ |  | $\times$ | $\times$ | $\times$ |
| $c_{2}$ |  |  | $\times$ | $\times$ |
| $c_{3}$ |  |  |  | $\times$ |
| $c_{4}$ |  |  |  |  |

thus, the extents of $\not Z_{c}$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ for some $k \in\{0,1, \ldots, n\}$ and the intents are of the form $\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$ for some $k \in\{1,2, \ldots, n+1\}$

## The Idea

let $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right)$ and $C^{\prime}=\left\{c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}\right\}$ be sets and let $\mathfrak{c}=\left(C, \leq_{c}\right)$ and $\mathfrak{c}^{\prime}=\left(C^{\prime}, \leq_{c^{\prime}}\right)$ be two chains

## The Idea

let $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right)$ and $C^{\prime}=\left\{c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}\right\}$ be sets and let $\mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ and $\mathfrak{c}^{\prime}=\left(C^{\prime}, \leq_{\mathfrak{c}^{\prime}}\right)$ be two chains if $(R, T)$ is a merging of $\mathfrak{c}$ and $\mathfrak{c}^{\prime}$, then $R$ and $T$ must be right-justified and top-justified


## The Idea

let $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right)$ and $C^{\prime}=\left\{c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}\right\}$ be sets and let $\mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ and $\mathfrak{c}^{\prime}=\left(C^{\prime}, \leq_{c^{\prime}}\right)$ be two chains if $(R, T)$ is a proper merging of $\mathfrak{c}$ and $\mathfrak{c}^{\prime}$, then $R$ and $T$ must "fit together"


## The Bijection

- plane partition $\pi$ : a rectangular array which is weakly decreasing along rows and columns
part of $\pi$ : an entry $\pi_{i, j}$ in the array
given a proper merging $(R, T)$ of c and $\mathrm{c}^{\prime}$, define a plane partition $\pi$ with $m$ rows, $n$ columns and largest part at most 2 as follows:

this is in fact a bijection!


## The Bijection

plane partition $\pi$ : a rectangular array which is weakly decreasing along rows and columns
part of $\pi$ : an entry $\pi_{i, j}$ in the array
given a proper merging $(R, T)$ of $\mathfrak{c}$ and $\mathfrak{c}^{\prime}$, define a plane partition $\pi$ with $m$ rows, $n$ columns and largest part at most 2 as follows:

$$
\pi_{i, j}= \begin{cases}2, & \text { if }\left(c_{i}, c_{n-j+1}^{\prime}\right) \in R \\ 0, & \text { if }\left(c_{n-j+1}^{\prime}, c_{i}\right) \in T \\ 1, & \text { otherwise }\end{cases}
$$

this is in fact a bijection!

## The Bijection

plane partition $\pi$ : a rectangular array which is weakly decreasing along rows and columns
part of $\pi$ : an entry $\pi_{i, j}$ in the array
given a proper merging $(R, T)$ of $\mathfrak{c}$ and $\mathfrak{c}^{\prime}$, define a plane partition $\pi$ with $m$ rows, $n$ columns and largest part at most 2 as follows:

$$
\pi_{i, j}= \begin{cases}2, & \text { if }\left(c_{i}, c_{n-j+1}^{\prime}\right) \in R \\ 0, & \text { if }\left(c_{n-j+1}^{\prime}, c_{i}\right) \in T \\ 1, & \text { otherwise }\end{cases}
$$

this is in fact a bijection!

## The Enumeration

the enumeration of plane partitions is classical

## Theorem (MacMAhon)

The number $\pi(m, n, l)$ of plane partitions with $m$ rows, $n$ columns and largest part at most I is given by

$$
\pi(m, n, l)=\prod_{i=1}^{m} \prod_{j=1}^{n} \prod_{k=1}^{l} \frac{i+j+k-1}{i+j+k-2}
$$

## The Enumeration

in view of the bijection from before, we obtain the following result

## Theorem

The number $F_{\mathfrak{c}}(m, n)$ of proper mergings of an m-chain and an $n$-chain is given by

$$
F_{\mathfrak{c}}(m, n)=\pi(m, n, 2)=\frac{1}{m+n+1}\binom{m+n+1}{m+1}\binom{m+n+1}{m}
$$

$$
F_{\mathfrak{c}}(m, n)=\operatorname{Nar}(m+n+1, m+1)
$$

## The Enumeration

in view of the bijection from before, we obtain the following result

## Theorem

The number $F_{\mathfrak{c}}(m, n)$ of proper mergings of an m-chain and an $n$-chain is given by

$$
F_{\mathfrak{c}}(m, n)=\pi(m, n, 2)=\frac{1}{m+n+1}\binom{m+n+1}{m+1}\binom{m+n+1}{m} .
$$

$$
F_{\mathfrak{c}}(m, n)=\operatorname{Nar}(m+n+1, m+1)
$$

## Outline

## ©

 Motivation CHARACTERIZATION

Enumeration

- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain


## PREPARATION

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{a} a_{j}$ if and only if $i=j$
thus, the extents and intents of $\neq a_{a}$ are precisely the subsets of

