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The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

Why is n − d a “reasonable” bound?

It holds with equality in simplices (n = d + 1, δ = 1) and
cubes (n = 2d , δ = d).
If P and Q satisfy it, then so does P ×Q: δ(P ×Q) =
δ(P) + δ(Q). In particular:

For every n ≤ 2d , there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.

For every n > d , it is easy to construct unbounded
polyhedra where the bound is tight.
H(n,d) is weakly monotone w.r.t. (n − d ,d), not to (n,d).
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Wedging, a.k.a. one-point-suspension

P’

P

F f
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Wedging, a.k.a. one-point-suspension

v

d(u’, v’)=2

d(u, v)=2

u

F f

P’

P

u’

v’
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non-revisiting path conjecture
It is possible to go from u to v so that at each step we enter a
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Why is n − d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2k − 1, k − 1) ≤ H(2k , k) = H(2k + 1, k + 1) = · · ·
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· · · ≤ H(2k − 1, k − 1) ≤ H(2k , k) = H(2k + 1, k + 1) = · · ·

If n < 2d , then H(n,d) ≤ H(n − 1,d − 1) because every
pair of vertices u and v lie in a common facet F , which is a
polytope with one less dimension and (at least) one less
facet (induction on n and n − d).
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For every n and d , H(n,d) ≤ H(n + 1,d + 1): Let F be
any facet of P and let P ′ be the wedge of P over F . Then:

dP′(u′, v ′) ≥ dP(u, v).
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The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

Two important remarks

The d-step Theorem follows from and implies (respectively) the
following:

Lemma
For every d-polytope P with n facets and diameter δ there is a
d + 1-polytope with one more facet and the same diameter δ.

Corollary
There is a function f (k) := H(2k , k) such that

H(n,d) ≤ f (n − d), ∀n,d .
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Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture
has two ingredients:

1 A strong d-step theorem for spindles/prismatoids.
2 The construction of a prismatoid of dimension 5 and

“width” 6.
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Spindles

Definition
A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).

u u

vv Definition
The length of a
spindle is the
graph distance
from u to v .

Exercise
3-spindles have
length ≤ 3.
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Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and
length λ. Then there is another spindle P ′ of dimension d + 1,
with n + 1 facets and length λ+ 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d .

Corollary
In particular, if a spindle P has length > d then there is another
spindle P ′ (of dimension n − d, with 2n − 2d facets, and length
≥ λ+ n − 2d > n − d) that violates the Hirsch conjecture.
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Prismatoids

Definition
A prismatoid is a polytope Q with two (parallel) facets Q+ and
Q− containing all vertices.

Q+

Q−

Q

Definition
The width of a
prismatoid is the
dual-graph
distance from Q+

to Q−.

Exercise
3-prismatoids have
width ≤ 3.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width δ. Then there is another prismatoid Q′ of dimension
d + 1, with n + 1 vertices and width δ + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d .

Corollary
In particular, if a prismatoid Q has width > d then there is
another prismatoid Q′ (of dimension n − d, with 2n − 2d vertices, and
width ≥ δ + n − 2d > n − d) that violates (the dual of) the Hirsch
conjecture.
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d-step theorem for prismatoids

Proof.

Q ⊂ R2

Q+

Q−
Q̃−

Q̃ ⊂ R3

Q̃+

w

Q̃− := opsv(Q−)

Q+

w

opsv(Q) ⊂ R3

v

u

u
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d . Its number
of vertices and facets is irrelevant...

Question
Do they exist?

3-prismatoids have width at most 3 (exercise).
4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].
5-prismatoids of width 6 exist [S., 2012] with 25 vertices
[Matschke-S.-Weibel 2013+].
5-prismatoids of arbitrarily large width exist
[Matschke-S.-Weibel 2013+].
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Tricks of the trade

OK,. . . how do you contruct / visualize / think of a
5-dimensional prismatoid???

Option 1: If you are a super-hero, use your X-ray 5-D
vision super-powers.
Option 2: If you are a Jedi knight, use the force.
Option 3: If you are a human, use your math. . . and find a
way to reduce the dimension of your object.

15



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

Tricks of the trade

OK,. . . how do you contruct / visualize / think of a
5-dimensional prismatoid???

Option 1: If you are a super-hero, use your X-ray 5-D
vision super-powers.
Option 2: If you are a Jedi knight, use the force.
Option 3: If you are a human, use your math. . . and find a
way to reduce the dimension of your object.

15



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

Tricks of the trade

OK,. . . how do you contruct / visualize / think of a
5-dimensional prismatoid???

Option 1: If you are a super-hero, use your X-ray 5-D
vision super-powers.
Option 2: If you are a Jedi knight, use the force.
Option 3: If you are a human, use your math. . . and find a
way to reduce the dimension of your object.

15



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

Tricks of the trade

OK,. . . how do you contruct / visualize / think of a
5-dimensional prismatoid???

