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It holds with equality in simplices (n=d + 1, § = 1) and
cubes (n=2d, § = d).

If P and Q satisfy it, then so does P x Q: §(P x Q) =
d(P) 4+ 6(Q). In particular:

For every n < 2d, there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.
For every n > d, it is easy to construct unbounded
polyhedra where the bound is tight.

H(n, d) is weakly monotone w.r.t. (n — d, d), not to (n, d).



@ It holds with equality in simplices (n=d + 1, = 1) and
cubes (n=2d, 6 = d).
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Why is n — d a “reasonable” bound?

@ It holds with equality in simplices (n=d + 1, = 1) and
cubes (n=2d, 6 = d).

@ If P and Q satisfy it, then so does P x Q: (P x Q) =
(P)+4(Q).
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Why is n — d a “reasonable” bound?

@ It holds with equality in simplices (n=d + 1, = 1) and
cubes (n=2d, 6 = d).

@ If P and Q satisfy it, then so does P x Q: (P x Q) =
d(P) + 6(Q). In particular:

For every n < 2d, there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.
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Why is n — d a “reasonable” bound?
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cubes (n=2d, 6 = d).

@ If P and Q satisfy it, then so does P x Q: (P x Q) =
d(P) + 6(Q). In particular:

For every n < 2d, there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.

@ For every n > d, itis easy to construct unbounded
polyhedra where the bound is tight.
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Why is n — d a “reasonable” bound?

@ It holds with equality in simplices (n=d + 1, = 1) and
cubes (n=2d, 6 = d).

@ If P and Q satisfy it, then so does P x Q: (P x Q) =
d(P) + 6(Q). In particular:

For every n < 2d, there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.
@ For every n > d, itis easy to construct unbounded
polyhedra where the bound is tight.

@ H(n,d) is weakly monotone w.r.t. (n— d, d),
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Why is n — d a “reasonable” bound?

@ It holds with equality in simplices (n=d + 1, = 1) and
cubes (n=2d, 6 = d).

@ If P and Q satisfy it, then so does P x Q: (P x Q) =
d(P) + 6(Q). In particular:

For every n < 2d, there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.
@ For every n > d, itis easy to construct unbounded
polyhedra where the bound is tight.

@ H(n,d) is weakly monotone w.r.t. (n— d, d), not to (n, d).
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Hirsch conjecture has the following interpretations:
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Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

Assume n = 2d and let u and v be two complementary vertices
(no common facet) of a simple polytope:
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Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

Assume n = 2d and let u and v be two complementary vertices
(no common facet) of a simple polytope:

d-step conjecture

It is possible to go from u to v so that at each step we abandon
a facet containing v and we enter a facet containing v.
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Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

Assume n = 2d and let u and v be two complementary vertices
(no common facet) of a simple polytope:

d-step conjecture

It is possible to go from u to v so that at each step we abandon
a facet containing v and we enter a facet containing v.

d-step conjecture < Hirsch for n = 2d.
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Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a simple poly-
tope P:
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Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a simple poly-
tope P:
non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.



The d-step Theorem
00e000

Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a simple poly-
tope P:

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.

non-revisiting path = Hirsch.
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Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a simple poly-
tope P:

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.

non-revisiting path = Hirsch.

d-step < non-revisiting for n = 2d < Hirsch for n = 2d.



Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

< H@k —1,k—1) < H2k, k) = H2k + 1,k +1) = - --



Hirsch < d-step < non-revisiting path.
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Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{d(P) : Pis a d-polytope with n
facets}.
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Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{d(P) : Pis a d-polytope with n
facets}. The basic idea is:
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
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- <HRk—-1,k—1)<H@2kk)=H2k+1,k+1)="---
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

- <HRk—-1,k—1)<H@2kk)=H2k+1,k+1)="---

@ If n< 2d, then H(n,d) < H(n—1,d — 1) because every
pair of vertices u and v lie in a common facet F,
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

- <HRk—-1,k—1)<H@2kk)=H2k+1,k+1)="---

@ If n< 2d, then H(n,d) < H(n—1,d — 1) because every
pair of vertices u and v lie in a common facet F, which is a
polytope with one less dimension and (at least) one less
facet
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

- <HRk—-1,k—1)<H@2kk)=H2k+1,k+1)="---

@ If n < 2d, then H(n,d) < H(n—1,d — 1) because every
pair of vertices u and v lie in a common facet F, which is a
polytope with one less dimension and (at least) one less
facet (induction on nand n— d).
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

