The Hirsch Conjecture and its relatives (part I of III)

Francisco Santos
 http://personales.unican.es/santosf

Departamento de Matemáticas, Estadística y Computación
Universidad de Cantabria, Spain

$$
\text { SLC'70, Ellwangen } \quad \text { March 25-27, } 2013
$$

Hirsch Wars Trilogy

Slides (Seville version, March 2012):

http://personales.unican.es/santosf/Hirsch/Wars
(1) Episode I: The Phantom Conjecture. (Today)
(2) Episode II: Attack of the Prismatoids + Episode III: Revenge of the Linear Bound. (Tomorrow)
(3) Episode IV: A New Hope. (The day after)

Hirsch Wars Trilogy

Slides (Seville version, March 2012):
http://personales.unican.es/santosf/Hirsch/Wars
(1) Episode I: The Phantom Conjecture. (Today)
(2) Episode II: Attack of the Prismatoids + Episode III: Revenge of the Linear Bound. (Tomorrow)
(3) Episode IV: A New Hope. (The day after)

Hirsch Wars Trilogy

Slides (Seville version, March 2012):
http://personales.unican.es/santosf/Hirsch/Wars
(1) Episode I: The Phantom Conjecture. (Today)
(2) Episode II: Attack of the Prismatoids + Episode III: Revenge of the Linear Bound. (Tomorrow)
(3) Episode IV: A New Hope. (The day after)

Hirsch Wars Trilogy

Slides (Seville version, March 2012):
http://personales.unican.es/santosf/Hirsch/Wars
(1) Episode I: The Phantom Conjecture. (Today)
(2) Episode II: Attack of the Prismatoids + Episode III: Revenge of the Linear Bound. (Tomorrow)
(3) Episode IV: A New Hope. (The day after)

Polyhedra and polytopes

Polyhedra and polytopes

Definition

A (convex) polyhedron P is the intersection of a finite family of affine half-spaces in \mathbb{R}^{d}.

Polyhedra and polytopes

Definition

A (convex) polytope P is the convex hull of a finite set of points in \mathbb{R}^{d}.

The dimension of P is the dimension of its affine hull.

Polyhedra and polytopes

Polytope = bounded polyhedron.

Every polytope is a polyhedron, every bounded polyhedron is a polytope.

The dimension of P is the dimension of its affine hull.

Polyhedra and polytopes

Polytope = bounded polyhedron.

Every polytope is a polyhedron, every bounded polyhedron is a polytope.

The dimension of P is the dimension of its affine hull.

Faces of P

Let P be a polytope (or polyhedron) and let H be a hyperplane not cutting, but touching P.

Faces of P

Let P be a polytope (or polyhedron) and let H be a hyperplane not cutting, but touching P.

Faces of P

We say that $H \cap P$ is a face of P.

Faces of P

Faces of dimension 0 are called vertices.

Faces of P

Faces of dimension 1 are called edges.

Faces of P

Faces of dimension $d-1$ are called facets.

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite, undirected)

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite, undirected)

The distance $d(u, v)$ between vertices u and v is the length (number of edges) of the shortest path from u to v.

For example $d(u, v)=$?

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite, undirected)

The distance $d(u, v)$ between vertices u and v is the length (number of edges) of the shortest path from u to v.

For example, $d(u, v)=2$.

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite, undirected)

The diameter of $G(P)$ (or of P) is the maximum distance among its vertices:
$\operatorname{diam}(P)=\max \{d(u, v): u, v \in V\}$.

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d,

$$
\operatorname{diam}(P) \leq n-d
$$

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)

For every polytope P with n facets and dimension d,

$$
\operatorname{diam}(P) \leq n-d
$$

polytope	facets	dimension	$n-d$	diameter
cube	6	3	3	3
dodecahedron	12	3	9	5
octahedron	8	3	5	2
k-prism	$k+2$	3	$k-1$	$\lfloor k / 2\rfloor+1$
n-cube	$2 n$	n	n	n

Brief history of the conjecture

(1) It was communicated by W. M. Hirsch to G. Dantzig in 1957 (Dantzig had recently invented the simplex method for linear programming).
(2) Several special cases have been proved: $d \leq 3, n-d \leq 6$, 0/1-polytopes,
(3) But in the general case we do not even know of a polynomial bound for diam (P) in terms of n and d.
(4) In 1967, Klee and Walkup disproved the unbounded case.
(5) In 2010 I disproved the bounded case. But the construction does not produce polytopes whose diameter is more than a constant times the Hirsch bound.

Brief history of the conjecture

(1) It was communicated by W. M. Hirsch to G. Dantzig in 1957 (Dantzig had recently invented the simplex method for linear programming).
(2) Several special cases have been proved: $d \leq 3, n-d \leq 6$, 0/1-polytopes,
(3) But in the general case we do not even know of a polynomial bound for diam (P) in terms of n and d.
(4) In 1967, Klee and Walkup disproved the unbounded case.
(5) In 2010 I disproved the bounded case. But the construction does not produce polytopes whose diameter is more than a constant times the Hirsch bound.

