Counting Proper Mergings

Henri Mühle

Universität Wien

March 26, 2013

Henri Mühle Counting Proper Mergings

OUTLINE

O CHARACTERIZATION

- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain

OUTLINE

Ocharacterization

- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain

- let (P, \leq_P) be a poset
- consider the elements of P as tasks
- for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- let (Q, \leq_Q) be another poset
 - How many different schedules exist such that (P, \leq_P) and (Q, \leq_Q) are executed "in parallel", no restrictions of (P, \leq_P) and (Q, \leq_Q) are violated or adde no two tasks are executed at the same time?
- we call such a schedule a

- let (P, \leq_P) be a poset
- consider the elements of P as tasks
- for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- ▶ let (Q, \leq_Q) be another poset
- How many different schedules exist such that
 - (P,\leq_P) and (Q,\leq_Q) are executed "in parallel",

 - no two tasks are executed at the same time?
- we call such a schedule a

- let (P, \leq_P) be a poset
- consider the elements of P as tasks
- for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- ▶ let (Q, \leq_Q) be another poset
- How many different schedules exist such that
 - ▷ (P, \leq_P) and (Q, \leq_Q) are executed "in parallel",
 - \sim no restrictions of (P,\leq_P) and (Q,\leq_Q) are violated or added
 - no two tasks are executed at the same time?
- we call such a schedule a

- let (P, \leq_P) be a poset
- consider the elements of P as tasks
- for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- ▶ let (Q, \leq_Q) be another poset
- How many different schedules exist such that
 - ▶ (P, \leq_P) and (Q, \leq_Q) are executed "in parallel", and
 - ▶ no restrictions of (P, \leq_P) and (Q, \leq_Q) are violated or added?
 - no two tasks are executed at the same time?
- we call such a schedule a

- ▶ let (P, \leq_P) be a poset
- consider the elements of P as tasks
- ▶ for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- ▶ let (Q, \leq_Q) be another poset
- How many different schedules exist such that
 - ▶ (P, \leq_P) and (Q, \leq_Q) are executed "in parallel", and
 - ▶ no restrictions of (P, \leq_P) and (Q, \leq_Q) are violated or added?
 - no two tasks are executed at the same time?
- ▶ we call such a schedule a merging of (P, \leq_P) and (Q, \leq_Q)

- ▶ let (P, \leq_P) be a poset
- consider the elements of P as tasks
- ▶ for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- ▶ let (Q, \leq_Q) be another poset
- How many different schedules exist such that
 - ▶ (P, \leq_P) and (Q, \leq_Q) are executed "in parallel",
 - ▶ no restrictions of (P, \leq_P) and (Q, \leq_Q) are violated or added,
 - no two tasks are executed at the same time?
- ▶ we call such a schedule a proper merging of (P, \leq_P) and (Q, \leq_Q)

OUTLINE

O CHARACTERIZATION

- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain

- ▶ let G, G', M, M' be sets, and let $I \subseteq G \times M, I' \subseteq G' \times M'$ be two binary relations
- ▶ row of *I*: the set $g^I = \{m \in M \mid (g, m) \in I\}$ for $g \in G$
- column of I: the set $m^I = \left\{g \in G \mid (g,m) \in I
 ight\}$ for $m \in M$
- intent of I: an intersection over a subset of the rows of I
- extent of I: an intersection over a subset of the columns of I
- bond between I and I': a binary relation $R \subseteq G \times M'$ such that for all $g \in G$, the row g^R is an intent of I', and for all $m \in M'$, the column m^R is an extent of I

	<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	q_1	<i>q</i> ₂	<i>q</i> ₃	q_4	q_5	q_6
<i>p</i> ₁	×		×	×						
P2		×	×	×						
P3			×	×						
<i>p</i> ₄				\times						
<i>q</i> ₁					×		×	×	×	×
<i>q</i> ₂						×		×		×
<i>q</i> ₃							×		×	×
<i>q</i> ₄								×		×
<i>q</i> ₅									×	
<i>q</i> ₆										×

