The Hirsch Conjecture and its relatives (part II of III)

Francisco Santos
 http://personales.unican.es/santosf

Departamento de Matemáticas, Estadística y Computación
Universidad de Cantabria, Spain

$$
\text { SLC’70, Ellwangen } \quad \text { March 25-27, } 2013
$$

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes ($n=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 a^{\prime}$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.
a For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.

- $H(n, d)$ is weakly monotone w.r.t. $(n-d, d)$, not to (n, d).

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes ($n=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 a^{\prime}$, there are polytopes in which the
bound is tight (products of simplices).
We call these "Hirsch-sharp" polytopes.
a For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.

- $H(n, d)$ is weakly monotone w.r.t. $(n-d, d)$, not to (n, d).

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes ($n=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$.

For every $n \leq 2 d$, there are polytopes in which the
bound is tight (products of simplices).
We call these "Hirsch-sharp" polytopes.

- For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.
- $H(n, d)$ is weakly monotone w.r.t. $(n-d, d)$, not to (n, d).

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes $(n=2 d, \delta=d)$.
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes $(n=2 d, \delta=d)$.
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

- For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes ($n=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

- For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.
- $H(n, d)$ is weakly monotone w.r.t. $(n-d, d)$,

Why is $n-d$ a "reasonable" bound?

- It holds with equality in simplices $(n=d+1, \delta=1)$ and cubes $(n=2 d, \delta=d)$.
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $n \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

- For every $n>d$, it is easy to construct unbounded polyhedra where the bound is tight.
- $H(n, d)$ is weakly monotone w.r.t. $(n-d, d)$, not to (n, d).

Wedging, a.k.a. one-point-suspension

Wedging, a.k.a. one-point-suspension

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
Assume $n=2 d$ and let u and v be two complementary vertices (no common facet) of a simple polytope:

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
Assume $n=2 d$ and let u and v be two complementary vertices (no common facet) of a simple polytope:

d-step conjecture

It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.
d-step conjecture \Leftrightarrow Hirsch for $n=2 d$.

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
Assume $n=2 d$ and let u and v be two complementary vertices (no common facet) of a simple polytope:

d-step conjecture

It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.
d-step conjecture \Leftrightarrow Hirsch for $n=2 d$.

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
More generally, given any two vertices u and v of a simple polytope P :

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
More generally, given any two vertices u and v of a simple polytope P :

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.
non-revisiting path \Rightarrow Hirsch.
d-step \Leftrightarrow non-revisiting for $n=2 d \Leftrightarrow$ Hirsch for $n=2 d$.

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
More generally, given any two vertices u and v of a simple polytope P :

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.
non-revisiting path \Rightarrow Hirsch.
d-step \Leftrightarrow non-revisiting for $n=2 d \Leftrightarrow$ Hirsch for $n=2 d$.

Why is $n-d$ a "reasonable" bound?

Hirsch conjecture has the following interpretations:
More generally, given any two vertices u and v of a simple polytope P :

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.

$$
\text { non-revisiting path } \Rightarrow \text { Hirsch. }
$$

d-step \Leftrightarrow non-revisiting for $n=2 d \Leftrightarrow$ Hirsch for $n=2 d$.

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

$$
\text { Hirsch } \Leftrightarrow d \text {-step } \Leftrightarrow \text { non-revisiting path. }
$$

Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets\}. The basic idea is:

$$
\leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=
$$

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]
 Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
 Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]
 Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
 Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets\}. The basic idea is:

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

- If $n<2 d$, then $H(n, d) \leq H(n-1, d-1)$ because every pair of vertices u and v lie in a common facet F,
polytope with one less dimension and (at least) one less facet (induction on n and $n-d$).

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

- If $n<2 d$, then $H(n, d) \leq H(n-1, d-1)$ because every pair of vertices u and v lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

- If $n<2 d$, then $H(n, d) \leq H(n-1, d-1)$ because every pair of vertices u and v lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet (induction on n and $n-d$).

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

- For every n and $d, H(n, d) \leq H(n+1, d+1)$: any facet of P and let P^{\prime} be the wedge of P over F. Then:

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

- For every n and $d, H(n, d) \leq H(n+1, d+1)$: Let F be any facet of P and let P^{\prime} be the wedge of P over F. Then:
$d_{p^{\prime}}\left(u^{\prime}, v^{\prime}\right) \geq d_{p}(u, v)$.

