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Hirsch Wars Trilogy

Slides (Seville version, March 2012):

http://personales.unican.es/santosf/Hirsch/Wars

1 Episode I: The Phantom Conjecture. (Today)
2 Episode II: Attack of the Prismatoids + Episode III:

Revenge of the Linear Bound. (Tomorrow)
3 Episode IV: A New Hope. (The day after)
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Polyhedra and polytopes

The dimension of P is the dimension of its affine hull.
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Polyhedra and polytopes

Definition
A (convex) polyhedron P is the intersection of a finite family of
affine half-spaces in Rd .

The dimension of P is the dimension of its affine hull.
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Polyhedra and polytopes

Definition
A (convex) polytope P is the convex hull of a finite set of points
in Rd .

The dimension of P is the dimension of its affine hull.
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Polyhedra and polytopes

Polytope = bounded polyhedron.
Every polytope is a polyhedron, every bounded polyhedron is a
polytope.

The dimension of P is the dimension of its affine hull.
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Faces of P

Let P be a polytope (or polyhedron) and let H be a hyperplane
not cutting, but touching P.
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Faces of P

We say that H ∩ P is a face of P.
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Faces of P

Faces of dimension 0 are called vertices.
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Faces of P

Faces of dimension 1 are called edges.
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Faces of P

Faces of dimension d − 1 are called facets.
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The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v .

For example, d(u, v) = 2.
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The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The diameter of G(P) (or of P) is the maximum distance among
its vertices:

diam(P) = max{d(u, v) : u, v ∈ V}.
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The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

diam(P) ≤ n − d .

polytope facets dimension n − d diameter
cube 6 3 3 3
dodecahedron 12 3 9 5
octahedron 8 3 5 2
k -prism k + 2 3 k − 1 bk/2c+ 1
n-cube 2n n n n
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Brief history of the conjecture

1 It was communicated by W. M. Hirsch to G. Dantzig in
1957 (Dantzig had recently invented the simplex method
for linear programming).

2 Several special cases have been proved: d ≤ 3, n− d ≤ 6,
0/1-polytopes, . . .

3 But in the general case we do not even know of a
polynomial bound for diam(P) in terms of n and d .

4 In 1967, Klee and Walkup disproved the unbounded case.
5 In 2010 I disproved the bounded case. But the construction

does not produce polytopes whose diameter is more than
a constant times the Hirsch bound.
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Linear programming

A linear program is the problem of maximization (or
minimization) of a linear functional subject to linear inequality
constraints. That is:

Given
a system Mx ≤ b of linear inequalities (b ∈ Rn,M ∈ Rd×n),
and
an objective function ct ∈ Rd

Find
max{ct · x : x ∈ Rd ,Mx ≤ b} (and a point x where the
maximum is attained).
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A brief history of linear programming

It was invented in the 1940’s by G. Dantzig, L. Kantorovich
and J. von Neumann.
In particular, in 1947 G. Dantzig devised the simplex
method: The first practical algorithm for solving linear
programs (and still the one most used).
Around 1980 two polynomial time algorithms for linear
programming were proposed by Khachiyan and Karmakar
(ellipsoid and interior point method).
None of these algorithms is strongly polynomial. Finding
strongly polynomial algorithms for linear programming is
one of the “mathematical problems for the 21st century"
proposed by S. Smale in 2000.
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Connection to the Hirsch conjecture

The set of feasible solutions P = {x ∈ Rd : Mx ≤ b} is a
polyhedron P with (at most) n facets and d dimensions.
The optimal solution (if it exists) is always attained at a
vertex.
The simplex method [Dantzig 1947] solves the linear
program by starting at any feasible vertex and moving
along the graph of P, in a monotone fashion, until the
optimum is attained.
In particular, (the polynomial version of) the Hirsch
conjecture is related to the question of whether the simplex
method is a polynomial-time algorithm. A polynomial pivot
rule for the simplex method would answer Smale’s
question in the affirmative.
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Polynomial Hirsch conjecture

In this sense, more important than the standard Hirsch
conjecture (which is false) is the following “polynomial version”
of it:

Polynomial Hirsch Conjecture
Let H(n,d) denote the maximum diameter of d-polyhedra with
n facets. There is a constant k such that:

H(n,d) ≤ nk , ∀n,d .
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“As simple as possible”

Definition
A d-polytope/polyhedron is simple if at every vertex exactly d
facets meet. (' facet-defining hyperplanes are “in general
position”).
A d-polytope is simplicial if every facet has exactly d vertices.
That is, if every proper face is a simplex. (' vertices are “in
general position”).

Of course, the (polar) dual of a simple polytope is simplicial,
and vice-versa.

Lemma (Klee 1964)
For every n and d the maximum diameter of d-polytopes /
d-polyhedra with n facets is achieved at a simple one.

13
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d-polyhedra with n facets is achieved at a simple one.

13
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“As simple as possible”

Remark
We will often dualize the problem. We want to travel from one
facet to another of a polytope Q (the polar of P) along the “dual
graph”, whose edges correspond to ridges of Q.