	<i>p</i> ₁	<i>p</i> ₂	<i>P</i> 3	<i>p</i> ₄	q_1	<i>q</i> ₂	<i>q</i> ₃	q_4	q_5	q_6
<i>p</i> ₁	×		×	×			×		×	×
P2		×	×	×				×		×
P3			×	×						×
<i>p</i> ₄				\times						
<i>q</i> ₁					×		×	×	×	×
<i>q</i> ₂						×		×		×
<i>q</i> ₃							×		×	×
<i>q</i> ₄								×		×
<i>q</i> ₅									×	
96										×

	<i>p</i> ₁	<i>p</i> ₂	<i>P</i> 3	<i>p</i> ₄	q_1	<i>q</i> ₂	<i>q</i> ₃	q_4	q_5	q_6
<i>p</i> ₁	×		×	\times			×		×	×
P2		×	×	×				×		×
P3			×	×			×			×
<i>p</i> ₄				\times						
<i>q</i> ₁					×		×	×	×	×
<i>q</i> ₂						×		×		×
<i>q</i> ₃							×		×	×
<i>q</i> ₄								×		×
<i>q</i> ₅									×	
96										×

	<i>p</i> ₁	<i>p</i> ₂	<i>P</i> 3	<i>p</i> ₄	q_1	<i>q</i> ₂	<i>q</i> ₃	<i>q</i> ₄	q_5	q_6
<i>p</i> ₁	×		×	×			×		×	×
P2		×	×	×			×	×	×	×
P3			×	×			×		×	×
<i>p</i> ₄				\times						
<i>q</i> ₁					×		×	×	×	×
<i>q</i> ₂						×		×		×
<i>q</i> ₃							×		×	×
<i>q</i> ₄								×		×
<i>q</i> ₅									×	
96										×

- let (P, \leq_P) and (Q, \leq_Q) be disjoint posets, and let $R \subseteq P \times Q$, and $T \subseteq Q \times P$
- ▶ for $p, q \in P \cup Q$, define $p \leftarrow_{R,T} q$ if and only if

$$p\leq_P q ext{ or } p\leq_Q q ext{ or } (p,q)\in R ext{ or } (p,q)\in T$$

- merging of (P, \leq_P) and (Q, \leq_Q) : a pair (R, T) such that $(P \cup Q, \leftarrow_{R,T})$ is a quasi-ordered set
- ▶ proper merging of (P, \leq_P) and (Q, \leq_Q) : a merging (R, T) such that $R \cap T^{-1} = \emptyset$

PROPOSITION (MESCHKE, 2011)

Let (P, \leq_P) and (Q, \leq_Q) be disjoint posets, and let $R \subseteq P \times Q$ and $T \subseteq Q \times P$. The relation $\leftarrow_{R,T}$ is reflexive and transitive if and only if all of the following are satisfied:

- 1. *R* is a bond between \geq_P and \geq_Q ,
- 2. T is a bond between $\not\geq_Q$ and $\not\geq_P$,
- 3. $R \circ T$ is contained in \leq_P ,
- 4. $T \circ R$ is contained in \leq_Q .

Moreover, $\leftarrow_{R,T}$ is antisymmetric if and only if $R \cap T^{-1} = \emptyset$.

in other words, $(P \cup Q, \leftarrow_{R,T})$ is a poset if and only if (R, T) is a proper merging of (P, \leq_P) and (Q, \leq_Q)

PROPOSITION (MESCHKE, 2011)

Let (P, \leq_P) and (Q, \leq_Q) be disjoint posets, and let $R \subseteq P \times Q$ and $T \subseteq Q \times P$. The relation $\leftarrow_{R,T}$ is reflexive and transitive if and only if all of the following are satisfied:

- 1. *R* is a bond between \geq_P and \geq_Q ,
- 2. T is a bond between \geq_Q and \geq_P ,
- 3. $R \circ T$ is contained in \leq_P ,
- 4. $T \circ R$ is contained in \leq_Q .

Moreover, $\leftarrow_{R,T}$ is antisymmetric if and only if $R \cap T^{-1} = \emptyset$.

