Normal complexes and clf's

Connected Layer Multi-families

The Hirsch Conjecture and its relatives (part III of III)

Francisco Santos http://personales.unican.es/santosf

Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria, Spain

SLC'70, Ellwangen — March 25-27, 2013

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry).
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).

• . . .

Remark, in all definitions, n is the number of vertices and d - 1 is the dimension.

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry).
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).

• . . .

Remark, in all definitions, n is the number of vertices and d - 1 is the dimension.

 $H_C(n, d)$

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry).
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).

• . . .

Remark, in all definitions, n is the number of vertices and d - 1 is the dimension.

 $H_C(n, d)$

 $H_{\overline{pm}}(n,d), H_{pm}(n,d)$

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry).
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).

• . . .

Remark, in all definitions, n is the number of vertices and d - 1 is the dimension.

 $H_C(n, d)$

 $H_{\overline{pm}}(n, d), H_{pm}(n, d)$ $H_{\overline{M}}(n, d), H_{M}(n, d)$

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry).
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).

• . . .

Remark, in all definitions, n is the number of vertices and d - 1 is the dimension.

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry).
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).

 $H_C(n,d)$

 $\begin{array}{l} H_{\overline{pm}}(n,d), \ H_{pm}(n,d) \\ H_{\overline{M}}(n,d), \ H_{M}(n,d) \\ H_{S}(n,d), \ H_{B}(n,d), \end{array}$

• . . .

Remark, in all definitions, n is the number of vertices and d - 1 is the dimension.

 $H_C(n, d)$

 $H_{\overline{pm}}(n,d), H_{pm}(n,d)$

 $H_{\overline{M}}(n,d), H_{M}(n,d)$ $H_{S}(n,d), H_{B}(n,d),$

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry).
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).
- . . .

Remark, in all definitions, n is the number of vertices and d - 1 is the dimension.

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry).
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).

• . . .

Remark, in all definitions, n is the number of vertices and d - 1 is the dimension.

 $H_{\bullet}(n, d)$ is the (dual) diameter; two simplices are considered adjacent if they differ by a single vertex.

 $H_C(n,d)$

 $\begin{array}{l} H_{\overline{pm}}(n,d), \ H_{pm}(n,d) \\ . \ \ H_{\overline{M}}(n,d), \ H_{M}(n,d) \\ H_{S}(n,d), \ H_{B}(n,d), \end{array}$

Some easy remarks and a toy example

There are the following relations:

$$egin{array}{rcl} H_{\mathcal{C}}(n,d) &\geq & H_{\overline{pm}}(n,d) &\geq & H_{\overline{M}}(n,d) &\geq & H_{\mathcal{B}}(n,d) \ & & VI & & VI \ & & VI & & VI \ & & H_{pm}(n,d) &\geq & H_{\mathcal{M}}(n,d) &\geq & H_{\mathcal{S}}(n,d) \end{array}$$

In dimension one (graphs):

$$H_C(n,2) = H_{\overline{pm}}(n,2) = H_{\overline{M}}(n,2) = H_B(n,2) = n-1,$$

$$H_{pm}(n,2) = H_M(n,2) = H_S(n,2) = \left\lfloor \frac{n}{2} \right\rfloor,$$

Some easy remarks and a toy example

There are the following relations:

$$\begin{array}{rclcrcl} H_{C}(n,d) & \geq & H_{\overline{pm}}(n,d) & \geq & H_{\overline{M}}(n,d) & \geq & H_{B}(n,d) \\ & & VI & & VI & & VI \\ & & H_{pm}(n,d) & \geq & H_{M}(n,d) & \geq & H_{S}(n,d) \end{array}$$

In dimension one (graphs):

$$H_C(n,2) = H_{\overline{pm}}(n,2) = H_{\overline{M}}(n,2) = H_B(n,2) = n-1,$$

$$H_{pm}(n,2) = H_M(n,2) = H_S(n,2) = \left\lfloor \frac{n}{2} \right\rfloor,$$

Some easy remarks and a toy example

There are the following relations:

$$egin{array}{rcl} \mathcal{H}_{\mathcal{C}}(n,d) &\geq & \mathcal{H}_{\overline{pm}}(n,d) &\geq & \mathcal{H}_{\overline{M}}(n,d) &\geq & \mathcal{H}_{\mathcal{B}}(n,d) \ & & \mathcal{V}I & & \mathcal{V}I & & \mathcal{V}I \ & & \mathcal{H}_{pm}(n,d) &\geq & \mathcal{H}_{\mathcal{M}}(n,d) &\geq & \mathcal{H}_{\mathcal{S}}(n,d) \end{array}$$

In dimension one (graphs):

$$H_{C}(n,2) = H_{\overline{pm}}(n,2) = H_{\overline{M}}(n,2) = H_{B}(n,2) = n-1,$$

 $H_{pm}(n,2) = H_{M}(n,2) = H_{S}(n,2) = \left\lfloor \frac{n}{2} \right\rfloor,$

Normal complexes and clf's

Connected Layer Multi-families

 $H_C(n,d) = H_{\overline{pm}}(n,d)$

Lemma

 $H_C(n, d)$ is attained at a complex whose dual graph is a path.

Corollary $H_C(n, d) = H_{\overline{pm}}(n, d)$

In fact: $H_C(n, d) =$ length of the maximum induced path in the Johnson graph J(n, d).