By the Klee lemma we can restrict our attention to simplicial
polytopes; their face lattices are simplicial complexes with the
topology of a (d − 1)-sphere. (Simplicial (d − 1)-spheres).
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“. . . but not simpler”

Q: What is the polar of a (simple) unbounded polyhedron?
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“. . . but not simpler”

Q: What is the polar of a (simple) unbounded polyhedron?
A: It must be a simplicial complex with the topology of a ball and
with some “convexity constraint”
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“. . . but not simpler”

Q: What is the polar of a (simple) unbounded polyhedron?
A: It must be a simplicial complex with the topology of a ball and
with some “convexity constraint”

The polar of an unbounded d-polyhedron with n facets “is” a
regular triangulation of n points in Rd−1.
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The Klee-Walkup non-Hirsch (8,4)-polyhedron

Klee and Walkup proved:

Theorem (Klee-Walkup 1967)
There is a 4-dimensional unbounded polyhedron with 8 facets
and diameter 5.

Let us prove the following equivalent version:

Theorem
There is a regular triangulation of 8 points in R3 that has two
tetrahedra at distance five from one another.

16
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The Klee-Walkup non-Hirsch (8,4)-polyhedron

Proof.
This is a (Cayley Trick view of a) 3D triangulation with 8 vertices
and diameter 4:
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g

b

a

c
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The Klee-Walkup non-Hirsch (8,4)-polyhedron

Proof.
This is a (Cayley Trick view of a) 3D triangulation with 8 vertices
and diameter 4:

d

f
e

h

g

b

a

c

Three steps are needed to go from any light triangle to any dark
triangle.
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The Klee-Walkup non-Hirsch (8,4)-polyhedron

Proof.
This is a (Cayley Trick view of a) 3D triangulation with 8 vertices
and diameter 4:

d

f
e

h

g

b

a

c

Gluing two more tetrahedra (one on top, one on bottom), we get
diameter 5.

17



The Hirsch Conjecture Motivation: LP 1967: A 1st counter-example Cases and bounds The d-step Theorem

The Klee-Walkup Hirsch-sharp (9,4)-polytope

The counter-example to the unbounded Hirsch conjecture is
equivalent to the existence of a 4-polytope with 9 facets and
with diameter 5:

18
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The Klee-Walkup Hirsch-sharp (9,4)-polytope

The counter-example to the unbounded Hirsch conjecture is
equivalent to the existence of a 4-polytope with 9 facets and
with diameter 5:

bounded Hirsch-sharp ⇒ unbounded non-Hirsch
From a bounded (9,4)-polytope we get an unbounded
(8,4)-polyhedron with (at least) the same diameter by projectively
sending the “9th facet” to infinity. (9 = n > 2d = 8 is needed)

F

u
v

u’
v’

π

18



The Hirsch Conjecture Motivation: LP 1967: A 1st counter-example Cases and bounds The d-step Theorem

The Klee-Walkup Hirsch-sharp (9,4)-polytope

The counter-example to the unbounded Hirsch conjecture is
equivalent to the existence of a 4-polytope with 9 facets and
with diameter 5:

bounded Hirsch-sharp ⇐ unbounded non-Hirsch
From an unbounded (8,4)-polyhedron of diameter > 4 we get a
(9,4)-polytope with diameter (at least) 5, by considering
“infinity” a new facet F .

F

u
v

u’
v’

π
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Some known cases

Hirsch conjecture holds for
d ≤ 3: [Klee 1966].
n − d ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = H(12,5) = 7 [Bremner et al. 2012].
0-1 polytopes [Naddef 1989]
Flag polytopes (and flag normal simplicial complexes)
[Adiprasito-Benedetti, 2013+]
Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997], totally unimodular [Dyer-Frieze 1994],
problems with bounded minors [Bonifas et al. 2013+]
. . .
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The Hirsch Conjecture Motivation: LP 1967: A 1st counter-example Cases and bounds The d-step Theorem

Polynomial bounds, under perturbation

Given a linear program with d variables and n restrictions, we
consider a random perturbation of the matrix, within a
parameter ε (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006]
The expected running time of the simplex method (with the
shadow boundary pivot rule) on the perturbed polyhedron is
polynomial in d and ε−1, and polylogarithmic in n.

20
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The Hirsch Conjecture Motivation: LP 1967: A 1st counter-example Cases and bounds The d-step Theorem

The two best general bounds

Let H(n,d) := max. diameter of a d-polyhedron with n facets.

Theorem [Kalai-Kleitman 1992], “quasi-polynomial”

H(n,d) ≤ nlog2 d+2, ∀n,d .

Theorem [Barnette 1967, Larman 1970], “linear in fixed d”

H(n,d) ≤ n2d−3, ∀n,d .

The proofs of both are surprisingly simple and valid for the dual
graph of every normal, pure simplicial complex.
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Normal simplicial complexes

Definition
A pure simplicial complex is called normal if the dual graph of
every link is connected. (That is, if every link is strongly
connected)

The Kalai-Kleitman bound follows from the following recursion
(where, now, H(n, d) denotes the max. diameter among normal and pure
simplicial (d − 1)-complexes with n vertices):

H(n,d) ≤ 2H(bn/2c,d) + H(n − 1,d − 1) + 2.
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H(n, d) ≤ 2H(bn/2c, d) + H(n − 1, d − 1) + 2.