Brief history of the conjecture

(1) It was communicated by W. M. Hirsch to G. Dantzig in 1957 (Dantzig had recently invented the simplex method for linear programming).
(2) Several special cases have been proved
(3) But in the general case we do not even know of a polynomial bound for diam (P) in terms of n and d.
(4) In 1967, Klee and Walkup disproved the unbounded case.
© In 2010 I disproved the bounded case. But the construction does not produce polytopes whose diameter is more than a constant times the Hirsch bound.

Brief history of the conjecture

(1) It was communicated by W. M. Hirsch to G. Dantzig in 1957 (Dantzig had recently invented the simplex method for linear programming).
(2) Several special cases have been proved: $d \leq 3$,
(3) But in the general case we do not even know of a polynomial bound for diam (P) in terms of n and d.
(4) In 1967, Klee and Walkup disproved the unbounded case.
© In 2010 I disproved the bounded case. But the construction does not produce polytopes whose diameter is more than a constant times the Hirsch bound.

Brief history of the conjecture

(1) It was communicated by W. M. Hirsch to G. Dantzig in 1957 (Dantzig had recently invented the simplex method for linear programming).
(2) Several special cases have been proved: $d \leq 3, n-d \leq 6$,
(8) But in the general case we do not even know of a polynomial bound for diam (P) in terms of n and d.
(4) In 1967, Klee and Walkup disproved the unbounded case.
© In 2010 I disproved the bounded case. But the construction does not produce polytopes whose diameter is more than a constant times the Hirsch bound.

Brief history of the conjecture

(1) It was communicated by W. M. Hirsch to G. Dantzig in 1957 (Dantzig had recently invented the simplex method for linear programming).
(2) Several special cases have been proved: $d \leq 3, n-d \leq 6$, 0/1-polytopes, ...
(3) But in the general case we do not even know of a polynomial bound for diam (P) in terms of n and d.
(4) In 1967, Klee and Walkup disproved the unbounded case.
(6) In 2010 I disproved the bounded case. But the construction does not produce polytopes whose diameter is more than a constant times the Hirsch bound.

Brief history of the conjecture

(1) It was communicated by W. M. Hirsch to G. Dantzig in 1957 (Dantzig had recently invented the simplex method for linear programming).
(2) Several special cases have been proved: $d \leq 3, n-d \leq 6$, 0/1-polytopes, ...
(3) But in the general case we do not even know of a polynomial bound for diam (P) in terms of n and d.
(6) In 2010 I disproved the bounded case. But the construction does not produce polytopes whose diameter is more than a constant times the Hirsch bound.

Brief history of the conjecture

(1) It was communicated by W. M. Hirsch to G. Dantzig in 1957 (Dantzig had recently invented the simplex method for linear programming).
(2) Several special cases have been proved: $d \leq 3, n-d \leq 6$, 0/1-polytopes, ...
(3) But in the general case we do not even know of a polynomial bound for diam (P) in terms of n and d.
(4) In 1967, Klee and Walkup disproved the unbounded case.
© In 2010 I disproved the bounded case. But the construction does not produce polytopes whose diameter is more than a constant times the Hirsch bound.

Brief history of the conjecture

(1) It was communicated by W. M. Hirsch to G. Dantzig in 1957 (Dantzig had recently invented the simplex method for linear programming).
(2) Several special cases have been proved: $d \leq 3, n-d \leq 6$, 0/1-polytopes, ...
(3) But in the general case we do not even know of a polynomial bound for diam (P) in terms of n and d.
(4) In 1967, Klee and Walkup disproved the unbounded case.
(6) In 2010 I disproved the bounded case.
a constant times the Hirsch bound.

Brief history of the conjecture

(1) It was communicated by W. M. Hirsch to G. Dantzig in 1957 (Dantzig had recently invented the simplex method for linear programming).
(2) Several special cases have been proved: $d \leq 3, n-d \leq 6$, 0/1-polytopes, ...
(3) But in the general case we do not even know of a polynomial bound for diam (P) in terms of n and d.
(4) In 1967, Klee and Walkup disproved the unbounded case.
(5) In 2010 I disproved the bounded case. But the construction does not produce polytopes whose diameter is more than a constant times the Hirsch bound.

Linear programming

A linear program is the problem of maximization (or minimization) of a linear functional subject to linear inequality constraints. That is:

Given

- a system $M x \leq b$ of linear inequalities $\left(b \in \mathbb{R}^{n}, M \in \mathbb{R}^{d \times n}\right)$, and
- an objective function $c^{t} \in \mathbb{R}^{d}$

Find

- $\max \left\{c^{t} \cdot x: x \in \mathbb{R}^{d}, M x \leq b\right\}$ (and a point x where the maximum is attained).

Linear programming

A linear program is the problem of maximization (or minimization) of a linear functional subject to linear inequality constraints.

Given

- a system $M x \leq b$ of linear inequalities ($b \in \mathbb{R}^{n}, M \in \mathbb{R}^{d \times n}$), and
- an objective function $c^{t} \in \mathbb{R}^{d}$

Find

- $\max \left\{c^{t} \cdot x: x \in \mathbb{R}^{d}, M x \leq b\right\}$ (and a point x where the maximum is attained).