Why is $n-d$ a "reasonable" bound?

Theorem [Klee-Walkup 1967]

Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting path.
Proof: Let $H(n, d)=\max \{\delta(P): P$ is a d-polytope with n facets $\}$. The basic idea is:
$\cdots \leq H(2 k-1, k-1) \leq H(2 k, k)=H(2 k+1, k+1)=\cdots$

- For every n and $d, H(n, d) \leq H(n+1, d+1)$: Let F be any facet of P and let P^{\prime} be the wedge of P over F. Then:

$$
d_{P^{\prime}}\left(u^{\prime}, v^{\prime}\right) \geq d_{P}(u, v)
$$

Wedging, a.k.a. one-point-suspension

Wedging, a.k.a. one-point-suspension

Two important remarks

The d-step Theorem follows from and implies (respectively) the following:

Lemma
For every d-polytope P with n facets and diameter δ there is a $d+1$-polytope with one more facet and the same diameter δ.

Corollary
There is a function $f(k):=H(2 k, k)$ such that

$$
H(n, d) \leq f(n-d),
$$

Two important remarks

The d-step Theorem follows from and implies (respectively) the following:

Lemma

For every d-polytope P with n facets and diameter δ there is a $d+1$-polytope with one more facet and the same diameter δ.
\square
There is a function $f(k):=H(2 k, k)$ such that

Two important remarks

The d-step Theorem follows from and implies (respectively) the following:

Lemma

For every d-polytope P with n facets and diameter δ there is a $d+1$-polytope with one more facet and the same diameter δ.

Corollary

There is a function $f(k):=H(2 k, k)$ such that

$$
H(n, d) \leq f(n-d), \quad \forall n, d
$$

Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture has two ingredients:
(1) A strong d-step theorem for spindles/prismatoids.
(2) The construction of a prismatoid of dimension 5 and "width" 6.

Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture has two ingredients:
(1) A strong d-step theorem for spindles/prismatoids.
(2) The construction of a prismatoid of dimension 5 and "width" 6.

Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture has two ingredients:
(1) A strong d-step theorem for spindles/prismatoids.
(2) The construction of a prismatoid of dimension 5 and "width" 6.

Spindles

Definition

A spindle is a polytope P with two distinguished vertices u and v such that every facet contains either u or v (but not both).

Definition
The lenath of a
spindle is the
graph distance from u to v.

Exercise
3-snindles have
length ≤ 3.

Spindles

Definition

A spindle is a polytope P with two distinguished vertices u and v such that every facet contains either u or v (but not both).

Definition
The length of a spindle is the graph distance from u to v.

Exercise
3-snindles have
length ≤ 3.

Spindles

Definition

A spindle is a polytope P with two distinguished vertices u and v such that every facet contains either u or v (but not both).

Definition

The length of a spindle is the graph distance from u to v.

Exercise

3-spindles have length ≤ 3.

Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with $n>2 d$ facets and length λ. Then there is another spindle P^{\prime} of dimension $d+1$, with $n+1$ facets and length $\lambda+1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until $n=2 d$.

Corollary
In particular, if a spindle P has length $>d$ then there is another
spindle P^{\prime} (of dimension $n-d$, with $2 n-2 d$ facets, and length $\geq \lambda+n-2 d>n-d)$ that violates the Hirsch conjecture.

Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with $n>2 d$ facets and length λ. Then there is another spindle P^{\prime} of dimension $d+1$, with $n+1$ facets and length $\lambda+1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until $n=2 d$.

In particular, if a spindle P has length $>d$ then there is another spindle P^{\prime} (of dimension $n-d$, with $2 n-2 d$ facets, and length $n-2 d>n-d)$ that violates the Hirsch conjecture.

Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with $n>2 d$ facets and length λ. Then there is another spindle P^{\prime} of dimension $d+1$, with $n+1$ facets and length $\lambda+1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until $n=2 d$.

Corollary

In particular, if a spindle P has length $>d$ then there is another spindle P^{\prime} (of dimension $n-d$, with $2 n-2 d$ facets, and length $\geq \lambda+n-2 d>n-d)$ that violates the Hirsch conjecture.