- <HRk—-1,k—1)<H@2kk)=H2k+1,k+1)="---
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

- <HRk—-1,k—1)<H@2kk)=H2k+1,k+1)="---

@ Forevery nand d, H(n,d) < H(n+1,d + 1):
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

- <HRk—-1,k—1)<H@2kk)=H2k+1,k+1)="---

@ Foreverynand d, H(n,d) < H(n+1,d+1): LetF be
any facet of P and let P’ be the wedge of P over F. Then:
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

- <HRk—-1,k—1)<H@2kk)=H2k+1,k+1)="---

@ Foreverynand d, H(n,d) < H(n+1,d+1): LetF be
any facet of P and let P’ be the wedge of P over F. Then:

dp (U, V') > dp(u, v).



O-0



000080 0000000 000000000 00000000000 0000000

F v J
u
d(u, v)=2
v
u)
du’, v’)=2




The d-step Theorem follows from and implies (respectively) the
following:
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Two important remarks

The d-step Theorem follows from and implies (respectively) the
following:

Lemma

For every d-polytope P with n facets and diameter § there is a
d + 1-polytope with one more facet and the same diameter 6.
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Two important remarks

The d-step Theorem follows from and implies (respectively) the
following:

Lemma

For every d-polytope P with n facets and diameter § there is a
d + 1-polytope with one more facet and the same diameter 6.

Corollary
There is a function f(k) := H(2k, k) such that

H(n,d) < f(n—d), vn,d.



The construction of counter-examples to the Hirsch conjecture
has two ingredients:
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Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture
has two ingredients:

@ A strong d-step theorem for spindles/prismatoids.



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter
000000 ©000000 000000000 00000000000 0000000

Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture
has two ingredients:
@ A strong d-step theorem for spindles/prismatoids.

@ The construction of a prismatoid of dimension 5 and
“width” 6.
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A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).
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- Thed-stepTheorem  Astrongd-stepThm  Prismatoids ~ (Sprismatoids) ~ Asymptotic diameter

A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).

The length of a
spindle is the
graph distance
from uto v.
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- Thed-stepTheorem  Astrongd-stepThm  Prismatoids ~ (Sprismatoids) ~ Asymptotic diameter

A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).

The length of a
spindle is the
graph distance
from uto v.

3-spindles have
length < 3.
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Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and
length \. Then there is another spindle P’ of dimension d + 1,
with n+ 1 facets and length \ + 1.
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Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and
length \. Then there is another spindle P’ of dimension d + 1,
with n+ 1 facets and length \ + 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d.
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Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and
length \. Then there is another spindle P’ of dimension d + 1,
with n+ 1 facets and length \ + 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d.

Corollary

In particular, if a spindle P has length > d then there is another
spindle P’ (of dimension n — d, with 2n — 2d facets, and length
> \+n-2d > n—d) that violates the Hirsch conjecture.
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A prismatoid is a polytope Q with two (parallel) facets Q™ and
Q™ containing all vertices.

‘

L
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A prismatoid is a polytope Q with two (parallel) facets Q™ and
Q™ containing all vertices.

The width of a

o prismatoid is the
a ‘- dual-graph
distance from Q*
to Q.
o
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A prismatoid is a polytope Q with two (parallel) facets Q™ and
Q™ containing all vertices.

The width of a
o prismatoid is the
a ‘- dual-graph
distance from Q*
to Q.

3-prismatoids have
width < 3.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width 6. Then there is another prismatoid Q' of dimension
d+ 1, with n+ 1 vertices and width § + 1.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width 6. Then there is another prismatoid Q' of dimension
d+ 1, with n+ 1 vertices and width § + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width 6. Then there is another prismatoid Q' of dimension
d+ 1, with n+ 1 vertices and width § + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is
another prismatoid Q' (of dimension n — d, with 2n — 2d vertices, and
width > § + n— 2d > n — d) that violates (the dual of) the Hirsch
conjecture.



000000 0000080 000000000 00000000000 0000000




000000 000000e 000000000 00000000000 0000000

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d.

14
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...
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So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?
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Width of prismatoids
So, to disprove the Hirsch Conjecture we only need to find a

prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).
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So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].

