## Trinucleotides

## Giuseppe Pirillo

Dipartimento di matematica "Ulisse Dini"
26032013

| $U U U$ | Phe |
| :---: | :---: |
| $U U C$ | Phe |
| $U U A$ | Leu |
| $U U G$ | Leu |
| $C U U$ | Leu |
| $C U C$ | Leu |
| CUA | Leu |
| $C U G$ | Leu |
| $A U U$ | Ile |
| $A U C$ | Ile |
| $A U A$ | Ile |
| $A U G$ | Met |
| GUU | Val |
| GUC | Val |
| GUA | Val |
| GUG | Val |


| $U C U$ | Ser |
| :---: | :---: |
| $U C C$ | Ser |
| $U C A$ | Ser |
| $U C G$ | Ser |
| $C C U$ | Pro |
| $C C C$ | Pro |
| $C C A$ | Pro |
| $C C G$ | Pro |
| $A C U$ | Thr |
| $A C C$ | Thr |
| $A C A$ | Thr |
| $A C G$ | Thr |
| $G C U$ | Ala |
| $G C C$ | Ala |
| $G C A$ | Ala |
| $G C G$ | Ala |


| $U A U$ | Tyr |
| :---: | :---: |
| $U A C$ | Tyr |
| $U A A$ | STOP |
| $U A G$ | STOP |
| $C A U$ | His |
| $C A C$ | His |
| CAA | Gln |
| $C A G$ | Gln |
| $A A U$ | Asn |
| $A A C$ | Asn |
| $A A A$ | Lys |
| $A A G$ | Lys |
| $G A U$ | Asp |
| GAC | Asp |
| $G A A$ | Glu |
| $G A G$ | Glu |


| $U G U$ | Cys |
| :---: | :---: |
| UGC | Cys |
| UGA | STOP |
| UGG | Trp |
| CGU | Arg |
| CGC | Arg |
| CGA | Arg |
| CGG | Arg |
| AGU | Ser |
| AGC | Ser |
| AGA | Arg |
| AGG | Arg |
| GGU | Gly |
| GGC | Gly |
| GGA | Gly |
| GGG | Gly |

## Example

## Ibis redibis non morieris in bello

## lbis, redibis, non morieris in bello

# lbis, redibis, non morieris in bello 

Ibis, redibis non, morieris in bello

## Example

## ourteawashot

## Example

## ourteawashot

We have the following possibilities:

## Example

## ourteawashot

We have the following possibilities:

- our tea was hot


## Example

## ourteawashot

We have the following possibilities:

- our tea was hot
- o urt eaw ash ot


## Example

## ourteawashot

We have the following possibilities:

- our tea was hot
- o urt eaw ash ot
- ou rte awa sho t


## Example

## ourteawashot

We have the following possibilities:

- our tea was hot
- o urt eaw ash ot
- ou rte awa sho t


## Example

## ourteawashot

We have the following possibilities:

- our tea was hot
- o urt eaw ash ot
- ou rte awa sho t

The first one is an English statement that is meaningful and, in appropriate context, it is even true!

## Example

## ourteawashot

We have the following possibilities:

- our tea was hot
- o urt eaw ash ot
- ou rte awa sho t

The first one is an English statement that is meaningful and, in appropriate context, it is even true!
The others two seems not meaningful and the problem if they are true or not ... is not meaningful!

## Example

Similarly for the italian and mathematical sentence:

## Example

Similarly for the italian and mathematical sentence:

- DUE PIU DUE FAN TRE PIU UNO


## Example

Similarly for the italian and mathematical sentence:

- DUE PIU DUE FAN TRE PIU UNO
- D UEP IUD UEF ANT REP IUU NO


## Example

Similarly for the italian and mathematical sentence:

- DUE PIU DUE FAN TRE PIU UNO
- D UEP IUD UEF ANT REP IUU NO
- DU EPI UDU EFA NTR EPI UUN O

Roughly speaking, one can consider coding regions of DNA as "digital computer messages". where the coding words are strings of three symbols, i.e. trinucleotides. The meanings of the trinucleotides in coding regions of DNA are the coded amino acids which are sequentially assembled in order to form the proteins. It must be point out that the decoding frequency of some of these processes can attain more than 20 amino acids per second. So, as in the transmission of any digital message, a faithful and efficient protein synthesis needs a very good synchronization of the decoding process with the correct reading frame of codons. This ability is the reading frame maintenance.