Linear programming

A linear program is the problem of maximization (or minimization) of a linear functional subject to linear inequality constraints. That is:

Given

- a system $M x \leq b$ of linear inequalities $\left(b \in \mathbb{R}^{n}, M \in \mathbb{R}^{d \times n}\right)$, and
- an objective function $c^{t} \in \mathbb{R}^{d}$

Find

- $\max \left\{c^{t} \cdot x: x \in \mathbb{R}^{d}, M x \leq b\right\}$ (and a point x where the maximum is attained).

Linear programming

A linear program is the problem of maximization (or minimization) of a linear functional subject to linear inequality constraints. That is:

Given

- a system $M x \leq b$ of linear inequalities $\left(b \in \mathbb{R}^{n}, M \in \mathbb{R}^{d \times n}\right)$, and
- an objective function $c^{t} \in \mathbb{R}^{d}$

Find

- $\max \left\{c^{t} \cdot x: x \in \mathbb{R}^{d}, M x \leq b\right\}$ (and a point x where the
maximum is attained).

Linear programming

A linear program is the problem of maximization (or minimization) of a linear functional subject to linear inequality constraints. That is:

Given

- a system $M x \leq b$ of linear inequalities $\left(b \in \mathbb{R}^{n}, M \in \mathbb{R}^{d \times n}\right)$, and
- an objective function $c^{t} \in \mathbb{R}^{d}$

Find
$\max \left\{c^{t} \cdot x: x \in \mathbb{R}^{d}, M x \leq b\right\}$ (and a point x where the
maximum is attained).

Linear programming

A linear program is the problem of maximization (or minimization) of a linear functional subject to linear inequality constraints. That is:

Given

- a system $M x \leq b$ of linear inequalities $\left(b \in \mathbb{R}^{n}, M \in \mathbb{R}^{d \times n}\right)$, and
- an objective function $c^{t} \in \mathbb{R}^{d}$

Find

- $\max \left\{c^{t} \cdot x: x \in \mathbb{R}^{d}, M x \leq b\right\}$ (and a point x where the maximum is attained).

Linear programming

A linear program is the problem of maximization (or minimization) of a linear functional subject to linear inequality constraints. That is:

Given

- a system $M x \leq b$ of linear inequalities $\left(b \in \mathbb{R}^{n}, M \in \mathbb{R}^{d \times n}\right)$, and
- an objective function $c^{t} \in \mathbb{R}^{d}$

Find

- $\max \left\{c^{t} \cdot x: x \in \mathbb{R}^{d}, M x \leq b\right\}$ (and a point x where the maximum is attained).

A brief history of linear programming

- It was invented in the 1940's by G. Dantzig, L. Kantorovich and J. von Neumann.
- In particular, in 1947 G. Dantzig devised the simplex method: The first practical algorithm for solving linear programs (and still the one most used).
- Around 1980 two polynomial time algorithms for linear programming were proposed by Khachiyan and Karmakar (ellipsoid and interior point method).
- None of these algorithms is strongly polynomial. Finding strongly polynomial algorithms for linear programming is one of the "mathematical problems for the 21st century" proposed by S. Smale in 2000.

A brief history of linear programming

- It was invented in the 1940's by G. Dantzig, L. Kantorovich and J. von Neumann.
- In particular, in 1947 G. Dantzig devised the simplex method: The first practical algorithm for solving linear programs (and still the one most used).
- Around 1980 two polynomial time algorithms for linear programming were proposed by Khachiyan and Karmakar (ellipsoid and interior point method).
- None of these algorithms is strongly polynomial. Finding strongly polynomial algorithms for linear programming is one of the "mathematical problems for the 21st century" proposed by S. Smale in 2000.

A brief history of linear programming

- It was invented in the 1940's by G. Dantzig, L. Kantorovich and J. von Neumann.
- In particular, in 1947 G. Dantzig devised the simplex method: The first practical algorithm for solving linear programs (and still the one most used).
- Around 1980 two polynomial time algorithms for linear programming were proposed by Khachiyan and Karmakar (ellipsoid and interior point method)
- None of these algorithms is strongly polynomial. Finding strongly polynomial algorithms for linear programming is one of the "mathematical problems for the 21st century" proposed by S. Smale in 2000.

A brief history of linear programming

- It was invented in the 1940's by G. Dantzig, L. Kantorovich and J. von Neumann.
- In particular, in 1947 G. Dantzig devised the simplex method: The first practical algorithm for solving linear programs (and still the one most used).
- Around 1980 two polynomial time algorithms for linear programming were proposed by Khachiyan and Karmakar (ellipsoid and interior point method).

A brief history of linear programming

- It was invented in the 1940's by G. Dantzig, L. Kantorovich and J. von Neumann.
- In particular, in 1947 G. Dantzig devised the simplex method: The first practical algorithm for solving linear programs (and still the one most used).
- Around 1980 two polynomial time algorithms for linear programming were proposed by Khachiyan and Karmakar (ellipsoid and interior point method).
- None of these algorithms is strongly polynomial.

A brief history of linear programming

- It was invented in the 1940's by G. Dantzig, L. Kantorovich and J. von Neumann.
- In particular, in 1947 G. Dantzig devised the simplex method: The first practical algorithm for solving linear programs (and still the one most used).
- Around 1980 two polynomial time algorithms for linear programming were proposed by Khachiyan and Karmakar (ellipsoid and interior point method).
- None of these algorithms is strongly polynomial. Finding strongly polynomial algorithms for linear programming is one of the "mathematical problems for the 21st century" proposed by S. Smale in 2000.