@ 5-prismatoids of width 6 exist [S., 2012]
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].

@ 5-prismatoids of width 6 exist [S., 2012] with 25 vertices
[Matschke-S.-Weibel 2013+].
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].

@ 5-prismatoids of width 6 exist [S., 2012] with 25 vertices
[Matschke-S.-Weibel 2013+].

@ 5-prismatoids of arbitrarily large width exist
[Matschke-S.-Weibel 2013+].

14



OK,...how do you contruct / visualize / think of a
5-dimensional prismatoid???

15
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Tricks of the trade

OK,...how do you contruct / visualize / think of a
5-dimensional prismatoid???

@ Option 1: If you are a super-hero, use your X-ray 5-D
vision super-powers.
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Tricks of the trade

OK,...how do you contruct / visualize / think of a
5-dimensional prismatoid???

@ Option 1: If you are a super-hero, use your X-ray 5-D
vision super-powers.

@ Option 2: If you are a Jedi knight, use the force.
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Tricks of the trade

OK,...how do you contruct / visualize / think of a
5-dimensional prismatoid???

@ Option 1: If you are a super-hero, use your X-ray 5-D
vision super-powers.

@ Option 2: If you are a Jedi knight, use the force.
@ Option 3: If you are a human, use your math



The d-step Theorem A strong d-step Thm Prismatoids (5-pris!
000000 0000000 ©00000000

Tricks of the trade

OK,...how do you contruct / visualize / think of a
5-dimensional prismatoid???

@ Option 1: If you are a super-hero, use your X-ray 5-D
vision super-powers.

@ Option 2: If you are a Jedi knight, use the force.

@ Option 3: If you are a human, use your math...and find a
way to reduce the dimension of your object.
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Analyzing the combinatorics of a d-prismatoid Q can be done
via an intermediate slice . ..

<
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...which equals the Minkowski sum Q™ + Q~ of the two bases
Q" and Q.

N|—=

16
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Combinatorics of prismatoids

...which equals the Minkowski sum Q™ + Q~ of the two bases
Q" and Q. The normal fan of Q™ + Q~ equals the “superposi-
tion” of those of Q* and Q™.

> @@
AR
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.

Remark

The normal fan of a d — 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d — 2-sphere.



Prismatoids
00e000000

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.

Remark

The normal fan of a d — 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d — 2-sphere.

Theorem

Let Q be a d-prismatoid with bases Q* and Q~ and let G+ and
G~ be the corresponding maps in the (d — 2)-sphere (central
projection of the normal fans of Q" and Q™).
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.

Remark

The normal fan of a d — 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d — 2-sphere.

Theorem

Let Q be a d-prismatoid with bases Q* and Q~ and let G+ and
G~ be the corresponding maps in the (d — 2)-sphere (central
projection of the normal fans of Q* and Q~). Then, the width of Q
equals 2 plus the minimum number of steps needed to go from
a vertex of G to a vertex of G~ in (the graph of) the
superposition of the two maps.

17
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Example: (part of) a 4-prismatoid

4-prismatoid of width > 4
;

pair of (geodesic, polytopal) maps in S? so that two
steps do not let you go from a blue vertex to a red vertex.
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Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:

20
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Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:

Theorem 2 (Klee-Walkup 1967)

There is an unbounded 4-polyhedron with 8 facets and
diameter 5.
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Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:

Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4-polyhedron with 8 facets and
diameter 5.

The Klee-Walkup polytope is an “unbounded 4-spindle”.

20
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Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:

Theorem 2 (Klee-Walkup 1967)

There is an unbounded 4-polyhedron with 8 facets and
diameter 5.

The Klee-Walkup polytope is an “unbounded 4-spindle”.

What is the corresponding “transversal pair of (geodesic, poly-
topal) maps”?

20
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Example: The Klee-Walkup (unbounded) 4-spindle

21
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bﬁf
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Example: The Klee-Walkup (unbounded) 4-spindle
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“Non-Hirsch” 4-prismatoids do not exist:
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“Non-Hirsch” 4-prismatoids do not exist:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path
of length two from some blue vertex to some red vertex.

bl
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“Non-Hirsch” 4-prismatoids do not exist:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path
of length two from some blue vertex to some red vertex.

That is to say:

bl



Prismatoids
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4-prismatoids have width < 4

“Non-Hirsch” 4-prismatoids do not exist:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path
of length two from some blue vertex to some red vertex.