## Definition

Let $A$ be a set which we call an alphabet; a word $w$ on the alphabet $A$ is a finite sequence of elements of $A$

$$
w=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad a_{i} \in A
$$

## Definition

Let $A$ be a set which we call an alphabet; a word $w$ on the alphabet $A$ is a finite sequence of elements of $A$

$$
w=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad a_{i} \in A
$$

The genetic alphabet

$$
\mathcal{A}_{4}=\{A, C, G, T\}
$$

- $\mathcal{A}_{4}^{*}$ (respectively $\mathcal{A}_{4}^{+}$) is the set of words (respectively non empty words) over $\mathcal{A}_{4}$,


## Definition

Let $A$ be a set which we call an alphabet; a word $w$ on the alphabet $A$ is a finite sequence of elements of $A$

$$
w=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad a_{i} \in A
$$

The genetic alphabet

$$
\mathcal{A}_{4}=\{A, C, G, T\}
$$

- $\mathcal{A}_{4}^{*}$ (respectively $\mathcal{A}_{4}^{+}$) is the set of words (respectively non empty words) over $\mathcal{A}_{4}$,
- $\mathcal{A}_{4}^{2}$ is the set of the 16 words of length two (or diletters)


## Definition

Let $A$ be a set which we call an alphabet; a word $w$ on the alphabet $A$ is a finite sequence of elements of $A$

$$
w=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad a_{i} \in A
$$

The genetic alphabet

$$
\mathcal{A}_{4}=\{A, C, G, T\}
$$

- $\mathcal{A}_{4}^{*}$ (respectively $\mathcal{A}_{4}^{+}$) is the set of words (respectively non empty words) over $\mathcal{A}_{4}$,
- $\mathcal{A}_{4}^{2}$ is the set of the 16 words of length two (or diletters) and
- $\mathcal{A}_{4}^{3}$ is the set of the 64 words of length three (or trinucleotides).


## Definition

The complementarity map $\mathcal{C}: \mathcal{A}_{4}^{+} \rightarrow \mathcal{A}_{4}^{+}$is defined by $\mathcal{C}(A)=T$, $\mathcal{C}(T)=A, \mathcal{C}(C)=G$ and $\mathcal{C}(G)=C$ and by $\mathcal{C}(u v)=\mathcal{C}(v) \mathcal{C}(u)$ for all $u, v \in \mathcal{A}_{4}^{+}$, e.g., $\mathcal{C}(A A C)=G T T$.

## Definition

The complementarity map $\mathcal{C}: \mathcal{A}_{4}^{+} \rightarrow \mathcal{A}_{4}^{+}$is defined by $\mathcal{C}(A)=T$, $\mathcal{C}(T)=A, \mathcal{C}(C)=G$ and $\mathcal{C}(G)=C$ and by $\mathcal{C}(u v)=\mathcal{C}(v) \mathcal{C}(u)$ for all $u, v \in \mathcal{A}_{4}^{+}$, e.g., $\mathcal{C}(A A C)=G T T$.

## Definition

The (left) circular permutation map $\mathcal{P}: \mathcal{A}_{4}^{3} \rightarrow \mathcal{A}_{4}^{3}$ permutes circularly each trinucleotide $I_{1} l_{2} l_{3}$ as follows $\mathcal{P}\left(l_{1} l_{2} l_{3}\right)=I_{2} l_{3} I_{1}$.