Prismatoids

Definition

A prismatoid is a polytope Q with two (parallel) facets Q^{+}and Q^{-}containing all vertices.

Definition
The width of a
prismatoid is the dual-graph distance from Q io Q

Exercise
3-prismatoids have width ≤ 3.

Prismatoids

Definition

A prismatoid is a polytope Q with two (parallel) facets Q^{+}and Q^{-}containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^{+} to Q^{-}.

Exercise
3-prismatoids have width

Prismatoids

Definition

A prismatoid is a polytope Q with two (parallel) facets Q^{+}and Q^{-}containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^{+} to Q^{-}.

Exercise

3-prismatoids have width ≤ 3.

Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with $n>2 d$ vertices and width δ. Then there is another prismatoid Q^{\prime} of dimension $d+1$, with $n+1$ vertices and width $\delta+1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until $n=2 d$.

Corollary
In particular, if a prismatoid Q has width $>d$ then there is another prismatoid Q^{\prime} (of dimension $n-d$, with $2 n-2 d$ vertices, and width $\geq \delta+n-2 d>n-d$) that violates (the dual of) the Hirsch conjecture.

Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with $n>2 d$ vertices and width δ. Then there is another prismatoid Q^{\prime} of dimension $d+1$, with $n+1$ vertices and width $\delta+1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until $n=2 d$.

In particular, if a prismatoid Q has width $>d$ then there is another prismatoid Q^{\prime} (of dimension $n-d$, with $2 n-2 d$ vertices, and width $\geq \delta+n-2 d>n-d$) that violates (the dual of) the Hirsch conjecture.

Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with $n>2 d$ vertices and width δ. Then there is another prismatoid Q^{\prime} of dimension $d+1$, with $n+1$ vertices and width $\delta+1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until $n=2 d$.

Corollary

In particular, if a prismatoid Q has width $>d$ then there is another prismatoid Q^{\prime} (of dimension $n-d$, with $2 n-2 d$ vertices, and width $\geq \delta+n-2 d>n-d$) that violates (the dual of) the Hirsch conjecture.

d-step theorem for prismatoids

Proof.

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number
of vertices and facets is irrelevant...

Question
Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2012] with 25 vertices [Matschke-S.-Weibel 2013+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2013+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

```
Question
Do they exist?
    - 3-prismatoids have width at most 3 (exercise).
    - 4-prismatoids have width at most 4 [S.-Stephen-"Thomas,
        2011].
    - 5-prismatoids of width }6\mathrm{ exist [S., 2012] with }25\mathrm{ vertices
    [Matschke-S.-Weibel 2013+].
    - 5-prismatoids of arbitrarily large width exist
    [Matschke-S.-Weibel 2013+].
```


Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2012] with 25 vertices [Matschke-S.-Weibel 2013+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2013+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2012] with 25 vertices [Matschke-S.-Weibel 2013+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2013+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2012] with 25 vertices [Matschke-S.-Weibel 2013+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2013+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2012] with 25 vertices
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2013+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2012] with 25 vertices [Matschke-S.-Weibel 2013+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2012] with 25 vertices [Matschke-S.-Weibel 2013+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2013+].

Tricks of the trade

OK,... how do you contruct / visualize / think of a 5-dimensional prismatoid???

Tricks of the trade

OK,... how do you contruct / visualize / think of a 5-dimensional prismatoid???

- Option 1: If you are a super-hero, use your X-ray 5-D vision super-powers.
- Option 2: If you are a Jedi knight, use the force.

Tricks of the trade

OK,... how do you contruct / visualize / think of a 5-dimensional prismatoid???

- Option 1: If you are a super-hero, use your X-ray 5-D vision super-powers.
- Option 2: If you are a Jedi knight, use the force.
- Option 3: If you are a human, use your math

Tricks of the trade

OK,... how do you contruct / visualize / think of a 5-dimensional prismatoid???

- Option 1: If you are a super-hero, use your X-ray 5-D vision super-powers.
- Option 2: If you are a Jedi knight, use the force.
- Option 3: If you are a human, use your math
and find a

Tricks of the trade

OK,... how do you contruct / visualize / think of a 5-dimensional prismatoid???