## Preparation

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{\mathfrak{a}} a_{j}$ if and only if $i=j \rightsquigarrow \mathfrak{a}=(A,=\mathfrak{a})$ is an antichain

## PREPARATION

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{\mathfrak{a}} a_{j}$ if and only if $i=j \rightsquigarrow \mathfrak{a}=\left(A,={ }_{\mathfrak{a}}\right)$ is an antichain
$a_{1}$ $a_{2} \bigcirc$ $a_{3} \bigcirc$ $a_{4} \bigcirc$
thus, the extents and intents of $\mathcal{F}_{a}$ are precisely the subsets of

## Preparation

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{\mathfrak{a}} a_{j}$ if and only if $i=j \rightsquigarrow \mathfrak{a}=(A,=\mathfrak{a})$ is an antichain
$a_{1}$
$a_{2} \bigcirc \quad a_{3} \bigcirc \quad a_{4} \bigcirc$

| $\boldsymbol{a}_{\mathfrak{a}}$ | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $a_{1}$ | $\times$ |  |  |  |
| $a_{2}$ |  | $\times$ |  |  |
| $a_{3}$ |  |  | $\times$ |  |
| $a_{4}$ |  |  |  | $\times$ |

## Preparation

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{a} a_{j}$ if and only if $i=j \rightsquigarrow \mathfrak{a}=(A,=\mathfrak{a})$ is an antichain
$a_{1} \bigcirc \quad a_{2} \bigcirc \quad a_{3} \bigcirc \quad a_{4} \bigcirc$

| $\boldsymbol{a}_{\mathfrak{a}}$ | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $a_{1}$ | $\times$ |  |  |  |
| $a_{2}$ |  | $\times$ |  |  |
| $a_{3}$ |  |  | $\times$ |  |
| $a_{4}$ |  |  |  | $\times$ |


| $\neq \mathfrak{a}$ | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $a_{1}$ |  | $\times$ | $\times$ | $\times$ |
| $a_{2}$ | $\times$ |  | $\times$ | $\times$ |
| $a_{3}$ | $\times$ | $\times$ |  | $\times$ |
| $a_{4}$ | $\times$ | $\times$ | $\times$ |  |

## Preparation

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{\mathfrak{a}} a_{j}$ if and only if $i=j \rightsquigarrow \mathfrak{a}=(A,=\mathfrak{a})$ is an antichain

| $\boldsymbol{a}_{\mathfrak{a}}$ | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $a_{1}$ | $\times$ |  |  |  |
| $a_{2}$ |  | $\times$ |  |  |
| $a_{3}$ |  |  | $\times$ |  |
| $a_{4}$ |  |  |  | $\times$ |


| $\neq \mathfrak{a}$ | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $a_{1}$ |  | $\times$ | $\times$ | $\times$ |
| $a_{2}$ | $\times$ |  | $\times$ | $\times$ |
| $a_{3}$ | $\times$ | $\times$ |  | $\times$ |
| $a_{4}$ | $\times$ | $\times$ | $\times$ |  |

thus, the extents and intents of $f_{\mathfrak{a}}$ are precisely the subsets of A

## The Idea

unfortunately, we have no idea of a bijection between proper mergings of two antichains and some other mathematical objects
but, we have an idea for a generating function approach

## The Idea

unfortunately, we have no idea of a bijection between proper mergings of two antichains and some other mathematical objects
but, we have an idea for a generating function approach

## The Idea

unfortunately, we have no idea of a bijection between proper mergings of two antichains and some other mathematical objects
but, we have an idea for a generating function approach
the Hasse diagram of a proper merging of two antichains can be considered as a bipartite graph

-
every connected component of such a Hasse diagram can occur in two variations

## The Idea

unfortunately, we have no idea of a bijection between proper mergings of two antichains and some other mathematical objects
but, we have an idea for a generating function approach the Hasse diagram of a proper merging of two antichains can be considered as a bipartite graph

-
every connected component of such a Hasse diagram can occur in two variations, unless this component is just a single node