## Definition

Code: A set $X$ of words is a code if, for each $x_{1}, \ldots, x_{n}, x_{1}^{\prime} \ldots, x_{m}^{\prime} \in X$, $n, m \geq 1$, the condition $x_{1} \cdots x_{n}=x_{1}^{\prime} \cdots x_{m}^{\prime}$ implies $n=m$ and $x_{i}=x_{i}^{\prime}$ for $i=1, \ldots, n$.

## Definition

Code: A set $X$ of words is a code if, for each $x_{1}, \ldots, x_{n}, x_{1}^{\prime} \ldots, x_{m}^{\prime} \in X$, $n, m \geq 1$, the condition $x_{1} \cdots x_{n}=x_{1}^{\prime} \cdots x_{m}^{\prime}$ implies $n=m$ and $x_{i}=x_{i}^{\prime}$ for $i=1, \ldots, n$.

AAA<br>ATC, TCA<br>ATA, TAT<br>ACA, CAC



## Definition

A code $X$ is circular if, for each $x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{m}^{\prime} \in X, n, m \geq 1$, $p \in \mathcal{A}_{4}^{*}, s \in \mathcal{A}_{4}^{+}$, the conditions $s x_{2} \cdots x_{n} p=x_{1}^{\prime} \cdots x_{m}^{\prime}$ and $x_{1}=p s$ imply $n=m, p=\varepsilon$ (empty word) and $x_{i}=x_{i}^{\prime}$ for $i=1, \ldots, n$.

## Definition

A code $X$ is circular if, for each $x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{m}^{\prime} \in X, n, m \geq 1$, $p \in \mathcal{A}_{4}^{*}, s \in \mathcal{A}_{4}^{+}$, the conditions $s x_{2} \cdots x_{n} p=x_{1}^{\prime} \cdots x_{m}^{\prime}$ and $x_{1}=p s$ imply $n=m, p=\varepsilon$ (empty word) and $x_{i}=x_{i}^{\prime}$ for $i=1, \ldots, n$.

AAA
ATC, TCA
ATA, TAT
ACA, CAC


## Definition

A trinucleotide code $X_{0}$ is self-complementary if, for each $y \in X_{0}$, $\mathcal{C}(y) \in X_{0}$.

## Definition

A trinucleotide code $X_{0}$ is self-complementary if, for each $y \in X_{0}$, $\mathcal{C}(y) \in X_{0}$.

## Definition

If $X_{0}$ is a subset of $\mathcal{A}_{4}^{3} \backslash\{A A A, C C C, G G G, T T T\}$, we denote by $X_{1}$ the permuted trinucleotide set $\mathcal{P}\left(X_{0}\right)$ and by $X_{2}$ the permuted trinucleotide set $\mathcal{P}^{2}\left(X_{0}\right)$ and we call $X_{1}$ and $X_{2}$ the conjugated classes of $X_{0}$.

## Definition

A trinucleotide code $X_{0}$ is self-complementary if, for each $y \in X_{0}$, $\mathcal{C}(y) \in X_{0}$.

## Definition

If $X_{0}$ is a subset of $\mathcal{A}_{4}^{3} \backslash\{A A A, C C C, G G G, T T T\}$, we denote by $X_{1}$ the permuted trinucleotide set $\mathcal{P}\left(X_{0}\right)$ and by $X_{2}$ the permuted trinucleotide set $\mathcal{P}^{2}\left(X_{0}\right)$ and we call $X_{1}$ and $X_{2}$ the conjugated classes of $X_{0}$.

## Definition

A trinucleotide circular code $X_{0}$ is $C^{3}$-self-complementary if $X_{0}, X_{1}$ and $X_{2}$ are circular codes satisfying the following properties: $X_{0}=\mathcal{C}\left(X_{0}\right)$ (self-complementary), $\mathcal{C}\left(X_{1}\right)=X_{2}$ (and $\left.\mathcal{C}\left(X_{2}\right)=X_{1}\right)$.