▶ in other words, $(P \cup Q, \leftarrow_{R,T})$ is a poset if and only if (R, T) is a proper merging of (P, \leq_P) and (Q, \leq_Q)

Motivation 00 CHARACTERIZATION 00000

A LATTICE STRUCTURE

let $\mathfrak{M}_{P,Q}$ denote the set of (Q, \leq_Q)

mergings of (P, \leq_P) and

define a partial order via

 $(R, T) \preceq (R', T')$ if and only if $R \subseteq R'$ and $T \supseteq T'$,

A LATTICE STRUCTURE

- ▶ let $\mathfrak{M}_{P,Q}^{\bullet}$ denote the set of proper mergings of (P, \leq_P) and (Q, \leq_Q)
- define a partial order via

 $(R, T) \preceq (R', T')$ if and only if $R \subseteq R'$ and $T \supseteq T'$,

A LATTICE STRUCTURE

- ▶ let $\mathfrak{M}_{P,Q}^{\bullet}$ denote the set of proper mergings of (P, \leq_P) and (Q, \leq_Q)
- define a partial order via

 $(R, T) \preceq (R', T')$ if and only if $R \subseteq R'$ and $T \supseteq T'$,

THEOREM (MESCHKE, 2011)

Let (P, \leq_P) and (Q, \leq_Q) be disjoint posets. The poset $(\mathfrak{M}_{P,Q}, \preceq)$ is in fact a distributive lattice, where the least element is $(\emptyset, P \times Q)$ and the greatest element is $(P \times Q, \emptyset)$. Moreover, the poset $(\mathfrak{M}^{\bullet}_{P,Q}, \preceq)$ is a distributive sublattice of the previous.

OUTLINE

D CHARACTERIZATION

- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain

- ▶ Is it easy to determine the number of (proper) mergings of two posets (P, \leq_P) and (Q, \leq_Q) ?
- the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

- Is it easy to determine the number of (proper) mergings of two posets (P, ≤_P) and (Q, ≤_Q)? In general, no!
- the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_P) and (Q, \leq_Q) ? In general, no!
- ▶ the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_P) and (Q, \leq_Q) ? In general, no!
- ▶ the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_P) and (Q, \leq_Q) ? In general, no!
- ▶ the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_P) and (Q, \leq_Q) ? In general, no!
- ▶ the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

- we present the enumeration of three special cases:
 - $1. \ \mbox{proper mergings of two chains}$
 - 2. proper mergings of two antichains
 - 3. proper mergings of an antichain and a chain

MOTIVATION 00 PROPER MERGINGS OF TWO CHAINS CHARACTERIZATION 00000 ENUMERATION

OUTLINE

Ocharacterization

ENUMERATION

• Proper Mergings of Two Chains

- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain
Characterization 00000

PREPARATION

- ▶ let $C = \{c_1, c_2, ..., c_n\}$ be a set and define $c_i \leq_{c} c_j$ if and only if $i \leq j$
- we notice that $c_i \geq_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of \geq_c are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$

CHARACTERIZATION 00000 ENUMERATION

PREPARATION

- let $C = \{c_1, c_2, \dots, c_n\}$ be a set and define $c_i \leq_{\mathfrak{c}} c_j$ if and only if $i \leq j \quad \rightsquigarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- we notice that $c_i \not\geq_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

• thus, the extents of $\not\geq_c$ are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$

CHARACTERIZATION 00000 ENUMERATION

PREPARATION

- let $C = \{c_1, c_2, \dots, c_n\}$ be a set and define $c_i \leq_{\mathfrak{c}} c_j$ if and only if $i \leq j \longrightarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- ▶ we notice that $c_i \ge_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of \geq_c are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$

CHARACTERIZATION 00000

PREPARATION

- ▶ let $C = \{c_1, c_2, ..., c_n\}$ be a set and define $c_i \leq_{\mathfrak{c}} c_j$ if and only if $i \leq j$ $\rightarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- ▶ we notice that $c_i \ge_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of \geq_c are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$

CHARACTERIZATION 00000 ENUMERATION

PREPARATION

- ▶ let $C = \{c_1, c_2, ..., c_n\}$ be a set and define $c_i \leq_{\mathfrak{c}} c_j$ if and only if $i \leq j$ $\rightarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- ▶ we notice that $c_i \ge_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of \geq_c are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$