Connection to the Hirsch conjecture

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program by starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, (the polynomial version of) the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm. A polynomial pivot rule for the simplex method would answer Smale's question in the affirmative.

Connection to the Hirsch conjecture

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program by starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, (the polynomial version of) the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm. A polynomial pivot rule for the simplex method would answer Smale's question in the affirmative.

Connection to the Hirsch conjecture

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program by starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, (the polynomial version of) the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm. A polynomial pivot rule for the simplex method would answer Smale's question in the affirmative.

Connection to the Hirsch conjecture

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program by starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, (the polynomial version of) the Hirsch
conjecture is related to the question of whether the simplex
method is a polynomial-time algorithm. A polynomial pivot
rule for the simplex method would answer Smale's
question in the affirmative.

Connection to the Hirsch conjecture

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program by starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, (the polynomial version of) the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm.
question in the affirmative.

Connection to the Hirsch conjecture

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program by starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, (the polynomial version of) the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm. A polynomial pivot rule for the simplex method would answer Smale's question in the affirmative.

Polynomial Hirsch conjecture

In this sense, more important than the standard Hirsch conjecture (which is false) is the following "polynomial version" of it:
Polynomial Hirsch Conjecture
Let $H(n, d)$ denote the maximum diameter of d-polyhedra with n facets. There is a constant k such that:

$$
H(n, d) \leq n^{k}, \quad \forall n, d .
$$

Polynomial Hirsch conjecture

In this sense, more important than the standard Hirsch conjecture (which is false) is the following "polynomial version" of it:

Polynomial Hirsch Conjecture

Let $H(n, d)$ denote the maximum diameter of d-polyhedra with n facets.

Polynomial Hirsch conjecture

In this sense, more important than the standard Hirsch conjecture (which is false) is the following "polynomial version" of it:

Polynomial Hirsch Conjecture

Let $H(n, d)$ denote the maximum diameter of d-polyhedra with n facets. There is a constant k such that:

$$
H(n, d) \leq n^{k}, \quad \forall n, d
$$

"As simple as possible"

Definition

A d-polytope/polyhedron is simple if at every vertex exactly d facets meet. (\simeq facet-defining hyperplanes are "in general position").
A d-polytope is simplicial if every facet has exactly d vertices. That is, if every proper face is a simplex. (\simeq vertices are "in general position").

Lemma (Klee 1964)
For every n and d the maximum diameter of d-polytopes
d-polyhedra with n facets is achieved at a simple one.

"As simple as possible"

Definition

A d-polytope/polyhedron is simple if at every vertex exactly d facets meet. (\simeq facet-defining hyperplanes are "in general position").
A d-polytope is simplicial if every facet has exactly d vertices. That is, if every proper face is a simplex. (\simeq vertices are "in general position").

For every n and d the maximum diameter of d-polytopes d-polyhedra with n facets is achieved at a simple one.

"As simple as possible"

Definition

A d-polytope/polyhedron is simple if at every vertex exactly d facets meet. (\simeq facet-defining hyperplanes are "in general position").
A d-polytope is simplicial if every facet has exactly d vertices. That is, if every proper face is a simplex. (\simeq vertices are "in general position").

Of course, the (polar) dual of a simple polytope is simplicial, and vice-versa.

For every n and d the maximum diameter of d-polytopes d-polyhedra with n facets is achieved at a simple one.

"As simple as possible"

Definition

A d-polytope/polyhedron is simple if at every vertex exactly d facets meet. (\simeq facet-defining hyperplanes are "in general position").
A d-polytope is simplicial if every facet has exactly d vertices. That is, if every proper face is a simplex. (\simeq vertices are "in general position").

Of course, the (polar) dual of a simple polytope is simplicial, and vice-versa.

Lemma (Klee 1964)

For every n and d the maximum diameter of d-polytopes / d-polyhedra with n facets is achieved at a simple one.

"As simple as possible"

Remark

We will often dualize the problem. We want to travel from one facet to another of a polytope Q (the polar of P) along the "dual graph", whose edges correspond to ridges of Q.

By the Klee lemma we can restrict our attention to simplicial
polytopes; their face lattices are simplicial complexes with the topology of a $(d-1)$-sphere. (Simplicial $(d-1)$-spheres).

"As simple as possible"

Remark

We will often dualize the problem. We want to travel from one facet to another of a polytope Q (the polar of P) along the "dual graph", whose edges correspond to ridges of Q.

By the Klee lemma we can restrict our attention to simplicial polytopes; their face lattices are simplicial complexes with the topology of a $(d-1)$-sphere. (Simplicial ($d-1)$-spheres).

". . . but not simpler"

Q: What is the polar of a (simple) unbounded polyhedron?

". . . but not simpler"

Q: What is the polar of a (simple) unbounded polyhedron? A: It must be a simplicial complex with the topology of a ball and with some "convexity constraint"

". . . but not simpler"

Q: What is the polar of a (simple) unbounded polyhedron?
A: It must be a simplicial complex with the topology of a ball and with some "convexity constraint"

The polar of an unbounded d-polyhedron with n facets "is" a regular triangulation of n points in \mathbb{R}^{d-1}.