- Option 1: If you are a super-hero, use your X-ray 5-D vision super-powers.
- Option 2: If you are a Jedi knight, use the force.
- Option 3: If you are a human, use your math. . . and find a way to reduce the dimension of your object.

Combinatorics of prismatoids

Analyzing the combinatorics of a d-prismatoid Q can be done via an intermediate slice ...

Combinatorics of prismatoids

\ldots which equals the Minkowski sum $Q^{+}+Q^{-}$of the two bases Q^{+}and Q^{-}.

Combinatorics of prismatoids

... which equals the Minkowski sum $Q^{+}+Q^{-}$of the two bases Q^{+}and Q^{-}. The normal fan of $Q^{+}+Q^{-}$equals the "superposition" of those of Q^{+}and Q^{-}.

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^{+}and Q^{-}.

Remark
The normal fan of a d - 1 -polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d - 2-sphere

```
Theorem
I et O be ad-prismatoid with bases Q+ and Q- and let G and
G- be the corresponding maps in the (d - 2)-sphere (central
projection of the normal fans of Q+ and Q-}). Then, the width of Q
equals 2 plus the minimum number of steps needed to go from
a vertex of G+ to a vertex of G- in (the graph of) the
superposition of the two maps.
```


Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^{+}and Q^{-}.

Remark

The normal fan of a d - 1 -polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d-2-sphere.

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^{+}and Q^{-}.

Remark

The normal fan of a d-1-polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d - 2-sphere.

Theorem

Let Q be a d-prismatoid with bases Q^{+}and Q^{-}and let G^{+}and G^{-}be the corresponding maps in the $(d-2)$-sphere (central projection of the normal fans of Q^{+}and Q^{-}).

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^{+}and Q^{-}.

Remark

The normal fan of a d-1-polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d-2-sphere.

Theorem

Let Q be a d-prismatoid with bases Q^{+}and Q^{-}and let G^{+}and G^{-}be the corresponding maps in the $(d-2)$-sphere (central projection of the normal fans of Q^{+}and Q^{-}). Then, the width of Q equals 2 plus the minimum number of steps needed to go from a vertex of G^{+}to a vertex of G^{-}in (the graph of) the superposition of the two maps.

Example: a 3-prismatoid

Example: (part of) a 4-prismatoid

$$
\text { 4-prismatoid of width }>4
$$

pair of (geodesic, polytopal) maps in S^{2} so that two steps do not let you go from a blue vertex to a red vertex

Example: (part of) a 4-prismatoid

4-prismatoid of width >4
§
pair of (geodesic, polytopal) maps in S^{2} so that two steps do not let you go from a blue vertex to a red vertex.

Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch conjecture:

Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4-polyhedron with 8 facets and diameter 5 .

Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch conjecture:

Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4-polyhedron with 8 facets and diameter 5 .

Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch conjecture:

Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4-polyhedron with 8 facets and diameter 5.

The Klee-Walkup polytope is an "unbounded 4-spindle".

Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch conjecture:

Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4-polyhedron with 8 facets and diameter 5 .

The Klee-Walkup polytope is an "unbounded 4-spindle".
What is the corresponding "transversal pair of (geodesic, polytopal) maps"?

Example: The Klee-Walkup (unbounded) 4-spindle

4-prismatoids have width ≤ 4

"Non-Hirsch" 4-prismatoids do not exist:
Theorem (S.-Stephen-Thomas, 2011)
In every transversal pair of maps in the sphere there is a path of length two from some blue vertex to some red vertex.

That is to say:
Corollary (S.-Stephen-Thomas, 2011)
Every prismatoid of dimension 4 has width (at most) four.

4-prismatoids have width ≤ 4

"Non-Hirsch" 4-prismatoids do not exist:
Theorem (S.-Stephen-Thomas, 2011)
In every transversal pair of maps in the sphere there is a path of length two from some blue vertex to some red vertex.

That is to say:

Corollary (S.-Stephen-Thomas, 2011)
Everv prismatoid of dimension 4 has width (at most) four.