HENRI MÜHLE COUNTING PROPER MERGINGS

CHARACTERIZATION 00000 ENUMERATION

PREPARATION

- ▶ let $C = \{c_1, c_2, ..., c_n\}$ be a set and define $c_i \leq_{\mathfrak{c}} c_j$ if and only if $i \leq j$ $\rightarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- ▶ we notice that $c_i \ge_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of $\not\geq_c$ are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$

HENRI MÜHLE COUNTING PROPER MERGINGS

CHARACTERIZATION 00000 ENUMERATION

PREPARATION

- ▶ let $C = \{c_1, c_2, ..., c_n\}$ be a set and define $c_i \leq_{\mathfrak{c}} c_j$ if and only if $i \leq j$ $\rightarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- ▶ we notice that $c_i \ge_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of \geq_c are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$

Henri Mühle

Counting Proper Mergings

CHARACTERIZATION 00000

THE IDEA

let $C = \{c_1, c_2, \dots, c_m\}$ and $C' = \{c'_1, c'_2, \dots, c'_n\}$ be sets and let $\mathfrak{c} = (C, \leq_{\mathfrak{c}})$ and $\mathfrak{c}' = (C', \leq_{\mathfrak{c}'})$ be two chains

CHARACTERIZATION 00000

The Idea

- let $C = \{c_1, c_2, \dots, c_m\}$ and $C' = \{c'_1, c'_2, \dots, c'_n\}$ be sets and let $\mathfrak{c} = (C, \leq_{\mathfrak{c}})$ and $\mathfrak{c}' = (C', \leq_{\mathfrak{c}'})$ be two chains
- ▶ if (R, T) is a merging of c and c', then R and T must be right-justified and top-justified

CHARACTERIZATION 00000

The Idea

- let $C = \{c_1, c_2, \dots, c_m\}$ and $C' = \{c'_1, c'_2, \dots, c'_n\}$ be sets and let $\mathfrak{c} = (C, \leq_{\mathfrak{c}})$ and $\mathfrak{c}' = (C', \leq_{\mathfrak{c}'})$ be two chains
- ▶ if (R, T) is a proper merging of c and c', then R and T must "fit together"

CHARACTERIZATION 00000 ENUMERATION

THE BIJECTION

- plane partition π: a rectangular array which is weakly decreasing along rows and columns
- **part of** π : an entry $\pi_{i,j}$ in the array
- given a proper merging (R, T) of c and c', define a plane partition π with *m* rows, *n* columns and largest part at most 2 as follows:

$$\pi_{i,j} = \begin{cases} 2, & \text{if } (c_i, c'_{n-j+1}) \in R \\ 0, & \text{if } (c'_{n-j+1}, c_i) \in T \\ 1, & \text{otherwise} \end{cases}$$

this is in fact a bijection!

CHARACTERIZATION 00000

THE BIJECTION

- plane partition π: a rectangular array which is weakly decreasing along rows and columns
- **part of** π : an entry $\pi_{i,i}$ in the array
- since a proper merging (R, T) of \mathfrak{c} and \mathfrak{c}' , define a plane partition π with m rows, n columns and largest part at most 2 as follows:

$$\pi_{i,j} = \begin{cases} 2, & \text{if } (c_i, c'_{n-j+1}) \in R \\ 0, & \text{if } (c'_{n-j+1}, c_i) \in T \\ 1, & \text{otherwise} \end{cases}$$

this is in fact a bijection!

CHARACTERIZATION 00000

THE BIJECTION

- plane partition π: a rectangular array which is weakly decreasing along rows and columns
- **part of** π : an entry $\pi_{i,j}$ in the array
- since a proper merging (R, T) of \mathfrak{c} and \mathfrak{c}' , define a plane partition π with m rows, n columns and largest part at most 2 as follows:

$$\pi_{i,j} = \begin{cases} 2, & \text{if } (c_i, c'_{n-j+1}) \in R \\ 0, & \text{if } (c'_{n-j+1}, c_i) \in T \\ 1, & \text{otherwise} \end{cases}$$

this is in fact a bijection!