The Klee-Walkup non-Hirsch (8,4)-polyhedron

Klee and Walkup proved:

Theorem (Klee-Walkup 1967)

There is a 4-dimensional unbounded polyhedron with 8 facets and diameter 5.

Let us prove the following equivalent version:

Theorem
There is a regular triangulation of 8 points in \mathbb{R}^{3} that has two tetrahedra at distance five from one another.

The Klee-Walkup non-Hirsch (8,4)-polyhedron

Klee and Walkup proved:

Theorem (Klee-Walkup 1967)

There is a 4-dimensional unbounded polyhedron with 8 facets and diameter 5 .

Let us prove the following equivalent version:

Theorem
There is a regular triangulation of 8 points in \mathbb{R}^{3} that has two tetrahedra at distance five from one another.

The Klee-Walkup non-Hirsch (8,4)-polyhedron

Klee and Walkup proved:
Theorem (Klee-Walkup 1967)
There is a 4-dimensional unbounded polyhedron with 8 facets and diameter 5 .

Let us prove the following equivalent version:

Theorem

There is a regular triangulation of 8 points in \mathbb{R}^{3} that has two tetrahedra at distance five from one another.

The Klee-Walkup non-Hirsch (8,4)-polyhedron

Proof.

This is a (Cayley Trick view of a) 3D triangulation with 8 vertices and diameter 4:

The Klee-Walkup non-Hirsch (8,4)-polyhedron

Proof.

This is a (Cayley Trick view of a) 3D triangulation with 8 vertices and diameter 4:

Three steps are needed to go from any light triangle to any dark triangle.

The Klee-Walkup non-Hirsch (8,4)-polyhedron

Proof.

This is a (Cayley Trick view of a) 3D triangulation with 8 vertices and diameter 4:

Gluing two more tetrahedra (one on top, one on bottom), we get diameter 5.

The Klee-Walkup Hirsch-sharp $(9,4)$-polytope

The counter-example to the unbounded Hirsch conjecture is equivalent to the existence of a 4 -polytope with 9 facets and with diameter 5 :

The Klee-Walkup Hirsch-sharp (9,4)-polytope

The counter-example to the unbounded Hirsch conjecture is equivalent to the existence of a 4 -polytope with 9 facets and with diameter 5 :

bounded Hirsch-sharp \Rightarrow unbounded non-Hirsch

From a bounded (9,4)-polytope we get an unbounded (8,4)-polyhedron with (at least) the same diameter by projectively sending the " 9 th facet" to infinity. ($9=n>2 d=8$ is needed)

The Klee-Walkup Hirsch-sharp (9,4)-polytope

The counter-example to the unbounded Hirsch conjecture is equivalent to the existence of a 4-polytope with 9 facets and with diameter 5 :

bounded Hirsch-sharp \Leftarrow unbounded non-Hirsch

From an unbounded (8,4)-polyhedron of diameter >4 we get a (9,4)-polytope with diameter (at least) 5 , by considering "infinity" a new facet F.

Some known cases

Hirsch conjecture holds for

- d \leq 3: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=7$ [Bremner et al. 2012].
- 0-1 polytopes [Naddef 1989]
- Flag polytopes (and flag normal simplicial complexes) [Adiprasito-Benedetti, 2013+]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997], totally unimodular [Dyer-Frieze 1994], problems with bounded minors [Bonifas et al. 2013+]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=7$ [Bremner et al. 2012].
- 0-1 polytopes [Naddef 1989]
- Flag polytopes (and flag normal simplicial complexes) [Adiprasito-Benedetti, 2013+]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997], totally unimodular [Dyer-Frieze 1994], problems with bounded minors [Bonifas et al. 2013+]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=7$ [Bremner et al. 2012].
- 0-1 polytopes [Naddef 1989]
- Flag polytopes (and flag normal simplicial complexes) [Adiprasito-Benedetti, 2013+]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997], totally unimodular [Dyer-Frieze 1994], problems with bounded minors [Bonifas et al. 2013+]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=7$ [Bremner et al. 2012].
- 0-1 polytopes [Naddef 1989]
- Flag polytopes (and flag normal simplicial complexes) [Adiprasito-Benedetti, 2013+]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997], totally unimodular [Dyer-Frieze 1994], problems with bounded minors [Bonifas et al. 2013+]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=7$ [Bremner et al. 2012].
- Flag polytopes (and flag normal simplicial complexes) [Adiprasito-Benedetti, 2013+]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997], totally unimodular [Dyer-Frieze 1994], problems with bounded minors [Bonifas et al. 2013+]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=7$ [Bremner et al. 2012].
- 0-1 polytopes [Naddef 1989]
- Flag polytopes (and flag normal simplicial complexes) [Adiprasito-Benedetti, 2013+]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997], totally unimodular [Dyer-Frieze 1994], problems with bounded minors [Bonifas et al. 2013+]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=7$ [Bremner et al. 2012].
- 0-1 polytopes [Naddef 1989]
- Flag polytopes (and flag normal simplicial complexes)
[Adiprasito-Benedetti, 2013+]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=7$ [Bremner et al. 2012].
- 0-1 polytopes [Naddef 1989]
- Flag polytopes (and flag normal simplicial complexes) [Adiprasito-Benedetti, 2013+]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997],