That is to say:

Corollary (S.-Stephen-Thomas, 2011)
Every prismatoid of dimension 4 has width (at most) four.

bl
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A 4-dimensional prismatoid of width > 47?

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane ...
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A 4-dimensional prismatoid of width > 47

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane ...
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A 4-dimensional prismatoid of width > 47?

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane ...

29



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter
oooooooooooooooooooooooooooooooooooooooo

A 4-dimensional prismatoid of width > 47?

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane ...

e 1, 90
TN O
»-e

¢
4

4

iqanyan

29



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter
oooooooooooooooooooooooooooooooooooooooo

A 4-dimensional prismatoid of width > 47?

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane ...
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...or with finite ones in the torus!
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To construct 5-dimensional prismatoids we should look at “pairs
of maps” in the 3-sphere.
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The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

5-prismatoids of width > 5

To construct 5-dimensional prismatoids we should look at “pairs
of maps” in the 3-sphere.

That is, we want a pair of (geodesic, polytopal) cell
decompositions of the 3-sphere such that if we draw them one
on top of the other (common refinement) there is no path of
length < 3 from a blue vertex to a red vertex.

24
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5-prismatoids of width > 5

To construct 5-dimensional prismatoids we should look at “pairs
of maps” in the 3-sphere.

That is, we want a pair of (geodesic, polytopal) cell
decompositions of the 3-sphere such that if we draw them one
on top of the other (common refinement) there is no path of
length < 3 from a blue vertex to a red vertex.

Main idea: If non-Hirsch pairs of maps exist in the torus we
should have “room enough” to construct it in the 3-sphere as
well ...
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A 5-prismatoid of width > 5
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A 5-prismatoid of width > 5
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A 5-prismatoid of width > 5
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A 5-prismatoid of width > 5

25



Theorem (S. 2012)

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.



The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

26
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A 5-prismatoid of width > 5

Theorem (S. 2012)

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

X1 Xo X3 X4 X5 X X2 X3 X4 X5

+18 0 0 0 0 0 0 £18 —1

0 £18 0 0 0 0o +18 0 -1

0 0 £45 0 +45 0 0 o -1

Q = conv 0 0 0 +45 0 £45 0 o -1
) +15 +£15 0 0 0 0 +£15 £15 1

0 0 £30 +30 £30 +30 0 0o -1

0 +£10 +40 0 +40 0 £10 0

+10 0 0 +40 0 +£40 0 £10 —1

26
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The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

There is a 43-dimensional polytope with 86 facets and diameter
(at least) 44.

26
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It has been verified computationally that the dual graph of Q
(modulo symmetry) has the following structure:

A_B/ \E/ \H/ N
N NGNS

27
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The d-step Theorem A strong d-step Thm Prismatoids
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A 5-prismatoid of width > 5

Proof 2.
Check that there are no blue vertex a and red vertex b such
that a is a vertex of the blue cell containing b and b is a vertex

of the red cell containing a. O

28
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Smaller 5-prismatoids of width > 5

With the same ideas

Theorem (Matschke-S.-Weibel, 2013+)

The following 5-prismatoid with 28 vertices (and 274 facets)
has width 6.

Xy Xo X3 X4 X5 Xy Xp X3 X4 Xs
+18 0 0 0 1 0 0 +18 0 -1

0 0 +30 0 1 0 £30 O 0o —1

Q := conv 0 0 0 +£30 1 +30 0 0 0o -1
0 +5 0 £25 1 +25 0 0 +5 -1

0 0 +18 +18 1 +18 +18 0 0o -1

29
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Smaller 5-prismatoids of width > 5

With the same ideas

Theorem (Matschke-S.-Weibel, 2013+)

The following 5-prismatoid with 28 vertices (and 274 facets)
has width 6.

Xy Xo X3 X4

&

Xy Xp X3 X4 Xs

+18 0 0 0 1 0 0 £18 0 -t
0 0 +30 0 1 0 +30 0 0o -1
Q := conv 0 0 0 +30 1 +30 0 0 0o -1
0 +5 0 +25 1 +25 0 0 +5 —1
0 0 +18 +18 1 +18 +18 0 0o -1
Corollary

There is a non-Hirsch polytope of dimension 23 with 46 facets.

29
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And with some more work:

There is a 5-prismatoid with 25 vertices and of width 6.