## The Generating Function

let $B(x, y)$ denote the bivariate exponential generating function for bipartite graphs, and let $B_{c}(x, y)$ denote the bivariate exponential generating function for connected bipartite graphs
we clearly have

$$
B(x, y)=\sum_{n \geq 0} \sum_{m \geq 0} 2^{m n} \frac{x^{m} y^{n}}{m!n!}
$$

since every bipartite graph can be considered as a collection of connected bipartite graphs, we obtain

$$
B(x, y)=\exp \left(B_{c}(x, y)\right)
$$

## The Generating Function

let $G(x, y)$ denote the bivariate exponential generating function for proper mergings of two antichains
we obtain

$$
\begin{aligned}
G(x, y) & =\exp \left(2 \cdot B_{c}(x, y)-x-y\right) \\
= & \exp (2 \cdot \log B(x, y)-x-y) \\
= & B(x, y)^{2}-\exp (x)-\exp (y) \\
= & \sum 2^{n_{1} n_{2}+m_{1} m_{2}}(-1)^{k_{1}}(-1)^{k_{2}} \\
& \cdot \frac{x^{n_{1}+m_{1}+k_{1}}}{n_{1}!m_{1}!k_{1}!} \cdot \frac{y^{n_{2}+m_{2}+k_{2}}}{n_{2}!m_{2}!k_{2}!}
\end{aligned}
$$

## The Enumeration

the number of proper mergings of an $m$-antichain and an $n$-antichain is given by the coefficient of $\frac{x^{m} y^{n}}{m!n!}$ in $G(x, y)$

## Theorem

The number $F_{\mathfrak{a}}(m, n)$ of proper mergings of an m-antichain and an $n$-antichain is given by

$$
F_{\mathfrak{a}}(m, n)=\sum_{k_{1}+m_{1}+n_{1}=m}\binom{m}{k_{1}, m_{1}, n_{1}}(-1)^{k_{1}}\left(2^{m_{1}}+2^{n_{1}}-1\right)^{n} .
$$

## Outline



## Motivation

 Characterization

Enumeration

- Proper Mergings of Two Chains - Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain


## The Idea

let $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be sets, and let $\mathfrak{a}=(A,=\mathfrak{a})$ be an $m$-antichain and $\mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ be an $n$-chain
recall that the intents and extents of $\neq \mathfrak{a}$ are just subsets of $A$, and the extents of $\not \varliminf_{\mathfrak{c}}$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ and the intents are of the form $\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$

## The Idea

let $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be sets, and let $\mathfrak{a}=(A,=\mathfrak{a})$ be an $m$-antichain and $\mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ be an $n$-chain
recall that the intents and extents of $\neq \mathfrak{a}$ are just subsets of $A$, and the extents of $\not ¥_{\mathfrak{c}}$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ and the intents are of the form $\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$ if $(R, T)$ is a merging of $\mathfrak{a}$ and $\mathfrak{c}$, then $R$ must be right-justified and $T$ must be top-justified


## The Idea

let $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be sets, and let $\mathfrak{a}=(A,=\mathfrak{a})$ be an $m$-antichain and $\mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ be an $n$-chain
recall that the intents and extents of $\neq \mathfrak{a}$ are just subsets of $A$, and the extents of $\not ¥_{\mathfrak{c}}$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ and the intents are of the form $\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$
if $(R, T)$ is a proper merging of $\mathfrak{a}$ and $\mathfrak{c}$, then $R$ and $T$ must "fit together"


## The Idea

let $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be sets, and let $\mathfrak{a}=(A,=\mathfrak{a})$ be an $m$-antichain and $\mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ be an $n$-chain
recall that the intents and extents of $\neq \mathfrak{a}$ are just subsets of $A$, and the extents of $\not ¥_{\mathfrak{c}}$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ and the intents are of the form $\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$
if $(R, T)$ is a proper merging of $\mathfrak{a}$ and $\mathfrak{c}$, then $R$ and $T$ must "fit together"


## The Bijection

complete bipartite digraph $\vec{K}_{m, n}$ : a bipartite digraph with vertex set $V=V_{1} \uplus V_{2}$, where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$, and edge set $\vec{E}=V_{1} \times V_{2}$
monotone coloring of a digraph: a map $\gamma: V \rightarrow \mathbb{N}$ with the property: if $\left(v_{1}, v_{2}\right) \in \vec{E}$, then $\gamma\left(v_{1}\right) \leq \gamma\left(v_{2}\right)$

## given a proper merging $(R, T)$ of $\mathfrak{a}$ and $\mathfrak{c}$, define a monotone ( $n+1$ )-coloring $\gamma$ of $\vec{K}_{m, m}$ as follows:



## The Bijection

complete bipartite digraph $\vec{K}_{m, n}$ : a bipartite digraph with vertex set $V=V_{1} \uplus V_{2}$, where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$, and edge set $\vec{E}=V_{1} \times V_{2}$
monotone coloring of a digraph: a map $\gamma: V \rightarrow \mathbb{N}$ with the property: if $\left(v_{1}, v_{2}\right) \in \vec{E}$, then $\gamma\left(v_{1}\right) \leq \gamma\left(v_{2}\right)$
given a proper merging $(R, T)$ of $\mathfrak{a}$ and $\mathfrak{c}$, define a monotone ( $n+1$ )-coloring $\gamma$ of $\vec{K}_{m, m}$ as follows:
$\gamma\left(v_{i}\right)=k \quad$ if and only if $\begin{cases}v_{i} \in V_{1} & \text { and }\left(a_{i}, c_{j}\right) \in R \\ & \text { for all } n+2-k \leq j \leq n \\ v_{i} \in V_{2} & \text { and }\left(c_{j}, a_{i}\right) \in T \\ & \text { for all } 1 \leq j \leq n+1-k\end{cases}$
this is in fact a bijection!

## The Bijection

complete bipartite digraph $\vec{K}_{m, n}$ : a bipartite digraph with vertex set $V=V_{1} \uplus V_{2}$, where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$, and edge set $\vec{E}=V_{1} \times V_{2}$
monotone coloring of a digraph: a map $\gamma: V \rightarrow \mathbb{N}$ with the property: if $\left(v_{1}, v_{2}\right) \in \vec{E}$, then $\gamma\left(v_{1}\right) \leq \gamma\left(v_{2}\right)$
given a proper merging $(R, T)$ of $\mathfrak{a}$ and $\mathfrak{c}$, define a monotone ( $n+1$ )-coloring $\gamma$ of $\vec{K}_{m, m}$ as follows:
$\gamma\left(v_{i}\right)=k \quad$ if and only if $\begin{cases}v_{i} \in V_{1} & \text { and }\left(a_{i}, c_{j}\right) \in R \\ & \text { for all } n+2-k \leq j \leq n \\ v_{i} \in V_{2} & \text { and }\left(c_{j}, a_{i}\right) \in T \\ & \text { for all } 1 \leq j \leq n+1-k\end{cases}$
this is in fact a bijection!

## The Enumeration

the number of monotone $n$-colorings of $\vec{K}_{m_{1}, m_{2}}$ is known

## Proposition (Jovović \& Kilibarda, 2004)

Let $\eta_{n}\left(\vec{K}_{m_{1}, m_{2}}\right)$ denote the number of monotone $n$-colorings of $\vec{K}_{m_{1}, m_{2}}$. Then,

$$
\begin{aligned}
\eta_{n}\left(\vec{K}_{m_{1}, m_{2}}\right) & =\sum_{k=1}^{n}\left((n+1-k)^{m_{1}}-(n-k)^{m_{1}}\right) \cdot k^{m_{2}} \\
& =\sum_{k=1}^{n}\left((n+1-k)^{m_{2}}-(n-k)^{m_{2}}\right) \cdot k^{m_{1}}
\end{aligned}
$$

## The Enumeration

in view of the bijection from before, we obtain the following result

## Theorem

The number $F_{\mathfrak{o c}}(m, n)$ of proper mergings of an m-antichain and an n-chain is given by

$$
\begin{aligned}
F_{\mathfrak{c}}(m, n) & =\eta_{n+1}\left(\vec{K}_{m, m}\right) \\
& =\sum_{k=1}^{n+1}\left((n+2-k)^{m}-(n+1-k)^{m}\right) \cdot k^{m}
\end{aligned}
$$

we need to evaluate the term " 0 " as zero, in order to cover the case $m=0$ correctly

## The Enumeration

in view of the bijection from before, we obtain the following result

## THEOREM

The number $F_{\mathrm{oc}}(m, n)$ of proper mergings of an m-antichain and an n-chain is given by

$$
\begin{aligned}
F_{\mathfrak{c}}(m, n) & =\eta_{n+1}\left(\vec{K}_{m, m}\right) \\
& =\sum_{k=1}^{n+1}\left((n+2-k)^{m}-(n+1-k)^{m}\right) \cdot k^{m}
\end{aligned}
$$

we need to evaluate the term " $0^{0}$ " as zero, in order to cover the case $m=0$ correctly

## Thank You.