4-prismatoids have width ≤ 4

"Non-Hirsch" 4-prismatoids do not exist:
Theorem (S.-Stephen-Thomas, 2011)
In every transversal pair of maps in the sphere there is a path of length two from some blue vertex to some red vertex.

That is to say:

Corollary (S.-Stephen-Thomas, 2011)
Every prismatoid of dimension 4 has width (at most) four:

4-prismatoids have width ≤ 4

"Non-Hirsch" 4-prismatoids do not exist:
Theorem (S.-Stephen-Thomas, 2011)
In every transversal pair of maps in the sphere there is a path of length two from some blue vertex to some red vertex.

That is to say:
Corollary (S.-Stephen-Thomas, 2011)
Every prismatoid of dimension 4 has width (at most) four.

A 4-dimensional prismatoid of width >4 ?

However, we can construct them if we are happy with (infinite, periodic) maps in the plane ...

A 4-dimensional prismatoid of width >4 ?

However, we can construct them if we are happy with (infinite, periodic) maps in the plane ...

A 4-dimensional prismatoid of width >4 ?

However, we can construct them if we are happy with (infinite, periodic) maps in the plane ...

A 4-dimensional prismatoid of width >4 ?

However, we can construct them if we are happy with (infinite, periodic) maps in the plane ...

A 4-dimensional prismatoid of width >4 ?

However, we can construct them if we are happy with (infinite, periodic) maps in the plane ...

A 4-dimensional prismatoid of width >4 ?

However, we can construct them if we are happy with (infinite, periodic) maps in the plane ...

... or with finite ones in the torus!

5-prismatoids of width >5

To construct 5-dimensional prismatoids we should look at "pairs of maps" in the 3-sphere.

That is, we want a pair of (geodesic, polytopal) cell decompositions of the 3-sphere such that if we draw them one on top of the other (common refinement) there is no path of length ≤ 3 from a blue vertex to a red vertex.

Main idea: If non-Hirsch pairs of maps exist in the torus we should have "room enough" to construct it in the 3-sphere as well

5-prismatoids of width >5

To construct 5-dimensional prismatoids we should look at "pairs of maps" in the 3-sphere.

That is, we want a pair of (geodesic, polytopal) cell decompositions of the 3-sphere such that if we draw them one on top of the other (common refinement) there is no path of length ≤ 3 from a blue vertex to a red vertex.

Main idea: If non-Hirsch pairs of maps exist in the torus we should have "room enough" to construct it in the 3-sphere as well

5-prismatoids of width >5

To construct 5-dimensional prismatoids we should look at "pairs of maps" in the 3-sphere.

That is, we want a pair of (geodesic, polytopal) cell decompositions of the 3-sphere such that if we draw them one on top of the other (common refinement) there is no path of length ≤ 3 from a blue vertex to a red vertex.

Main idea: If non-Hirsch pairs of maps exist in the torus we should have "room enough" to construct it in the 3-sphere as well...

A 5-prismatoid of width >5

A 5 -prismatoid of width >5

Theorem (S. 2012)
The following prismatoid Q, of dimension 5 and with 48 vertices, has width six.

A 5-prismatoid of width >5

Theorem (S. 2012)

The following prismatoid Q, of dimension 5 and with 48 vertices, has width six.

A 5-prismatoid of width >5

Theorem (S. 2012)

The following prismatoid Q, of dimension 5 and with 48 vertices, has width six.

$$
\left.Q:=\mathrm{conv}\left\{\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\pm 18 & 0 & 0 & 0 & 1 \\
0 & \pm 18 & 0 & 0 & 1 \\
0 & 0 & \pm 45 & 0 & 1 \\
0 & 0 & 0 & \pm 45 & 1 \\
\pm 15 & \pm 15 & 0 & 0 & 1 \\
0 & 0 & \pm 30 & \pm 30 & 1 \\
0 & \pm 10 & \pm 40 & 0 & 1 \\
\pm 10 & 0 & 0 & \pm 40 & 1
\end{array}\right) \quad\left[\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
0 & 0 & 0 & \pm 18 & -1 \\
0 & 0 & \pm 18 & 0 & -1 \\
\pm 45 & 0 & 0 & 0 & -1 \\
0 & \pm 45 & 0 & 0 & -1 \\
0 & 0 & \pm 15 & \pm 15 & -1 \\
\pm 30 & \pm 30 & 0 & 0 & -1 \\
\pm 40 & 0 & \pm 10 & 0 & -1 \\
0 & \pm 40 & 0 & \pm 10 & -1
\end{array}\right)\right\}
$$

A 5-prismatoid of width >5

Theorem (S. 2012)

The following prismatoid Q, of dimension 5 and with 48 vertices, has width six.