20
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Smaller 5-prismatoids of width > 5

And with some more work:

Theorem (Matschke-Santos-Weibel, 2013+)
There is a 5-prismatoid with 25 vertices and of width 6.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

20
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Smaller 5-prismatoids of width > 5

And with some more work:

Theorem (Matschke-Santos-Weibel, 2013+)
There is a 5-prismatoid with 25 vertices and of width 6.

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36, 442 vertices,
and diameter 21.

20
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_ poly20dim21.ext

V-representation
begin
48 21 rational

11 1 02 ] ] ] 1 ) [ ] ] ] ] ) 1 1 ] ] ]
11 8 8 16 -5 ] [ 1 ] [ ] ] ] [ ] 8 1 1 ] ]
11 8 [ ] ] [ 1 ] [ ] ] ] [ ] 8 ] 1 1 ]
11 8 o -6 -10 ] 8 1 2 8 0 ] 8 8 2 8 8 ] 1 1
11 8 R [ 8 8 o 8 8 8 8 8 8 8 8 8 8 0 1
11 8 R 3 0 8 o 8 8 0 0 8 8 1 8 8 8 0 ]
11 8 0 [ £ 0 0 o ) 0 0 0 0 0 1 8 8 0 0 0
11 8 8 19 7 [l [ 1 ) [ [l ] 8 [l ) 1 [ [l [l [l
11 3188 -1/50 e 23 [l [ 1 ? [ [l [l [l [l 8 8 ] ] ] ]
11 -3/180 -1/50 [l [l [ o [ [ [l [l [l [ ] 8 ] ] ] ]
11 -3/2000 7/2000 6 388/10 [ [ o o [ [ [ ] [ 1 8 8 8 ] ]
11 372000 7/2000 6 -248/10 100DODDD 19PAAGGD 1600000 109PPODEDDD 1 ) 8 8 8 8 8
11 372009 7/2000 6 -248/10 -10000800 [ 1 [ [ [l [l [l 1 1 8 8 8 0 0
11 3/2008 7/2080 6 24/ 10PPODDD ~1000GGG 6 ) [l [l [l 1 1 ) 8 8 0 0 0
11 3/2000 7/2000 0 -248/10 1000PARD 10000000 -10000000 2 [ [l [l [l 1 ) 1 8 ] ] ]
11 3/2000 7/2000 0 -248/10 10000OPD 19GGGGG0 10000000 -1099PREEEED o [l ] ] 1 ] 1 ] ] ] ]
11 3/2000 7/2008 0 -248/10 100000PD 19GAEGG0 10000000 1PPAPRRRRRG 100000000000 ] ] 1 o 8 ] ] ] ]
11 3/2000 7/2000 6 -248/10 10000DPD 19PARGGG 10000000 10PAPARERDD 16600000000 -199999DDDGED o 8 1 2 8 8 8 ] ]
11 372000 7/2000 6 -248/10 100DOODD 19PARGGD 1600000 10PPPPRRRDD 1GAAAGOO00O 100DDDDORDDD -19RERRRRGED 8 1 8 8 8 8 8 8
11 372009 7/2080 6 -248/10 10PPODDD 10GEGGGD 16600000 199PPDDEDDD 1 o 8 8 8 0 0
1.1 [ 1 [ [ [ 1 1 [ [ [ [ ] ) 1 8 0 0 0
14 4 5 1 ] ] [ 6o 1 1 [l ] ] [l [ 1 [l [l [l [l
1 8 -33/2 1 [l [l [ 1 ? 1 1 ] [l [ [ 8 ] ] ] ]
1 T 0 ] ] [ 1 o ] 1 1 ] [ o 8 ] ] ] ]
14 -5572 [l 1 [l [l [ o [ [ [l 1 1 [ 2 8 8 8 0 0
141 47 18 8 8 8 8 1 8 8 0 0 1 8 8 8 8 8 [ 8
1.1 L] 8 8 0 8 1 8 8 0 0 8 8 1 8 8 8 0 0
1.1 2 1 1 e 0 0 1 ) 0 0 0 0 0 ) 8 8 0 0 0
1 18 e 15  -1/5 [l [ 1 [ [ [l [l [l [ ? 1 8 ] ] ]
1 -1 2999/100 8 -3/25  -1/5 [l [l 1 ? [ [l [l [l [ ? [ ] ] ] ]
1 -1 299999/10000 © o 1/100 [l 1 o [ [ [l [l [l [ ? [ ] ] ] ]
1-1-2745/188 B 1/5008  1/800 1 [ o [ [ [l [l [l [ o 8 8 8 0 0
1-1 -27 © 1/508 -1/80 [l [ o [ [ [l [l © 100000 100PPDOD 1PPPRRRD 10000000 10DODODDD 10PRROGGE 1000009990
1-1 -27 8 1/508 -1/88 [l [ 1 [ [l [l [l 6 166660 o [ [ [ [ [
1.1 27 © 1/568 -1/80 [l [l 1 ) [l [l [l © 166060 10000000 8 8 0 0 0
14 27 © 1/508 -1/80 [l [ 1 [ [ [l [l © 100000 1009MDPD -10800000 ] ] ] ]
1 -27 ® 1/508 -1/80 [l [ o [ [ [l ] © 100000 10000000 1PAAREO -10000000 ] ] ]
141 -27 © 1/508 -1/80 [l [ o [ [ [l [l © 100000 10000000 1PPPPRRR 1000000 -100000000 ] ]
1-1 -27 © 1/508 -1/80 [l [ o [ [ [l [l © 100000 10000DOD 1PPPPPRR 100000 100000999 -10DDEEEED 0
1-1 -27 o 1/508 -1/88 [l [ o 8 [ [l [l © 100000 100PODOD 19PPRRRD 10000000 10DODDDDD 10PARGGG 1000009990
end