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=7$ [Bremner et al. 2012].
- 0-1 polytopes [Naddef 1989]
- Flag polytopes (and flag normal simplicial complexes) [Adiprasito-Benedetti, 2013+]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997], totally unimodular [Dyer-Frieze 1994],

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=7$ [Bremner et al. 2012].
- 0-1 polytopes [Naddef 1989]
- Flag polytopes (and flag normal simplicial complexes) [Adiprasito-Benedetti, 2013+]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997], totally unimodular [Dyer-Frieze 1994], problems with bounded minors [Bonifas et al. 2013+]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $n-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=7$ [Bremner et al. 2012].
- 0-1 polytopes [Naddef 1989]
- Flag polytopes (and flag normal simplicial complexes) [Adiprasito-Benedetti, 2013+]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997], totally unimodular [Dyer-Frieze 1994], problems with bounded minors [Bonifas et al. 2013+]
- ...

Polynomial bounds, under perturbation

Given a linear program with d variables and n restrictions, we consider a random perturbation of the matrix, within a parameter ϵ (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006]
The expected running time of the simplex method (with the
shadow boundary pivot rule) on the perturbed polyhedron is
polynomial in d and ϵ^{-1}, and polylogarithmic in n.

Polynomial bounds, under perturbation

Given a linear program with d variables and n restrictions, we consider a random perturbation of the matrix, within a parameter ϵ (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006]

The expected running time of the simplex method (with the shadow boundary pivot rule) on the perturbed polyhedron is polynomial in d and ϵ^{-1}, and polylogarithmic in n.

The two best general bounds

Let $H(n, d):=$ max. diameter of a d-polyhedron with n facets.

$$
\begin{aligned}
& \text { Theorem [Kalai-Kleitman 1992], "quasi-polynomial" } \\
& \qquad H(n, d) \leq n^{\log _{2} d+2}, \quad \forall n \text {, d. } \\
& \text { Theorem [Barnette 1967, Larman 1970], "linear in fixed } d \text { " } \\
& \qquad H(n, d) \leq n 2^{d-3}, \quad \forall n, d . \\
& \text { The proofs of both are surprisingly simple and valid for the dual } \\
& \text { graph of every normal, pure simplicial complex. }
\end{aligned}
$$

The two best general bounds

Let $H(n, d):=$ max. diameter of a d-polyhedron with n facets.

Theorem [Kalai-Kleitman 1992], "quasi-polynomial"

$$
H(n, d) \leq n^{\log _{2} d+2}, \quad \forall n, d .
$$

Theorem [Barnette 1967, Larman 1970], "linear in fixed d"

The proofs of both are surprisingly simple and valid for the dual graph of every normal, pure simplicial complex.

The two best general bounds

Let $H(n, d):=$ max. diameter of a d-polyhedron with n facets.

Theorem [Kalai-Kleitman 1992], "quasi-polynomial"

$$
H(n, d) \leq n^{\log _{2} d+2}, \quad \forall n, d .
$$

Theorem [Barnette 1967, Larman 1970], "linear in fixed d"

$$
H(n, d) \leq n 2^{d-3}, \quad \forall n, d .
$$

The proofs of both are surprisingly simple and valid for the dual graph of every normal, pure simplicial complex.

The two best general bounds

Let $H(n, d):=$ max. diameter of a d-polyhedron with n facets.

Theorem [Kalai-Kleitman 1992], "quasi-polynomial"

$$
H(n, d) \leq n^{\log _{2} d+2}, \quad \forall n, d
$$

Theorem [Barnette 1967, Larman 1970], "linear in fixed d"

$$
H(n, d) \leq n 2^{d-3}, \quad \forall n, d .
$$

The proofs of both are surprisingly simple and valid for the dual graph of every normal, pure simplicial complex.

Normal simplicial complexes

Definition

A pure simplicial complex is called normal if the dual graph of every link is connected. (That is, if every link is strongly connected)

The Kalai-Kleitman bound follows from the following recursion (where, now, $H(n, d)$ denotes the max. diameter among normal and pure simplicial ($d-1$)-complexes with n vertices):

Normal simplicial complexes

Definition

A pure simplicial complex is called normal if the dual graph of every link is connected. (That is, if every link is strongly connected)

The Kalai-Kleitman bound follows from the following recursion (where, now, $H(n, d)$ denotes the max. diameter among normal and pure simplicial ($d-1$)-complexes with n vertices):

$$
H(n, d) \leq 2 H(\lfloor n / 2\rfloor, d)+H(n-1, d-1)+2
$$

$H(n, d) \leq 2 H(\lfloor n / 2\rfloor, d)+H(n-1, d-1)+2$.

Proof.

Let u, v be two simplices in a normal, pure simplic. complex K.