CHARACTERIZATION 00000 ENUMERATION

THE ENUMERATION

▶ the enumeration of plane partitions is classical

THEOREM (MACMAHON)

The number $\pi(m, n, l)$ of plane partitions with m rows, n columns and largest part at most l is given by

$$\pi(m, n, l) = \prod_{i=1}^{m} \prod_{j=1}^{n} \prod_{k=1}^{l} \frac{i+j+k-1}{i+j+k-2}.$$

CHARACTERIZATION 00000

THE ENUMERATION

 in view of the bijection from before, we obtain the following result

THEOREM

The number $F_c(m, n)$ of proper mergings of an m-chain and an n-chain is given by

$$F_{\mathfrak{c}}(m,n) = \pi(m,n,2) = \frac{1}{m+n+1} \binom{m+n+1}{m+1} \binom{m+n+1}{m}.$$

$$F_{\mathfrak{c}}(m,n) = \operatorname{Nar}(m+n+1,m+1)$$

CHARACTERIZATION 00000

THE ENUMERATION

 in view of the bijection from before, we obtain the following result

THEOREM

The number $F_c(m, n)$ of proper mergings of an m-chain and an n-chain is given by

$$F_{c}(m,n) = \pi(m,n,2) = \frac{1}{m+n+1} \binom{m+n+1}{m+1} \binom{m+n+1}{m}.$$

•
$$F_{c}(m, n) = Nar(m + n + 1, m + 1)$$

CHARACTERIZATION 00000

OUTLINE

ENUMERATION

- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain

CHARACTERIZATION 00000

PREPARATION

▶ let $A = \{a_1, a_2, ..., a_n\}$ be a set and define $a_i =_{a} a_j$ if and only if i = j

thus, the extents and intents of $\neq_{\mathfrak{a}}$ are precisely the subsets of A

Henri Mühle Counting Proper Mergings

CHARACTERIZATION 00000

PREPARATION

▶ let $A = \{a_1, a_2, ..., a_n\}$ be a set and define $a_i =_{\mathfrak{a}} a_j$ if and only if $i = j \longrightarrow \mathfrak{a} = (A, =_{\mathfrak{a}})$ is an antichain

thus, the extents and intents of $\neq_{\mathfrak{a}}$ are precisely the subsets of A

Henri Mühle Counting Proper Mergings

CHARACTERIZATION 00000

PREPARATION

▶ let $A = \{a_1, a_2, ..., a_n\}$ be a set and define $a_i =_{\mathfrak{a}} a_j$ if and only if i = j $\rightarrow \mathfrak{a} = (A, =_{\mathfrak{a}})$ is an antichain

a1 () a2 () a3 () a4 ()

thus, the extents and intents of $\neq_{\mathfrak{a}}$ are precisely the subsets of A

Henri Mühle Counting Proper Mergings

CHARACTERIZATION 00000

PREPARATION

▶ let $A = \{a_1, a_2, ..., a_n\}$ be a set and define $a_i =_{\mathfrak{a}} a_j$ if and only if i = j $\rightarrow \mathfrak{a} = (A, =_{\mathfrak{a}})$ is an antichain

a_1 ()	a2 ()	a3 ()	a4 ()
- 0			

$=_{\mathfrak{a}}$	a ₁	a ₂	a ₃	a ₄
a ₁	×			
a2		×		
a3			×	
a ₄				×

thus, the extents and intents of $\neq_{\mathfrak{a}}$ are precisely the subsets of A

CHARACTERIZATION 00000

PREPARATION

▶ let $A = \{a_1, a_2, ..., a_n\}$ be a set and define $a_i =_{\mathfrak{a}} a_j$ if and only if i = j $\rightarrow \mathfrak{a} = (A, =_{\mathfrak{a}})$ is an antichain

$a_1 \bigcirc$	a2 ()	a3 ()	a4 ()
~			

$=_{\mathfrak{a}}$	a ₁	a2	a3	a ₄
a ₁	×			
a ₂		×		
a3			×	
a ₄				×

≠a	a ₁	a2	ag	a ₄
a ₁		×	×	×
a2	×		×	×
a3	×	×		×
a4	×	×	×	

thus, the extents and intents of $\neq_{\mathfrak{a}}$ are precisely the subsets of A

CHARACTERIZATION 00000

PREPARATION

▶ let $A = \{a_1, a_2, ..., a_n\}$ be a set and define $a_i =_{\mathfrak{a}} a_j$ if and only if i = j $\rightarrow \mathfrak{a} = (A, =_{\mathfrak{a}})$ is an antichain