## Combinatorial algorithms

## Definition

Letter Diletter Necklaces (LDN): We say that the ordered sequence $l_{1}, d_{1}$, $I_{2}, d_{2}, \ldots, d_{n-1}, I_{n}, d_{n}$ is an $n L D N$ for a subset $X \subset \mathcal{A}_{4}^{3}$ if $I_{1} d_{1}, I_{2} d_{2}, \ldots$, $I_{n} d_{n} \in X$ and $d_{1} l_{2}, d_{2} l_{3}, \ldots, d_{n-1} I_{n} \in X$.

## Combinatorial algorithms

## Definition

Letter Diletter Necklaces (LDN): We say that the ordered sequence $l_{1}, d_{1}$, $I_{2}, d_{2}, \ldots, d_{n-1}, I_{n}, d_{n}$ is an $n L D N$ for a subset $X \subset \mathcal{A}_{4}^{3}$ if $I_{1} d_{1}, I_{2} d_{2}, \ldots$, $I_{n} d_{n} \in X$ and $d_{1} l_{2}, d_{2} l_{3}, \ldots, d_{n-1} I_{n} \in X$.

## Definition

Letter Diletter Continued Necklaces (LDCN): We say that the ordered sequence $I_{1}, d_{1}, l_{2}, d_{2}, \ldots, d_{n-1}, I_{n}, d_{n}, I_{n+1}$ is an $(n+1) L D C N$ for a subset $X \subset \mathcal{A}_{4}^{3}$ if $I_{1} d_{1}, I_{2} d_{2}, \ldots, I_{n} d_{n} \in X$ and $d_{1} l_{2}$, $d_{2} l_{3}, \ldots, d_{n-1} I_{n}, d_{n} I_{n+1} \in X$.


## 

## Definition

Diletter Letter Necklaces (DLN): We say that the ordered sequence $d_{1}, l_{1}$, $d_{2}, l_{2}, \ldots I_{n-1}, d_{n}, I_{n}$ is an $n D L N$ for a subset $X \subset \mathcal{A}_{4}^{3}$ if $d_{1} l_{1}, d_{2} l_{2}, \ldots$, $d_{n} I_{n} \in X$ and $I_{1} d_{2}, I_{2} d_{3}, \ldots, I_{n-1} d_{n} \in X$.

## Definition

Diletter Letter Necklaces (DLN): We say that the ordered sequence $d_{1}, l_{1}$, $d_{2}, l_{2}, \ldots I_{n-1}, d_{n}, I_{n}$ is an $n D L N$ for a subset $X \subset \mathcal{A}_{4}^{3}$ if $d_{1} l_{1}, d_{2} l_{2}, \ldots$, $d_{n} I_{n} \in X$ and $I_{1} d_{2}, I_{2} d_{3}, \ldots, I_{n-1} d_{n} \in X$.

## Definition

Diletter Letter Continued Necklaces (DLCN): We say that the ordered sequence $d_{1}, l_{1}, d_{2}, l_{2}, \ldots I_{n-1}, d_{n}, I_{n}, d_{n+1}$ is an $(n+1) D L C N$ for a subset $X \subset \mathcal{A}_{4}^{3}$ if $d_{1} l_{1}, d_{2} l_{2}, \ldots, d_{n} I_{n} \in X$ and $I_{1} d_{2}$, $I_{2} d_{3}, \ldots, I_{n-1} d_{n}, I_{n} d_{n+1} \in X$.

In 1995 D. G. Arquès and C. J. Michel presented this set of trinucleotides:

$$
\begin{gathered}
X_{0}=\{A A C, A A T, A C C, A T C, A T T, C A G, C T C, C T G, G A A, G A C, \\
\\
G A G, G A T, G C C, G G C, G G T, G T A, G T C, G T T, T A C, T T C\}
\end{gathered}
$$

$X_{0}$ is a circular code with remarkable properties.
Now we show with some examples how it is important in reading frame maintenance. We consider only words of $X_{0}^{*}$ and factors of words of $X_{0}^{*}$.