- For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all simplices at distance at most i from u). Let V_{j} the j-neighborhood of V.
- Let i_{0} (resp. j_{0}) be the smallest value such that $U_{i_{0}}$ (resp. $V_{j_{0}}$) contains more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
\operatorname{dist}\left(u^{\prime}, v^{\prime}\right) \leq H(n-1, d-1)
$$

- So: $d(u, v) \leq \operatorname{dist}\left(u, u^{\prime}\right)+\operatorname{dist}\left(u^{\prime}, v^{\prime}\right)+\operatorname{dist}\left(v^{\prime}, v\right) \leq$

$$
\leq 2 H([n / 2], d)+H(n-1, d-1)+2
$$

$$
H(n, d) \leq 2 H(\lfloor n / 2\rfloor, d)+H(n-1, d-1)+2
$$

Proof.

Let u, v be two simplices in a normal, pure simplic. complex K.

- For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the
subcomplex consisting of all simplices at distance at most i from u).
Let V_{j} the j-neighborhood of v.
- Let i_{0} (resp. j_{0}) be the smallest value such that $U_{i_{0}}$ (resp. $V_{j_{0}}$) contains more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
\operatorname{dist}\left(u^{\prime}, v^{\prime}\right) \leq H(n-1, d-1)
$$

- So: $d(u, v) \leq \operatorname{dist}\left(u, u^{\prime}\right)+\operatorname{dist}\left(u^{\prime}, v^{\prime}\right)+\operatorname{dist}\left(v^{\prime}, v\right) \leq$

$$
\leq 2 H(\lfloor n / 2\rfloor, d)+H(n-1, d-1)+2
$$

$$
H(n, d) \leq 2 H(\lfloor n / 2\rfloor, d)+H(n-1, d-1)+2
$$

Proof.

Let u, v be two simplices in a normal, pure simplic. complex K.

- For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all simplices at distance at most i from u). Let V_{j} the j-neighborhood of v.

$$
H(n, d) \leq 2 H(\lfloor n / 2\rfloor, d)+H(n-1, d-1)+2 .
$$

Proof.

Let u, v be two simplices in a normal, pure simplic. complex K.

- For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all simplices at distance at most i from u). Let V_{j} the j-neighborhood of v.
- Let i_{0} (resp. j_{0}) be the smallest value such that $U_{i_{0}}$ (resp. $V_{j_{0}}$) contains more than half of the vertices.
and $j_{0}-1$ are at most $H(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then: $\operatorname{dist}\left(u^{\prime}, v^{\prime}\right) \leq H(n-1 . d-1)$
- So:$d(u, v)$ $\operatorname{dist}\left(u, u^{\prime}\right)$

$$
H(n, d) \leq 2 H(\lfloor n / 2\rfloor, d)+H(n-1, d-1)+2
$$

Proof.

Let u, v be two simplices in a normal, pure simplic. complex K.

- For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all simplices at distance at most i from u). Let V_{j} the j-neighborhood of v.
- Let i_{0} (resp. j_{0}) be the smallest value such that $U_{i_{0}}$ (resp. $V_{i_{0}}$) contains more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i 0}$ and $v^{\prime} \in V_{j 0}$ having a common vertex. Then:

- So:$d(u, v) \leq \operatorname{dist}\left(u, u^{\prime}\right)$

$H(n, d) \leq 2 H(\lfloor n / 2\rfloor, d)+H(n-1, d-1)+2$.

Proof.

Let u, v be two simplices in a normal, pure simplic. complex K.

- For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all simplices at distance at most i from u). Let V_{j} the j-neighborhood of v.
- Let i_{0} (resp. j_{0}) be the smallest value such that $U_{i_{0}}$ (resp. $V_{j_{0}}$) contains more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
\operatorname{dist}\left(u^{\prime}, v^{\prime}\right) \leq H(n-1, d-1)
$$

- So:

$H(n, d) \leq 2 H(\lfloor n / 2\rfloor, d)+H(n-1, d-1)+2$.

Proof.

Let u, v be two simplices in a normal, pure simplic. complex K.

- For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all simplices at distance at most i from u). Let V_{j} the j-neighborhood of v.
- Let i_{0} (resp. j_{0}) be the smallest value such that $U_{i_{0}}$ (resp. $V_{j_{0}}$) contains more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
\operatorname{dist}\left(u^{\prime}, v^{\prime}\right) \leq H(n-1, d-1)
$$

- So: $\quad d(u, v) \leq \operatorname{dist}\left(u, u^{\prime}\right)+\operatorname{dist}\left(u^{\prime}, v^{\prime}\right)+\operatorname{dist}\left(v^{\prime}, v\right) \leq$

$H(n, d) \leq 2 H(\lfloor n / 2\rfloor, d)+H(n-1, d-1)+2$.

Proof.

Let u, v be two simplices in a normal, pure simplic. complex K.

- For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all simplices at distance at most i from u). Let V_{j} the j-neighborhood of v.
- Let i_{0} (resp. j_{0}) be the smallest value such that $U_{i_{0}}$ (resp. $V_{j_{0}}$) contains more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
\operatorname{dist}\left(u^{\prime}, v^{\prime}\right) \leq H(n-1, d-1)
$$

- So: $\quad d(u, v) \leq \operatorname{dist}\left(u, u^{\prime}\right)+\operatorname{dist}\left(u^{\prime}, v^{\prime}\right)+\operatorname{dist}\left(v^{\prime}, v\right) \leq$

$$
\leq 2 H(\lfloor n / 2\rfloor, d)+H(n-1, d-1)+2
$$

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes ($n=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.
a For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.