allbases
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There are 5-dimensional prismatoids with n vertices and width

Q(v/n).

29



(5-prismatoids)
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Asymptotic width in dimension five

Theorem (Matschke-Santos-Weibel, 2013+)
There are 5-dimensional prismatoids with n vertices and width

Q(v/n).

Sketch of proof

Start with the following “simple, yet more drastic” pair of maps
in the torus.

22
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Asymptotic width in dimension five
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Asymptotic width in dimension five
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Asymptotic width in dimension five
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Asymptotic width in dimension five
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Asymptotic width in dimension five
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Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in
the 3-sphere.

24
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Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in
the 3-sphere.

Complete the tori maps to the whole
3-sphere (you need quadratically
many cells for that).

24
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(5-prismatoids) Asymptotic diameter
00000000008 0000000

Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in
the 3-sphere.

Complete the tori maps to the whole
3-sphere (you need quadratically
many cells for that).

Between the two tori you basically get
the superposition of the two tori
maps. Ol

24



Once we have a non-Hirsch polytope we can derive more via:

@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess
of a d-polytope P with n facets and diameter ¢ the number

) d—(n—d)

Pr=0—g 1= =g

E. g.: The excess of our non-Hirsch polytope with n — d = 20
and with diameter 21 is
21 - 20
20

= 5%.

125



Once we have a non-Hirsch polytope we can derive more via:
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Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

@ Products of several copies of it (dimension increases).

25



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter
000000 0000000 000000000 00000000000 ©000000

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).
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Asymptotic diameter
000000

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).
To analyze the asymptotics of these operations, we call excess
of a d-polytope P with n facets and diameter 6 the number

E(P)::nﬁd_1:5_n(ﬁ;d)'
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Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess
of a d-polytope P with n facets and diameter 6 the number

6 60— (n—d)
Pr=n=g "= =g

E. g.: The excess of our non-Hirsch polytope with n — d = 20

and with diameter 21 is

21 -20
20

=5%.
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@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Giluing several copies (slightly) decreases the excess.

26
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Many non-Hirsch polytopes
@ Taking products preserves the excess: for each k € N,

there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

26
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Many non-Hirsch polytopes

@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Gluing several copies (slightly) decreases the excess.
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Asymptotic diameter
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Many non-Hirsch polytopes

@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Gluing several copies (slightly) decreases the excess.

n—d=(m+n-d —-—d=(n —d)+(mn—Ad)
0=201+d — 1

26
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Many non-Hirsch polytopes

@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Gluing several copies (slightly) decreases the excess.

n—-d=Mm+m—-d)—d=(m—-d)+(n—d)

0=201+d — 1
s 8 _ 5 _ 1
med 1 =pig—1=¢ = e — 1 = €~ m=ayrm=d)
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Many non-Hirsch polytopes

@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Gluing several copies (slightly) decreases the excess.