$a_1 \bigcirc$	$a_2 \bigcirc$	a3 ()	a4 ()
· • •	- 2 0		0

$=_{\mathfrak{a}}$	a ₁	a2	a3	a ₄
a ₁	×			
a ₂		×		
a3			×	
a ₄				×

≠a	a ₁	a ₂	a ₃	a4
a ₁		×	×	X
a ₂	×		×	×
a3	×	×		×
a4	×	×	×	

thus, the extents and intents of $\neq_{\mathfrak{a}}$ are precisely the subsets of A

Motivation 00 Proper Mergings of Two Antichains

- unfortunately, we have no idea of a bijection between proper mergings of two antichains and some other mathematical objects
- but, we have an idea for a generating function approach

Motivation 00 Proper Mergings of Two Antichains CHARACTERIZATION 00000

- unfortunately, we have no idea of a bijection between proper mergings of two antichains and some other mathematical objects
- but, we have an idea for a generating function approach

- unfortunately, we have no idea of a bijection between proper mergings of two antichains and some other mathematical objects
- but, we have an idea for a generating function approach
- the Hasse diagram of a proper merging of two antichains can be considered as a bipartite graph

 every connected component of such a Hasse diagram can occur in two variations

- unfortunately, we have no idea of a bijection between proper mergings of two antichains and some other mathematical objects
- but, we have an idea for a generating function approach
- the Hasse diagram of a proper merging of two antichains can be considered as a bipartite graph

 every connected component of such a Hasse diagram can occur in two variations, unless this component is just a single node

CHARACTERIZATION

The Generating Function

- let B(x, y) denote the bivariate exponential generating function for bipartite graphs, and let $B_c(x, y)$ denote the bivariate exponential generating function for connected bipartite graphs
- we clearly have

$$B(x,y) = \sum_{n\geq 0} \sum_{m\geq 0} 2^{mn} \frac{x^m y^n}{m! \ n!}$$

 since every bipartite graph can be considered as a collection of connected bipartite graphs, we obtain

$$B(x,y) = \exp(B_c(x,y))$$

Characterization

The Generating Function

- let G(x, y) denote the bivariate exponential generating function for proper mergings of two antichains
- we obtain

$$\begin{split} \hat{B}(x,y) &= \exp(2 \cdot B_c(x,y) - x - y) \\ &= \exp(2 \cdot \log B(x,y) - x - y) \\ &= B(x,y)^2 - \exp(x) - \exp(y) \\ &= \sum 2^{n_1 n_2 + m_1 m_2} (-1)^{k_1} (-1)^{k_2} \\ &\quad \cdot \frac{x^{n_1 + m_1 + k_1}}{n_1! \ m_1! \ k_1!} \cdot \frac{y^{n_2 + m_2 + k_2}}{n_2! \ m_2! \ k_2!} \end{split}$$

CHARACTERIZATION 00000

THE ENUMERATION

the number of proper mergings of an *m*-antichain and an *n*-antichain is given by the coefficient of $\frac{x^m y^n}{m! n!}$ in G(x, y)

Theorem

The number $F_{\mathfrak{a}}(m,n)$ of proper mergings of an m-antichain and an n-antichain is given by

$$F_{\mathfrak{a}}(m,n) = \sum_{k_1+m_1+n_1=m} \binom{m}{k_1,m_1,n_1} (-1)^{k_1} (2^{m_1}+2^{n_1}-1)^n.$$

CHARACTERIZATION 00000

OUTLINE

ENUMERATION

- Proper Mergings of Two Chains
- Proper Mergings of Two Antichains
- Proper Mergings of an Antichain and a Chain

THE IDEA

- ▶ let $A = \{a_1, a_2, ..., a_m\}$ and $C = \{c_1, c_2, ..., c_n\}$ be sets, and let $\mathfrak{a} = (A, =_\mathfrak{a})$ be an *m*-antichain and $\mathfrak{c} = (C, \leq_\mathfrak{c})$ be an *n*-chain
- ▶ recall that the intents and extents of $\neq_{\mathfrak{a}}$ are just subsets of A, and the extents of $\geq_{\mathfrak{c}}$ are of the form $\{c_1, c_2, \ldots, c_k\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$