- $H(n, d)$ is weakly monotone w.r.t. $(n-d, d)$, not to (n, d).

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes ($n=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 a^{\prime}$, there are polytopes in which the
bound is tight (products of simplices).
We call these "Hirsch-sharp" polytopes.

- For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.
- $H(n, d)$ is weakly monotone w.r.t. $(n-d, d)$, not to (n, d).

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes ($n=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$.

For every $n \leq 2 d$, there are polytopes in which the
bound is tight (products of simplices).
We call these "Hirsch-sharp" polytopes.

- For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes $(n=2 d, \delta=d)$.
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes ($n=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

- For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes ($n=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

- For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.
- $H(n, d)$ is weakly monotone w.r.t. $(n-d, d)$,

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes ($n=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

- For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.
- $H(n, d)$ is weakly monotone w.r.t. $(n-d, d)$, not to (n, d).

Wedging, a.k.a. one-point-suspension

Wedging, a.k.a. one-point-suspension

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
Assume $n=2 d$ and let u and v be two complementary vertices (no common facet) of a simple polytope:

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
Assume $n=2 d$ and let u and v be two complementary vertices (no common facet) of a simple polytope:

d-step conjecture

It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.
d-step conjecture \Leftrightarrow Hirsch for $n=2 d$.

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
Assume $n=2 d$ and let u and v be two complementary vertices (no common facet) of a simple polytope:

d-step conjecture

It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.
d-step conjecture \Leftrightarrow Hirsch for $n=2 d$.

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
More generally, given any two vertices u and v of a simple polytope P :

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
More generally, given any two vertices u and v of a simple polytope P :

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.
non-revisiting path \Rightarrow Hirsch.
d-step \Leftrightarrow non-revisiting for $n=2 d \Leftrightarrow$ Hirsch for $n=2 d$.

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
More generally, given any two vertices u and v of a simple polytope P :

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.
non-revisiting path \Rightarrow Hirsch.
d-step \Leftrightarrow non-revisiting for $n=2 d \Leftrightarrow$ Hirsch for $n=2 d$.

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
More generally, given any two vertices u and v of a simple polytope P :

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.

$$
\text { non-revisiting path } \Rightarrow \text { Hirsch. }
$$

d-step \Leftrightarrow non-revisiting for $n=2 d \Leftrightarrow$ Hirsch for $n=2 d$.

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]
Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:

$$
\leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=
$$

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets\}. The basic idea is:

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]
 Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
 Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets\}. The basic idea is:

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

- If $n<2 d$, then $H(n, d) \leq H(n-1, d-1)$ because every pair of vertices u and v lie in a common facet F,
polytope with one less dimension and (at least) one less facet (induction on n and $n-d$).

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

- If $n<2 d$, then $H(n, d) \leq H(n-1, d-1)$ because every pair of vertices u and v lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

 Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets\}. The basic idea is:

$$
\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots
$$

- If $n<2 d$, then $H(n, d) \leq H(n-1, d-1)$ because every pair of vertices u and v lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet (induction on n and $n-d$).

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$
 any facet of P and let P^{\prime} be the wedge of P over F. Then: $d_{p}\left(u^{\prime}, v^{\prime}\right) \geq d_{p}(u, v)$

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

- For every n and $d, H(n, d) \leq H(n+1, d+1)$: any facet of P and let P^{\prime} be the wedge of P over F. Then:

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

- For every n and $d, H(n, d) \leq H(n+1, d+1)$: Let F be any facet of P and let P^{\prime} be the wedge of P over F. Then:
$d_{p^{\prime}}\left(u^{\prime}, v^{\prime}\right) \geq d_{p}(u, v)$.

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

- For every n and $d, H(n, d) \leq H(n+1, d+1)$: Let F be any facet of P and let P^{\prime} be the wedge of P over F. Then:

$$
d_{P^{\prime}}\left(u^{\prime}, v^{\prime}\right) \geq d_{P}(u, v)
$$

Wedging, a.k.a. one-point-suspension

Wedging, a.k.a. one-point-suspension

Two important remarks

The d-step Theorem follows from and implies (respectively) the following:

Lemma
For every d-polytope P with n facets and diameter δ there is a $d+1$-polytope with one more facet and the same diameter δ.

Corollary
There is a function $f(k):=H(2 k, k)$ such that

Two important remarks

The d-step Theorem follows from and implies (respectively) the following:

Lemma

For every d-polytope P with n facets and diameter δ there is a $d+1$-polytope with one more facet and the same diameter δ.
\square
There is a function $f(k):=H(2 k, k)$ such that

Two important remarks

The d-step Theorem follows from and implies (respectively) the following:

Lemma

For every d-polytope P with n facets and diameter δ there is a $d+1$-polytope with one more facet and the same diameter δ.

Corollary

There is a function $f(k):=H(2 k, k)$ such that

$$
H(n, d) \leq f(n-d), \quad \forall n, d
$$

Thank you

TO BE CONTINUED