## Consider the following word of length 12 AGGTAATTACCA

Consider the following word of length 12 AGGTAATTACCA and its three possible factorization $f_{0}, f_{1}$ and $f_{2}$ (denoted by dots): $f_{0}=$ AGG.TAA.TTA.CCA;

Consider the following word of length 12 AGGTAATTACCA and its three possible factorization $f_{0}, f_{1}$ and $f_{2}$ (denoted by dots): $f_{0}=$ AGG.TAA.TTA.CCA; $f_{1}=A \cdot G G T \cdot A A T . T A C . C A ;$

Consider the following word of length 12 AGGTAATTACCA and its three possible factorization $f_{0}, f_{1}$ and $f_{2}$ (denoted by dots): $f_{0}=$ AGG.TAA.TTA.CCA; $f_{1}=A \cdot G G T \cdot A A T \cdot T A C \cdot C A ;$ $f_{2}=A G . G T A \cdot A T T . A C C . A$.

Consider the following word of length 12 AGGTAATTACCA and its three possible factorization $f_{0}, f_{1}$ and $f_{2}$ (denoted by dots):
$f_{0}=$ AGG.TAA.TTA.CCA;
$f_{1}=A \cdot G G T \cdot A A T \cdot T A C . C A ;$
$f_{2}=A G . G T A . A T T . A C C . A$.
Even if one factorization, namely $f_{0}$, is incompatible with Arquès and Michel circular code, there remain two others, namely $f_{1}$ and $f_{2}$, that are compatible with Arquès and Michel circular code. So a window of length 12 is not enough to retrieve of the good reading frame.

Now, consider the following sequence of length 13 AGGTAATTACCAG

Now, consider the following sequence of length 13 AGGTAATTACCAG
and the following three factorizations of it: $g_{0}=$ AGG.TAA.TTA.CCA.G;

Now, consider the following sequence of length 13 AGGTAATTACCAG
and the following three factorizations of it:
$g_{0}=$ AGG.TAA.TTA.CCA.G; $g_{1}=A \cdot G G T \cdot A A T \cdot T A C \cdot C A G ;$

Now, consider the following sequence of length 13 AGGTAATTACCAG
and the following three factorizations of it:
$g_{0}=A G G \cdot T A A \cdot T T A \cdot C C A \cdot G ;$
$g_{1}=A \cdot G G T \cdot A A T \cdot T A C \cdot C A G ;$
$g_{2}=A G \cdot G T A \cdot A T T \cdot A C C \cdot A G$.

Now, consider the following sequence of length 13

## AGGTAATTACCAG

and the following three factorizations of it:
$g_{0}=$ AGG.TAA.TTA.CCA.G;
$g_{1}=A \cdot G G T \cdot A A T \cdot T A C \cdot C A G ;$
$g_{2}=A G \cdot G T A \cdot A T T \cdot A C C . A G$.
Only one of them, namely $g_{1}$, is compatible with Arquès and Michel circular code. So a window of length 13 is enough to retrieve of the good reading frame.
This is just an example. But in their papers Arquès and Michel proved formally this statement (namely, a window of length 13 is enough to retrieve of the good reading frame) and a proposition on necklaces confirms it.

## Definition

Trinucleotide comma-free code: A trinucleotide code $X$ is comma-free if, for each $y \in X$ and $u, v \in \mathcal{A}_{4}^{*}$ such that $u y v=x_{1} \cdots x_{n}$ with $x_{1}, \ldots, x_{n} \in X, n \geq 1$, it holds that $u, v \in X^{*}$.

## Definition

Trinucleotide comma-free code: A trinucleotide code $X$ is comma-free if, for each $y \in X$ and $u, v \in \mathcal{A}_{4}^{*}$ such that $u y v=x_{1} \cdots x_{n}$ with $x_{1}, \ldots, x_{n} \in X, n \geq 1$, it holds that $u, v \in X^{*}$.

Proposition
Let $X$ be a subset of $\mathcal{A}_{4}^{3}$. The following conditions are equivalent:
a) $X$ is a comma-free code;
b) $X$ has no $2 L D N$ and no $2 D L N$.