Corollary

For each k € N there is an infinite family of non-Hirsch
polytopes of fixed dimension 20k and with excess (tending to)

y
0.05 <1 — k) .
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But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width.
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The excess of a prismatoid

But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width. Will those produce non-Hirsch polytopes
with worst excess?

7
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The d-step Theorem A strong d-step Thm
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But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width. Will those produce non-Hirsch polytopes
with worst excess?

To analyze the asymptotics of this, let us call excess of a
prismatoid of width ¢ with n vertices and dimension d the

quantity

7
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The d-step Theorem A strong d-step Thm
00®0000

But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width. Will those produce non-Hirsch polytopes
with worst excess?

To analyze the asymptotics of this, let us call excess of a
prismatoid of width ¢ with n vertices and dimension d the

quantity
0—d

n—d

7
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Lemma

Via the strong d-step Theorem, a prismatoid of a certain
excess produces non-Hirsch polytopes of that same excess.

28
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Lemma

Via the strong d-step Theorem, a prismatoid of a certain
excess produces non-Hirsch polytopes of that same excess.

Proof.
The dimension, number of facets and diameter of the
non-Hirsch polytope produced by the strong d-step Theorem

are
n—d, 2(n—d), d + (n—2d).

28
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Lemma

Via the strong d-step Theorem, a prismatoid of a certain
excess produces non-Hirsch polytopes of that same excess.

Proof.
The dimension, number of facets and diameter of the
non-Hirsch polytope produced by the strong d-step Theorem
are

n—d, 2(n—d), d + (n—2d).
So, its excess is

d+(n—-2d)—(n—d)
n—d

5-d
- n—d’

28
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Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ /n

29
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Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ v/n. .. but their excess tends to zero:

=5 _jm Y-S5 _

n-5 n—>5 0.

lim
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The d-step Theorem A strong d-step Thm Prismatoids

Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ v/n. .. but their excess tends to zero:

09 —|imﬁ_5:

n-5 n—>5 0.

lim

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ~ an.
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The d-step Theorem A strong d-step Thm

Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ \/n. .. but their excess tends to zero:

05 —|imﬁ_5:

n-5 n—>5 0.

lim

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ~ an.

Their excess will now tend to «.
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The d-step Theorem A strong d-step Thm

Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ \/n. .. but their excess tends to zero:

0-95 —|imﬁ_5:o.

“mn—s_ n—>5

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ~ an.

Their excess will now tend to «.. So, we still get only polytopes
that violate Hirsch by a constant (“linear” Hirsch bound).

29
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The d-step Theorem A strong d-step Thm

Prismatoids of large width won'’t help (much)
In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ v/n. .. but their excess tends to zero:

0=8 i ¥n=5_

n-5 n—>5 0.

lim

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ~ an.

Their excess will now tend to «.. So, we still get only polytopes
that violate Hirsch by a constant (“linear” Hirsch bound).

OK, let us try to be more optimistic.
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Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ \/n. .. but their excess tends to zero:

6—5 . v/n-5
n—5_“m n—-5

lim 0.

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ~ an.

Their excess will now tend to «.. So, we still get only polytopes
that violate Hirsch by a constant (“linear” Hirsch bound).

OK, let us try to be more optimistic.

Can we hope for prismatoids of width greater than linear in their
number of vertices?
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Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:
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Revenge of the linear bound

Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot
exceed 29-3n.
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Revenge of the linear bound

Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot
exceed 29-3n.

Proof.

This is a general result for the (dual) diameter of a polytope
[Barnette, Larman, ~1970]. O
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In fact, in dimension five we can tighten the upper bound a little
bit:
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In fact, in dimension five we can tighten the upper bound a little
bit:

Theorem (Matschke-S.-Weibel, 2013+)

The width of a 5-dimensional prismatoid with n vertices cannot
exceed n/3 + 1.

a1
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Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little
bit:

Theorem (Matschke-S.-Weibel, 2013+)

The width of a 5-dimensional prismatoid with n vertices cannot
exceed n/3 + 1.

Corollary

Using the Strong d-step Theorem for 5-prismatoids it is
impossible to violate the Hirsch conjecture by more than 33%.

a1



THE END
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THE END
OF THE GEOMETRIC TRILOGY

stay tuned for “Episode IV: A New Hope”.
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