ENUMERATION

THE IDEA

- let $A = \{a_1, a_2, \dots, a_m\}$ and $C = \{c_1, c_2, \dots, c_n\}$ be sets, and let $\mathfrak{a} = (A, =_\mathfrak{a})$ be an *m*-antichain and $\mathfrak{c} = (C, \leq_\mathfrak{c})$ be an *n*-chain
- ▶ recall that the intents and extents of $\neq_{\mathfrak{a}}$ are just subsets of A, and the extents of $\geq_{\mathfrak{c}}$ are of the form $\{c_1, c_2, \ldots, c_k\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$
- if (R, T) is a merging of a and c, then R must be right-justified and T must be top-justified

The Idea

- ▶ let $A = \{a_1, a_2, ..., a_m\}$ and $C = \{c_1, c_2, ..., c_n\}$ be sets, and let $\mathfrak{a} = (A, =_\mathfrak{a})$ be an *m*-antichain and $\mathfrak{c} = (C, \leq_\mathfrak{c})$ be an *n*-chain
- ▶ recall that the intents and extents of $\neq_{\mathfrak{a}}$ are just subsets of A, and the extents of $\geq_{\mathfrak{c}}$ are of the form $\{c_1, c_2, \ldots, c_k\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$
- if (R, T) is a proper merging of \mathfrak{a} and \mathfrak{c} , then R and T must "fit together"

THE IDEA

- ▶ let $A = \{a_1, a_2, ..., a_m\}$ and $C = \{c_1, c_2, ..., c_n\}$ be sets, and let $\mathfrak{a} = (A, =_\mathfrak{a})$ be an *m*-antichain and $\mathfrak{c} = (C, \leq_\mathfrak{c})$ be an *n*-chain
- ▶ recall that the intents and extents of $\neq_{\mathfrak{a}}$ are just subsets of A, and the extents of $\geq_{\mathfrak{c}}$ are of the form $\{c_1, c_2, \ldots, c_k\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$
- if (R, T) is a proper merging of \mathfrak{a} and \mathfrak{c} , then R and T must "fit together"

Motivation Charact 00 00000

CHARACTERIZATION 00000 Enumeration

PROPER MERGINGS OF AN ANTICHAIN AND A CHAIN

THE BIJECTION

- complete bipartite digraph $\vec{K}_{m,n}$: a bipartite digraph with vertex set $V = V_1 \oplus V_2$, where $|V_1| = m$ and $|V_2| = n$, and edge set $\vec{E} = V_1 \times V_2$
- monotone coloring of a digraph: a map $\gamma: V \to \mathbb{N}$ with the property: if $(v_1, v_2) \in \vec{E}$, then $\gamma(v_1) \leq \gamma(v_2)$
- given a proper merging (R, T) of \mathfrak{a} and \mathfrak{c} , define a monotone (n+1)-coloring γ of $\vec{K}_{m,m}$ as follows:

 $\gamma(v_i) = k$ if and only if

$$\begin{cases} v_i \in V_1 & \text{and } (a_i, c_j) \in R \\ & \text{for all } n+2-k \leq j \leq n \\ v_i \in V_2 & \text{and } (c_j, a_i) \in T \\ & \text{for all } 1 \leq j \leq n+1-k \end{cases}$$

this is in fact a bijection!

Henri Mühle

Counting Proper Mergings
Motivation Charact 00 0000

Characterization

Enumeration

PROPER MERGINGS OF AN ANTICHAIN AND A CHAIN

THE BIJECTION

- complete bipartite digraph $\vec{K}_{m,n}$: a bipartite digraph with vertex set $V = V_1 \oplus V_2$, where $|V_1| = m$ and $|V_2| = n$, and edge set $\vec{E} = V_1 \times V_2$
- monotone coloring of a digraph: a map $\gamma: V \to \mathbb{N}$ with the property: if $(v_1, v_2) \in \vec{E}$, then $\gamma(v_1) \leq \gamma(v_2)$
- since a proper merging (R, T) of \mathfrak{a} and \mathfrak{c} , define a monotone (n+1)-coloring γ of $\vec{K}_{m,m}$ as follows:

L

$$\gamma(v_i) = k \quad \text{if and only if} \quad \begin{cases} v_i \in V_1 \quad \text{and } (a_i, c_j) \in R \\ & \text{for all } n+2-k \leq j \leq n \\ v_i \in V_2 \quad \text{and } (c_j, a_i) \in T \\ & \text{for all } 1 \leq i \leq n+1-k \end{cases}$$

this is in fact a bijection!