## Proposition

Let $X$ be a trinucleotide code. The following conditions are equivalent:
(i) $X$ is a circular code.
(ii) X has no 5 Letter Diletter Continued Necklaces.

We give here a short idea of the proof.

(a) First decomposition

(b) Second decomposition


(e) First decomposition

(f) Second decomposition

(g) First decomposition

(h) Second decomposition

In 2005 the self-complementary trinucleotide circular codes were studied and, coding with a suitable alphabet the self-complementary trinucleotide pairs, were presented in the following tables the growth function of the self-complementary trinucleotide circular codes and the complete list of all the self-complementary trinucleotide circular codes.

| 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | 334 | 2176 | 8294 | 19100 | 27264 | 24324 | 13240 | 4032 | 528 |

## Definition

Let $X$ be a trinucleotide code. For $k \in\{2,3,4,5\}$, we say that $X$ belongs to the class $C^{k L D N}$ if $X$ has no $k L D N$ and that $X$ belongs to the class $C^{k D L N}$ if $X$ has no $k D L N$. Similarly, for $k \in\{3,4,5\}$, we say that $X$ belongs to the class $C^{k L D C N}$ if $X$ has no $k L D C N$ and that $X$ belongs to the class $C^{k D L C N}$ if $X$ has no $k D L C N$.

## Definition

Let $X$ be a trinucleotide code. For $k \in\{2,3,4,5\}$, we say that $X$ belongs to the class $C^{k L D N}$ if $X$ has no $k L D N$ and that $X$ belongs to the class $C^{k D L N}$ if $X$ has no $k D L N$. Similarly, for $k \in\{3,4,5\}$, we say that $X$ belongs to the class $C^{k L D C N}$ if $X$ has no $k L D C N$ and that $X$ belongs to the class $C^{k D L C N}$ if $X$ has no $k D L C N$.

Notation
$I^{n}=C^{n L D N} \cap C^{n D L N}, I^{n} C=C^{n L D C N} \cap C^{n D L C N}, U^{n}=C^{n L D N} \cup C^{n D L N}$, $U^{n} C=C^{n L D C N} \cup C^{n D L C N}$.
C. Michel, G. Pirillo and M. Pirillo A relation between trinucleotide comma-free codes and trinucleotide circular codes Theoret. Comput. Sci., 401, 2008, 17-26.

| $C^{2 L D N}$ | $C^{3 L D C N}$ | $C^{3 L D N}$ | $C^{4 L D C N}$ | $C^{4 L D N}$ | $C^{5 L D C N}$ | $C^{5 L D N}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 96 | 96 | 96 | $64+96$ | $368+64+96$ | $368+64+96$ |
| $C^{2 D L N}$ | $C^{3 D L C N}$ | $C^{3 D L N}$ | $C^{4 D L C N}$ | $C^{4 D L N}$ | $C^{5 D L C N}$ | $C^{5 D L N}$ |
| 0 | 0 | 96 | $64+96$ | $64+96$ | $64+96$ | $368+64+96$ |
| $I^{2}$ | $I^{3} C$ | $I^{3}$ | $I^{4} C$ | $I^{4}$ | $I^{5} C$ | $I^{5}$ |
| 0 | 0 | 96 | 96 | $64+96$ | $64+96$ | $368+64+96$ |
| $U^{2}$ | $U^{3} C$ | $U^{3}$ | $U^{4} C$ | $U^{4}$ | $U^{5} C$ | $U^{5}$ |
| 0 | 96 | 96 | $64+96$ | $64+96$ | $368+64+96$ | $368+64+96$ |