Option 1: If you are a super-hero, use your X-ray 5-D
vision super-powers.
Option 2: If you are a Jedi knight, use the force.
Option 3: If you are a human, use your math. . . and find a
way to reduce the dimension of your object.

15



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

Tricks of the trade

OK,. . . how do you contruct / visualize / think of a
5-dimensional prismatoid???

Option 1: If you are a super-hero, use your X-ray 5-D
vision super-powers.
Option 2: If you are a Jedi knight, use the force.
Option 3: If you are a human, use your math. . . and find a
way to reduce the dimension of your object.

15



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

Combinatorics of prismatoids

Analyzing the combinatorics of a d-prismatoid Q can be done
via an intermediate slice . . .

Q+

Q−

Q ∩ H
H

Q

16
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Combinatorics of prismatoids

. . . which equals the Minkowski sum Q+ + Q− of the two bases
Q+ and Q−. The normal fan of Q+ + Q− equals the “superposi-
tion” of those of Q+ and Q−.

+ 1
2

1
2 =
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q+ and Q−.

Remark
The normal fan of a d − 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d − 2-sphere.

Theorem
Let Q be a d-prismatoid with bases Q+ and Q− and let G+ and
G− be the corresponding maps in the (d − 2)-sphere (central
projection of the normal fans of Q+ and Q−). Then, the width of Q
equals 2 plus the minimum number of steps needed to go from
a vertex of G+ to a vertex of G− in (the graph of) the
superposition of the two maps.
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Example: a 3-prismatoid

+ 1
2

1
2 =
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Example: (part of) a 4-prismatoid

4-prismatoid of width > 4
m

pair of (geodesic, polytopal) maps in S2 so that two
steps do not let you go from a blue vertex to a red vertex.
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Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:

Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4-polyhedron with 8 facets and
diameter 5.
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Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:

Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4-polyhedron with 8 facets and
diameter 5.

The Klee-Walkup polytope is an “unbounded 4-spindle”.

What is the corresponding “transversal pair of (geodesic, poly-
topal) maps”?
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Example: The Klee-Walkup (unbounded) 4-spindle
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4-prismatoids have width ≤ 4

“Non-Hirsch” 4-prismatoids do not exist:

Theorem (S.-Stephen-Thomas, 2011)
In every transversal pair of maps in the sphere there is a path
of length two from some blue vertex to some red vertex.

That is to say:

Corollary (S.-Stephen-Thomas, 2011)
Every prismatoid of dimension 4 has width (at most) four.

22
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A 4-dimensional prismatoid of width > 4?

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane . . .
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A 4-dimensional prismatoid of width > 4?

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane . . .

. . . or with finite ones in the torus!
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5-prismatoids of width > 5

To construct 5-dimensional prismatoids we should look at “pairs
of maps” in the 3-sphere.

That is, we want a pair of (geodesic, polytopal) cell
decompositions of the 3-sphere such that if we draw them one
on top of the other (common refinement) there is no path of
length ≤ 3 from a blue vertex to a red vertex.

Main idea: If non-Hirsch pairs of maps exist in the torus we
should have “room enough” to construct it in the 3-sphere as
well . . .
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A 5-prismatoid of width > 5
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A 5-prismatoid of width > 5

Theorem (S. 2012)

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.
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A 5-prismatoid of width > 5

Theorem (S. 2012)

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

Q := conv

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0BBBBBBBBB@

x1 x2 x3 x4 x5
±18 0 0 0 1

0 ±18 0 0 1
0 0 ±45 0 1
0 0 0 ±45 1
±15 ±15 0 0 1

0 0 ±30 ±30 1
0 ±10 ±40 0 1
±10 0 0 ±40 1

1CCCCCCCCCA

0BBBBBBBBB@

x1 x2 x3 x4 x5
0 0 0 ±18 −1
0 0 ±18 0 −1
±45 0 0 0 −1

0 ±45 0 0 −1
0 0 ±15 ±15 −1
±30 ±30 0 0 −1
±40 0 ±10 0 −1

0 ±40 0 ±10 −1

1CCCCCCCCCA

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
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A 5-prismatoid of width > 5

Theorem (S. 2012)

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

Corollary
There is a 43-dimensional polytope with 86 facets and diameter
(at least) 44.
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A 5-prismatoid of width > 5

Proof 1.
It has been verified computationally that the dual graph of Q
(modulo symmetry) has the following structure:

H

C

D J

BA K L

I

E

F

G
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A 5-prismatoid of width > 5

Proof 2.
Check that there are no blue vertex a and red vertex b such
that a is a vertex of the blue cell containing b and b is a vertex
of the red cell containing a.

28



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

Smaller 5-prismatoids of width > 5

With the same ideas

Theorem (Matschke-S.-Weibel, 2013+)
The following 5-prismatoid with 28 vertices (and 274 facets)
has width 6.