Henri Mühle

Counting Proper Mergings

Motivation Charact 00 0000 ENUMERATION

PROPER MERGINGS OF AN ANTICHAIN AND A CHAIN

THE BIJECTION

- complete bipartite digraph $\vec{K}_{m,n}$: a bipartite digraph with vertex set $V = V_1 \oplus V_2$, where $|V_1| = m$ and $|V_2| = n$, and edge set $\vec{E} = V_1 \times V_2$
- monotone coloring of a digraph: a map $\gamma: V \to \mathbb{N}$ with the property: if $(v_1, v_2) \in \vec{E}$, then $\gamma(v_1) \leq \gamma(v_2)$
- since a proper merging (R, T) of \mathfrak{a} and \mathfrak{c} , define a monotone (n+1)-coloring γ of $\vec{K}_{m,m}$ as follows:

$$\gamma(v_i) = k \quad \text{if and only if} \quad \begin{cases} v_i \in V_1 & \text{and } (a_i, c_j) \in R \\ & \text{for all } n+2-k \leq j \leq n \\ v_i \in V_2 & \text{and } (c_j, a_i) \in T \\ & \text{for all } 1 \leq j \leq n+1-k \end{cases}$$

this is in fact a bijection! HENRI MÜHLE

e Counting Proper Mergings

MOTIVATION CHARAGO 00 00000 PROPER MERGINGS OF AN ANTICHAIN AND A CHAIN PROPER MERGINGS OF AN ANTICHAIN AND A CHAI

The Enumeration

▶ the number of monotone *n*-colorings of \vec{K}_{m_1,m_2} is known

PROPOSITION (JOVOVIĆ & KILIBARDA, 2004)

Let $\eta_n(\vec{K}_{m_1,m_2})$ denote the number of monotone n-colorings of \vec{K}_{m_1,m_2} . Then,

$$\eta_n(ec{K}_{m_1,m_2}) = \sum_{k=1}^n \Bigl((n+1-k)^{m_1} - (n-k)^{m_1} \Bigr) \cdot k^{m_2} \ = \sum_{k=1}^n \Bigl((n+1-k)^{m_2} - (n-k)^{m_2} \Bigr) \cdot k^{m_1}.$$

MOTIVATION CHAR. 00 0000

CHARACTERIZATION

Enumeration 00000000000000000000

PROPER MERGINGS OF AN ANTICHAIN AND A CHAIN

THE ENUMERATION

 in view of the bijection from before, we obtain the following result

Theorem

The number $F_{\alpha}(m, n)$ of proper mergings of an m-antichain and an n-chain is given by

$$F_{\alpha}(m,n) = \eta_{n+1}(\vec{K}_{m,m})$$

= $\sum_{k=1}^{n+1} ((n+2-k)^m - (n+1-k)^m) \cdot k^m$

we need to evaluate the term " 0^{0} " as zero, in order to cover the case m = 0 correctly

Henri Mühle Counting Proper Mergings

MOTIVATION CHAR. 00 0000

Characterization 00000 ENUMERATION 0000000000000000

PROPER MERGINGS OF AN ANTICHAIN AND A CHAIN

THE ENUMERATION

 in view of the bijection from before, we obtain the following result

Theorem

The number $F_{\alpha}(m, n)$ of proper mergings of an m-antichain and an n-chain is given by

$$egin{split} \mathcal{F}_{lpha}(m,n) &= \eta_{n+1}(ec{\mathcal{K}}_{m,m}) \ &= \sum_{k=1}^{n+1} \Bigl((n+2-k)^m - (n+1-k)^m \Bigr) \cdot k^m \end{split}$$

we need to evaluate the term " 0^{0} " as zero, in order to cover the case m = 0 correctly

Thank You.

Henri Mühle Counting Proper Mergings