Corollary

There is a 43-dimensional polytope with 86 facets and diameter (at least) 44.

A 5-prismatoid of width >5

Proof 1.

It has been verified computationally that the dual graph of Q (modulo symmetry) has the following structure:

A 5-prismatoid of width >5

Proof 2.

Check that there are no blue vertex a and red vertex b such that a is a vertex of the blue cell containing b and b is a vertex of the red cell containing a.

Smaller 5-prismatoids of width >5

With the same ideas

Theorem (Matschke-S.-Weibel, 2013+)

The following 5-prismatoid with 28 vertices (and 274 facets) has width 6.

$$
Q:=\mathrm{conv}\left\{\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\pm 18 & 0 & 0 & 0 & 1 \\
0 & 0 & \pm 30 & 0 & 1 \\
0 & 0 & 0 & \pm 30 & 1 \\
0 & \pm 5 & 0 & \pm 25 & 1 \\
0 & 0 & \pm 18 & \pm 18 & 1
\end{array}\right) \quad\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
0 & 0 & \pm 18 & 0 & -1 \\
0 & \pm 30 & 0 & 0 & -1 \\
\pm 30 & 0 & 0 & 0 & -1 \\
\pm 25 & 0 & 0 & \pm 5 & -1 \\
\pm 18 & \pm 18 & 0 & 0 & -1
\end{array}\right)\right\}
$$

There is a non-Hirsch polytope of dimension 23 with 46 facets.

Smaller 5-prismatoids of width >5

With the same ideas

Theorem (Matschke-S.-Weibel, 2013+)

The following 5-prismatoid with 28 vertices (and 274 facets) has width 6.

$$
Q:=\mathrm{conv}\left\{\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\pm 18 & 0 & 0 & 0 & 1 \\
0 & 0 & \pm 30 & 0 & 1 \\
0 & 0 & 0 & \pm 30 & 1 \\
0 & \pm 5 & 0 & \pm 25 & 1 \\
0 & 0 & \pm 18 & \pm 18 & 1
\end{array}\right) \quad\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
0 & 0 & \pm 18 & 0 & -1 \\
0 & \pm 30 & 0 & 0 & -1 \\
\pm 30 & 0 & 0 & 0 & -1 \\
\pm 25 & 0 & 0 & \pm 5 & -1 \\
\pm 18 & \pm 18 & 0 & 0 & -1
\end{array}\right)\right\}
$$

Corollary
There is a non-Hirsch polytope of dimension 23 with 46 facets.

Smaller 5-prismatoids of width >5

And with some more work:
Theorem (Matschke-Santos-Weibel, 2013+)
There is a 5-prismatoid with 25 vertices and of width 6.

There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36,442 vertices, and diameter 21.

Smaller 5-prismatoids of width >5

And with some more work:
Theorem (Matschke-Santos-Weibel, 2013+)
There is a 5 -prismatoid with 25 vertices and of width 6 .

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36,442 vertices, and diameter 21

Smaller 5-prismatoids of width >5

And with some more work:
Theorem (Matschke-Santos-Weibel, 2013+)
There is a 5 -prismatoid with 25 vertices and of width 6 .

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36,442 vertices, and diameter 21.

Asymptotic width in dimension five

Theorem (Matschke-Santos-Weibel, 2013+)
There are 5-dimensional prismatoids with n vertices and width $\Omega(\sqrt{n})$.

Sketch of proof
Start with the following "simple, yet more drastic" pair of maps in the torus.

Asymptotic width in dimension five

Theorem (Matschke-Santos-Weibel, 2013+)
There are 5-dimensional prismatoids with n vertices and width $\Omega(\sqrt{n})$.

Sketch of proof
Start with the following "simple, yet more drastic" pair of maps in the torus.