Proof.
Let u, v be two simplices in a normal, pure simplic. complex K .

For each i ∈ N, let Ui be the i-neighborhood of u (the
subcomplex consisting of all simplices at distance at most i from u).
Let Vj the j-neighborhood of v .
Let i0 (resp. j0) be the smallest value such that Ui0 (resp. Vj0 )
contains more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most H(bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

dist(u′, v ′) ≤ H(n − 1,d − 1).

So: d(u, v) ≤ dist(u,u′) + dist(u′, v ′) + dist(v ′, v) ≤

≤ 2H(bn/2c,d) + H(n − 1,d − 1) + 2.
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subcomplex consisting of all simplices at distance at most i from u).
Let Vj the j-neighborhood of v .
Let i0 (resp. j0) be the smallest value such that Ui0 (resp. Vj0 )
contains more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most H(bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

dist(u′, v ′) ≤ H(n − 1,d − 1).

So: d(u, v) ≤ dist(u,u′) + dist(u′, v ′) + dist(v ′, v) ≤

≤ 2H(bn/2c,d) + H(n − 1,d − 1) + 2.

23



The Hirsch Conjecture Motivation: LP 1967: A 1st counter-example Cases and bounds The d-step Theorem

H(n, d) ≤ 2H(bn/2c, d) + H(n − 1, d − 1) + 2.

Proof.
Let u, v be two simplices in a normal, pure simplic. complex K .

For each i ∈ N, let Ui be the i-neighborhood of u (the
subcomplex consisting of all simplices at distance at most i from u).
Let Vj the j-neighborhood of v .
Let i0 (resp. j0) be the smallest value such that Ui0 (resp. Vj0 )
contains more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most H(bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

dist(u′, v ′) ≤ H(n − 1,d − 1).

So: d(u, v) ≤ dist(u,u′) + dist(u′, v ′) + dist(v ′, v) ≤

≤ 2H(bn/2c,d) + H(n − 1,d − 1) + 2.

23



The Hirsch Conjecture Motivation: LP 1967: A 1st counter-example Cases and bounds The d-step Theorem

Why is n − d a “reasonable” bound?

It holds with equality in simplices (n = d + 1, δ = 1) and
cubes (n = 2d , δ = d).
If P and Q satisfy it, then so does P ×Q: δ(P ×Q) =
δ(P) + δ(Q). In particular:

For every n ≤ 2d , there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.

For every n > d , it is easy to construct unbounded
polyhedra where the bound is tight.
H(n,d) is weakly monotone w.r.t. (n − d ,d), not to (n,d).
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Wedging, a.k.a. one-point-suspension

P’

P

F f
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Wedging, a.k.a. one-point-suspension

v

d(u’, v’)=2

d(u, v)=2

u

F f
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u’

v’
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Why is n − d a “reasonable” bound?

Hirsch conjecture has the following interpretations:
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Assume n = 2d and let u and v be two complementary vertices
(no common facet) of a simple polytope:

26



The Hirsch Conjecture Motivation: LP 1967: A 1st counter-example Cases and bounds The d-step Theorem

Why is n − d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

Assume n = 2d and let u and v be two complementary vertices
(no common facet) of a simple polytope:

d-step conjecture
It is possible to go from u to v so that at each step we abandon
a facet containing u and we enter a facet containing v .

d-step conjecture⇔ Hirsch for n = 2d .
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Why is n − d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a simple poly-
tope P:

non-revisiting path conjecture
It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.

non-revisiting path⇒ Hirsch.

d-step⇔ non-revisiting for n = 2d ⇔ Hirsch for n = 2d .
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Why is n − d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2k − 1, k − 1) ≤ H(2k , k) = H(2k + 1, k + 1) = · · ·
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Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2k − 1, k − 1) ≤ H(2k , k) = H(2k + 1, k + 1) = · · ·

If n < 2d , then H(n,d) ≤ H(n − 1,d − 1) because every
pair of vertices u and v lie in a common facet F , which is a
polytope with one less dimension and (at least) one less
facet (induction on n and n − d).
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· · · ≤ H(2k − 1, k − 1) ≤ H(2k , k) = H(2k + 1, k + 1) = · · ·

For every n and d , H(n,d) ≤ H(n + 1,d + 1): Let F be
any facet of P and let P ′ be the wedge of P over F . Then:

dP′(u′, v ′) ≥ dP(u, v).
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Wedging, a.k.a. one-point-suspension

P’
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Wedging, a.k.a. one-point-suspension
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Two important remarks

The d-step Theorem follows from and implies (respectively) the
following:

Lemma
For every d-polytope P with n facets and diameter δ there is a
d + 1-polytope with one more facet and the same diameter δ.

Corollary
There is a function f (k) := H(2k , k) such that

H(n,d) ≤ f (n − d), ∀n,d .
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Thank you

T O B E C O N T I N U E D
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