Q := conv

8>>>>>>>><>>>>>>>>:

0BBB@
x1 x2 x3 x4 x5
±18 0 0 0 1

0 0 ±30 0 1
0 0 0 ±30 1
0 ±5 0 ±25 1
0 0 ±18 ±18 1

1CCCA
0BBB@

x1 x2 x3 x4 x5
0 0 ±18 0 −1
0 ±30 0 0 −1
±30 0 0 0 −1
±25 0 0 ±5 −1
±18 ±18 0 0 −1

1CCCA

9>>>>>>>>=>>>>>>>>;

Corollary
There is a non-Hirsch polytope of dimension 23 with 46 facets.
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Smaller 5-prismatoids of width > 5

And with some more work:

Theorem (Matschke-Santos-Weibel, 2013+)
There is a 5-prismatoid with 25 vertices and of width 6.

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36,442 vertices,
and diameter 21.
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There is a non-Hirsch polytope of dimension 20 with 40 facets.
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and diameter 21.
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Asymptotic width in dimension five

Theorem (Matschke-Santos-Weibel, 2013+)
There are 5-dimensional prismatoids with n vertices and width
Ω(
√

n).

Sketch of proof
Start with the following “simple, yet more drastic” pair of maps
in the torus.
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Asymptotic width in dimension five
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Asymptotic width in dimension five
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Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in
the 3-sphere.

Complete the tori maps to the whole
3-sphere (you need quadratically
many cells for that).

Between the two tori you basically get
the superposition of the two tori
maps.
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Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

1 Products of several copies of it (dimension increases).
2 Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess
of a d-polytope P with n facets and diameter δ the number

ε(P) :=
δ

n − d
− 1 =

δ − (n − d)

n − d
.

E. g.: The excess of our non-Hirsch polytope with n − d = 20
and with diameter 21 is

21− 20
20

= 5%.
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Many non-Hirsch polytopes

1 Taking products preserves the excess: for each k ∈ N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

2 Gluing several copies (slightly) decreases the excess.

36



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

Many non-Hirsch polytopes

1 Taking products preserves the excess: for each k ∈ N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

2 Gluing several copies (slightly) decreases the excess.

36



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

Many non-Hirsch polytopes

1 Taking products preserves the excess: for each k ∈ N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

2 Gluing several copies (slightly) decreases the excess.

36



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

Many non-Hirsch polytopes

1 Taking products preserves the excess: for each k ∈ N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

2 Gluing several copies (slightly) decreases the excess.

n − d = (n1 + n2 − d)− d = (n1 − d) + (n2 − d)

δ = δ1 + δ2 − 1

δ1
n1−d −1 = δ2

n2−d −1 = ε ⇒ δ
n−d −1 = ε− 1

(n1−d)+(n2−d) .
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Many non-Hirsch polytopes

1 Taking products preserves the excess: for each k ∈ N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

2 Gluing several copies (slightly) decreases the excess.

Corollary
For each k ∈ N there is an infinite family of non-Hirsch
polytopes of fixed dimension 20k and with excess (tending to)

0.05
(

1− 1
k

)
.

36



The d-step Theorem A strong d-step Thm Prismatoids (5-prismatoids) Asymptotic diameter

The excess of a prismatoid

But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width. Will those produce non-Hirsch polytopes
with worst excess?

To analyze the asymptotics of this, let us call excess of a
prismatoid of width δ with n vertices and dimension d the
quantity

δ − d
n − d
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Lemma
Via the strong d-step Theorem, a prismatoid of a certain
excess produces non-Hirsch polytopes of that same excess.

Proof.
The dimension, number of facets and diameter of the
non-Hirsch polytope produced by the strong d-step Theorem
are

n − d , 2(n − d), δ + (n − 2d).

So, its excess is

δ + (n − 2d)− (n − d)

n − d
=
δ − d
n − d

.
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Prismatoids of large width won’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width δ ∼

√
n. . . but their excess tends to zero:

lim
δ − 5
n − 5

= lim
√

n − 5
n − 5

= 0.

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ' αn.

Their excess will now tend to α. So, we still get only polytopes
that violate Hirsch by a constant (“linear” Hirsch bound).

OK, let us try to be more optimistic.

Can we hope for prismatoids of width greater than linear in their
number of vertices?
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Revenge of the linear bound

Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem
The width of a d-dimensional prismatoid with n vertices cannot
exceed 2d−3n.

Proof.
This is a general result for the (dual) diameter of a polytope
[Barnette, Larman, ∼1970].
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Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little
bit:

Theorem (Matschke-S.-Weibel, 2013+)
The width of a 5-dimensional prismatoid with n vertices cannot
exceed n/3 + 1.
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Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little
bit:

Theorem (Matschke-S.-Weibel, 2013+)
The width of a 5-dimensional prismatoid with n vertices cannot
exceed n/3 + 1.

Corollary
Using the Strong d-step Theorem for 5-prismatoids it is
impossible to violate the Hirsch conjecture by more than 33%.
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Thank you

T H E E N D

O F T H E G E O M E T R I C T R I L O G Y

stay tuned for “Episode IV: A New Hope”.
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