Asymptotic width in dimension five

Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in the 3-sphere.

Complete the tori maps to the whole 3 -sphere (you need quadratically many cells for that).

Between the two tori you basically get the superposition of the two tori maps.

Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in the 3 -sphere.

Complete the tori maps to the whole 3 -sphere (you need quadratically many cells for that).

Between the two tori you basically get the superposition of the two tori maps.

Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in the 3 -sphere.

Complete the tori maps to the whole 3 -sphere (you need quadratically many cells for that).

Between the two tori you basically get the superposition of the two tori maps.

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several conies of it (dimension increases)
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a d-polytope P with n facets and diameter δ the number

$$
\epsilon(P):=\frac{\delta}{n-d}-1=\frac{\delta-(n-d)}{n-d} .
$$

E. g.: The excess of our non-Hirsch polytope with $n-d=20$ and with diameter 21 is

$$
\frac{21-20}{20}=5 \% .
$$

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several copies of it (dimension increases).
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a d-polytope P with n facets and diameter δ the number

E. g.: The excess of our non-Hirsch polytope with $n-d=20$
and with diameter 21 is

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several copies of it (dimension increases).
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a d-polytope P with n facets and diameter δ the number

E. g.: The excess of our non-Hirsch polytope with $n-d=20$
and with diameter 21 is

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several copies of it (dimension increases).
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a d-polytope P with n facets and diameter δ the number
E. g.: The excess of our non-Hirsch polytope with $n-d=20$
and with diameter 21 is

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several copies of it (dimension increases).
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a d-polytope P with n facets and diameter δ the number

$$
\epsilon(P):=\frac{\delta}{n-d}-1=\frac{\delta-(n-d)}{n-d} .
$$

E. g.: The excess of our non-Hirsch polytope with $n-d=20$
and with diameter 21 is

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several copies of it (dimension increases).
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a d-polytope P with n facets and diameter δ the number

$$
\epsilon(P):=\frac{\delta}{n-d}-1=\frac{\delta-(n-d)}{n-d} .
$$

E. g.: The excess of our non-Hirsch polytope with $n-d=20$ and with diameter 21 is

$$
\frac{21-20}{20}=5 \% .
$$

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

$$
\frac{\delta_{1}}{n_{1}-d}-1=\frac{\delta_{2}}{n_{2}-d}-1=\epsilon \quad \Rightarrow \quad \frac{\delta}{n-d}-1=\epsilon-\frac{1}{\left(n_{1}-d\right)+\left(n_{2}-d\right)} .
$$

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

Corollary

For each $k \in \mathbb{N}$ there is an infinite family of non-Hirsch polytopes of fixed dimension 20 k and with excess (tending to)

$$
0.05\left(1-\frac{1}{k}\right) .
$$

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. with worst excess?

To analyze the asymptotics of this, let us call excess of a prismatoid of width δ with n vertices and dimension d the quantity

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call excess of a prismatoid of width δ with n vertices and dimension d the quantity

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call excess of a prismatoid of width δ with n vertices and dimension d the quantity

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call excess of a prismatoid of width δ with n vertices and dimension d the quantity

$$
\frac{\delta-d}{n-d}
$$

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.
The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong d-step Theorem are

So, its excess is

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.

The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong d-step Theorem are

$$
n-d, \quad 2(n-d), \quad \delta+(n-2 d)
$$

So, its excess is

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.

The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong d-step Theorem are

$$
n-d, \quad 2(n-d), \quad \delta+(n-2 d)
$$

So, its excess is

$$
\frac{\delta+(n-2 d)-(n-d)}{n-d}=\frac{\delta-d}{n-d}
$$

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{n}$... but their excess tends to zero:

> Let us be optimistic and suppose that we could construct 5 -prismatoids with n vertices and linear width $\simeq \alpha n$.

Their excess will now tend to α. So, we still get only polytopes that violate Hirsch by a constant ("linear" Hirsch bound).

OK, let us try to be more optimistic.
Can we hope for prismatoids of width greater than linear in their number of vertices?