| $C^{2 L D N}$ | $C^{3 L D C N}$ | $C^{3 L D N}$ | $C^{4 L D C N}$ | $C^{4 L D N}$ | $C^{5 L D C N}$ | $C^{5 L D N}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 56 | 56 | 56 | $56+56$ | $104+56+56$ | $104+56+56$ |
| $C^{2 D L N}$ | $C^{3 D L C N}$ | $C^{3 D L N}$ | $C^{4 D L C N}$ | $C^{4 D L N}$ | $C^{5 D L C N}$ | $C^{5 D L N}$ |
| 0 | 0 | 56 | $56+56$ | $56+56$ | $56+56$ | $104+56+56$ |
| $I^{2}$ | $I^{3} C$ | $I^{3}$ | $I^{4} C$ | $I^{4}$ | $I^{5} C$ | $I^{5}$ |
| 0 | 0 | 56 | 56 | $56+56$ | $56+56$ | $104+56+56$ |
| $U^{2}$ | $U^{3} C$ | $U^{3}$ | $U^{4} C$ | $U^{4}$ | $U^{5} C$ | $U^{5}$ |
| 0 | 56 | 56 | $56+56$ | $56+56$ | $104+56+56$ | $104+56+56$ |

C.J. Michel, G. Pirillo, M.A. Pirillo. A classification of 20-trinucleotide circular codes, Information and Computation, 212, 2012, 55-63.

| $C^{2 L D N}$ | $C^{3 L D C N}$ | $C^{3 L D N}$ | $C^{4 L D C N}$ | $C^{4 L D N}$ | $C^{5 L D C N}$ | $C^{5 L D N}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha_{1}$ | $\alpha_{4}$ | $\alpha_{7}$ | $\alpha_{9}$ | $\alpha_{12}$ | $\alpha_{14}$ | $\alpha_{14}$ |
| $C^{2 D L N}$ | $C^{3 D L C N}$ | $C^{3 D L N}$ | $C^{4 D L C N}$ | $C^{4 D L N}$ | $C^{5 D L C N}$ | $C^{5 D L N}$ |
| $\alpha_{1}$ | $\alpha_{5}$ | $\alpha_{7}$ | $\alpha_{10}$ | $\alpha_{12}$ | $\alpha_{13}$ | $\alpha_{14}$ |
| $I^{2}$ | $I^{3} C$ | $I^{3}$ | $I^{4} C$ | $I^{4}$ | $I^{5} C$ | $I^{5}$ |
| $\alpha_{2}$ | $\alpha_{3}$ | $\alpha_{6}$ | $\alpha_{8}$ | $\alpha_{11}$ | $\alpha_{13}$ | $\alpha_{14}$ |
| $U^{2}$ | $U^{3} C$ | $U^{3}$ | $U^{4} C$ | $U^{4}$ | $U^{5} C$ | $U^{5}$ |
| $\alpha_{3}$ | $\alpha_{6}$ | $\alpha_{8}$ | $\alpha_{11}$ | $\alpha_{13}$ | $\alpha_{14}$ | $\alpha_{14}$ |


| $C^{2 L D N}$ | $C^{3 L D C N}$ | $C^{3 L D N}$ | $C^{4 L D C N}$ | $C^{4 L D N}$ | $C^{5 L D C N}$ | $C^{5 L D N}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,584 | 294,912 | 423,552 | $5,088,264$ | $5,528,688$ | $12,964,440$ | $12,964,440$ |
| $C^{2 D L N}$ | $C^{3 D L C N}$ | $C^{3 D L N}$ | $C^{4 D L C N}$ | $C^{4 D L N}$ | $C^{5 D L C N}$ | $C^{5 D L N}$ |
| 1,584 | 4,920 | 423,552 | 578,496 | $5,528,688$ | $5,940,648$ | $12,964,440$ |
| $I^{2}$ | $I^{3} C$ | $I^{3}$ | $I^{4} C$ | $I^{4}$ | $I^{5} C$ | $I^{5}$ |
| 408 | 2,760 | 297,072 | 550,032 | $5,116,728$ | $5,940,648$ | $12,964,440$ |
| $U^{2}$ | $U^{3} C$ | $U^{3}$ | $U^{4} C$ | $U^{4}$ | $U^{5} C$ | $U^{5}$ |
| 2,760 | 297,072 | 550,032 | $5,116,728$ | $5,940,648$ | $12,964,440$ | $12,964,440$ |

In 2011 was extended a hierarchy relation already presented in 2008, the chain of inclusion that starts from trinucleotide comma-free codes and ends by trinucleotide circular codes, adding on the left side (at the beginning of the chain) two classes of codes, called DLD and LDL codes, which are stronger than the comma-free codes.

| $a=\{A A C, G T T\}$ | $b=\{A A G, C T T\}$ | $c=\{A A T, A T T\}$ | $d=\{A C A, T G T\}$ |
| :---: | :---: | :---: | :---: |
| $e=\{A C C, G G T\}$ | $f=\{A C G, C G T\}$ | $g=\{A C T, A G T\}$ | $h=\{A G A, T C T\}$ |
| $i=\{A G C, G C T\}$ | $j=\{A G G, C C T\}$ | $k=\{A T C, G A T\}$ | $l=\{A T G, C A T\}$ |
| $m=\{C A A, T T G\}$ | $n=\{C A C, G T G\}$ | $o=\{C A G, C T G\}$ | $p=\{C C A, T G G\}$ |
| $q=\{C C G, C G G\}$ | $r=\{C G A, T C G\}$ | $s=\{C T A, T A G\}$ | $t=\{C T C, G A G\}$ |
| $u=\{G A A, T T C\}$ | $v=\{G A C, G T C\}$ | $w=\{G C A, T G C\}$ | $x=\{G C C, G G C\}$ |
| $y=\{G G A, T C C\}$ | $z=\{G T A, T A C\}$ | $z^{\prime}=\{T A A, T T A\}$ | $z^{\prime \prime}=\{T C A, T G A\}$ |

## Proposition

A trinucleotide circular code $X_{0}$ having 20 elements is self-complementary if and only if $X_{1}$ and $X_{2}$ are complement of each other.

## Proposition

A trinucleotide circular code $X_{0}$ having 20 elements is self-complementary if and only if $X_{1}$ and $X_{2}$ are complement of each other.

Proposition
If a trinucleotide circular code $X_{0}$ having 20 elements is
self-complementary then
either
(i) $X_{1}$ and $X_{2}$ are both circular codes
or
(ii) $X_{1}$ and $X_{2}$ admit both a necklace (and, consequently, they are not circular codes).

## Proposition

The 528 self-complementary circular codes having 20 elements are partitioned in two classes: one contains codes with the two permuted set $X_{1}$ and $X_{2}$ that are both circular codes while the other contains codes with the two permuted set $X_{1}$ and $X_{2}$ that both are not circular codes.

## A computer calculus

Forbidden configurations.

| 2 | 44 | 64 | 153 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 4 | 66 | 24 | 846 | 936 | 7236 | $\ldots$ | $\ldots$ | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

C. Michel, G. Pirillo, A permuted set of a trinucleotide circular code coding the 20 amino acids in variant nuclear codes, Journal of Theoretical Biology, 319, 2013, 116121.

## Theorem

The following set $Y$ of 20 trinucleotides

$$
\begin{gathered}
Y=\{A C G, A C T, A G A, A G G, A G T, A T A, A T C, C A A, C A C, C A G \\
C C T, G C C, G C G, G C T, G G T, T C G, T C T, T G A, T G T, T T A\}
\end{gathered}
$$

is a circular code (maximal). More precisely, $Y$ is the $11,056,585$ th among 12, 964, 440 maximal circular codes (in the lexicographical order) of 20 trinucleotides and belongs to the classes $C^{5 L D N}=C^{5 L D C N}=C^{5 D L N}$.

## Theorem

The trinucleotide circular code $Y$ has a permuted set $\mathcal{P}^{2}(Y)$ of 20 trinucleotides

$$
\begin{gathered}
\mathcal{P}^{2}(Y)=\{A A G, A A T, A C A, A T G, A T T, C A T, C C A, C G C, G A C, G A G \\
G C A, G G C, G T C, T A C, T A G, T C C, T G C, T G G, T T C, T T G\}
\end{gathered}
$$

which codes the 20 amino acids in the variant nuclear codes 6 and 15 .

## The ennone