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{n}$. . . but their excess tends to zero:

$$
\lim \frac{\delta-5}{n-5}=\lim \frac{\sqrt{n}-5}{n-5}=0 .
$$

Let us be optimistic and suppose that we could construct
5 -prismatoids with n vertices and linear width $\simeq \alpha n$.
Their excess will now tend to α. So, we still get only polytopes that violate Hirsch by a constant ("linear" Hirsch bound).

OK, let us try to be more optimistic.
Can we hone for prismatoids of width greater than linear in their number of vertices?

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{n}$. . . but their excess tends to zero:

$$
\lim \frac{\delta-5}{n-5}=\lim \frac{\sqrt{n}-5}{n-5}=0
$$

Let us be optimistic and suppose that we could construct 5 -prismatoids with n vertices and linear width $\simeq \alpha n$.

Their excess will now tend to α. So, we still get only polytopes that violate Hirsch by a constant ("linear" Hirsch bound).

OK, let us try to be more optimistic.
Can we hope for prismatoids of width greater than linear in their number of vertices?

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{n}$. . . but their excess tends to zero:

$$
\lim \frac{\delta-5}{n-5}=\lim \frac{\sqrt{n}-5}{n-5}=0
$$

Let us be optimistic and suppose that we could construct 5-prismatoids with n vertices and linear width $\simeq \alpha n$.

Their excess will now tend to α.

OK, let us try to be more optimistic.
Can we hope for prismatoids of width greater than linear in their
number of vertices?

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{n}$. . . but their excess tends to zero:

$$
\lim \frac{\delta-5}{n-5}=\lim \frac{\sqrt{n}-5}{n-5}=0 .
$$

Let us be optimistic and suppose that we could construct 5 -prismatoids with n vertices and linear width $\simeq \alpha n$.

Their excess will now tend to α. So, we still get only polytopes that violate Hirsch by a constant ("linear" Hirsch bound).

OK, let us try to be more optimistic.
Can we hope for prismatoids of width greater than linear in their number of vertices?

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{n}$. . . but their excess tends to zero:

$$
\lim \frac{\delta-5}{n-5}=\lim \frac{\sqrt{n}-5}{n-5}=0 .
$$

Let us be optimistic and suppose that we could construct 5 -prismatoids with n vertices and linear width $\simeq \alpha n$.

Their excess will now tend to α. So, we still get only polytopes that violate Hirsch by a constant ("linear" Hirsch bound).

OK, let us try to be more optimistic.
Can we hope for prismatoids of width greater than linear in their number of vertices?

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{n}$. . . but their excess tends to zero:

$$
\lim \frac{\delta-5}{n-5}=\lim \frac{\sqrt{n}-5}{n-5}=0 .
$$

Let us be optimistic and suppose that we could construct 5 -prismatoids with n vertices and linear width $\simeq \alpha n$.

Their excess will now tend to α. So, we still get only polytopes that violate Hirsch by a constant ("linear" Hirsch bound).

OK, let us try to be more optimistic.
Can we hope for prismatoids of width greater than linear in their number of vertices?

Revenge of the linear bound

Can we hope for prismatoids of width greater than linear?
In fixed dimension, certainly not:

Revenge of the linear bound

Can we hope for prismatoids of width greater than linear? In fixed dimension, certainly not:

Revenge of the linear bound

Can we hope for prismatoids of width greater than linear?
In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3} n$.

Revenge of the linear bound

Can we hope for prismatoids of width greater than linear?
In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3} n$.

Proof.

This is a general result for the (dual) diameter of a polytope [Barnette, Larman, ~1970].

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem (Matschke-S.-Weibel, 2013+)
The width of a 5 -dimensional prismatoid with n vertices cannot exceed $n / 3+1$.

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem (Matschke-S.-Weibel, 2013+)
The width of a 5-dimensional prismatoid with n vertices cannot exceed $n / 3+1$.

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem (Matschke-S.-Weibel, 2013+)
The width of a 5-dimensional prismatoid with n vertices cannot exceed $n / 3+1$.

Corollary

Using the Strong d-step Theorem for 5-prismatoids it is impossible to violate the Hirsch conjecture by more than 33%.

Thank you

THE END

Thank you

THE END

OF THE GEOMETRIC TRILOGY

Thank you

THEEND

OF THE GEOMETRIC TRILOGY
stay tuned for "Episode IV: A New Hope".