Normal complexes and clf's

Connected Layer Multi-families

$$H_C(n,d) = H_{\overline{pm}}(n,d)$$

Lemma

 $H_C(n, d)$ is attained at a complex whose dual graph is a path.

Corollary $H_C(n, d) = H_{\overline{pm}}(n, d)$

In fact: $H_C(n, d) =$ length of the maximum induced path in the Johnson graph J(n, d).

Normal complexes and clf's

Connected Layer Multi-families

$$H_C(n,d) = H_{\overline{pm}}(n,d)$$

Lemma

 $H_C(n, d)$ is attained at a complex whose dual graph is a path.

Corollary $H_{\mathcal{C}}(n,d) = H_{\overline{pm}}(n,d)$

In fact: $H_C(n, d) =$ length of the maximum induced path in the Johnson graph J(n, d).

Normal complexes and clf's

Connected Layer Multi-families

$$H_C(n,d) = H_{\overline{pm}}(n,d)$$

Lemma

 $H_C(n, d)$ is attained at a complex whose dual graph is a path.

Corollary
$$H_C(n, d) = H_{\overline{pm}}(n, d)$$

In fact: $H_C(n, d) =$ length of the maximum induced path in the Johnson graph J(n, d).

Bounds on the maximum diameter

In dimension two:

Theorem (S. 2013+)

$$\frac{2}{9}(n-1)^2 < H_C(n,3) = H_{\overline{pm}}(n,3) < \frac{1}{4}n^2.$$

In higher dimension:

Theorem (S. 2013+)

$$H_C(kn, kd) > \frac{1}{2^{k-1}} H_C(n, d)^k.$$

$$\Omega\left(\left(\frac{n}{d}-1\right)^{\frac{2d}{3}}\right) < H_C(n,d) = H_{\overline{pm}}(n,d) < \binom{n}{d-1}.$$

Bounds on the maximum diameter

In dimension two:

Theorem (S. 2013+)

$$\frac{2}{9}(n-1)^2 < H_C(n,3) = H_{\overline{pm}}(n,3) < \frac{1}{4}n^2.$$

In higher dimension:

Theorem (S. 2013+)

$$H_C(kn, kd) > \frac{1}{2^{k-1}} H_C(n, d)^k.$$

$$\Omega\left(\left(\frac{n}{d}-1\right)^{\frac{2d}{3}}\right) < H_C(n,d) = H_{\overline{pm}}(n,d) < \binom{n}{d-1}.$$

Bounds on the maximum diameter

In dimension two:

Theorem (S. 2013+)

$$\frac{2}{9}(n-1)^2 < H_C(n,3) = H_{\overline{pm}}(n,3) < \frac{1}{4}n^2.$$

In higher dimension:

Theorem (S. 2013+)

$$H_{C}(kn,kd) > \frac{1}{2^{k-1}}H_{C}(n,d)^{k}.$$

$$\Omega\left(\left(\frac{n}{d}-1\right)^{\frac{2d}{3}}\right) < H_C(n,d) = H_{\overline{pm}}(n,d) < \binom{n}{d-1}.$$

Bounds on the maximum diameter

In dimension two:

Theorem (S. 2013+)

$$\frac{2}{9}(n-1)^2 < H_C(n,3) = H_{\overline{pm}}(n,3) < \frac{1}{4}n^2.$$

In higher dimension:

Theorem (S. 2013+)

$$H_C(kn,kd) > \frac{1}{2^{k-1}}H_C(n,d)^k.$$

$$\Omega\left(\left(\frac{n}{d}-1\right)^{\frac{2d}{3}}\right) < H_C(n,d) = H_{\overline{pm}}(n,d) < \binom{n}{d-1}.$$

Connected Layer Multi-families

Theorem: $H_{\overline{pm}}(n,3) > \frac{2}{9}(n-1)^2$

Proof.

- 1 Without loss of generality assume n = 3k + 1.
- With the first 2k + 1 vertices, construct k disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into k disjoint Hamiltonian cycles).
- 3 Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- ④ Glue together the k chains using k 1 triangles.

$$(2k+1)k-2>\frac{2}{9}(3k)^2.$$

Connected Layer Multi-families

Theorem:
$$H_{\overline{pm}}(n,3) > \frac{2}{9}(n-1)^2$$

Proof.

• Without loss of generality assume n = 3k + 1.

- With the first 2k + 1 vertices, construct k disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into k disjoint Hamiltonian cycles).
- 3 Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- Glue together the k chains using k 1 triangles.

$$(2k+1)k-2>\frac{2}{9}(3k)^2.$$

Connected Layer Multi-families

Theorem:
$$H_{\overline{pm}}(n,3) > \frac{2}{9}(n-1)^2$$

Proof.

- Without loss of generality assume n = 3k + 1.
- With the first 2k + 1 vertices, construct k disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into k disjoint Hamiltonian cycles).
- 3 Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- Glue together the k chains using k 1 triangles.

$$(2k+1)k-2>\frac{2}{9}(3k)^2.$$

Connected Layer Multi-families

Theorem:
$$H_{\overline{pm}}(n,3) > \frac{2}{9}(n-1)^2$$

Proof.

- Without loss of generality assume n = 3k + 1.
- With the first 2k + 1 vertices, construct k disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into k disjoint Hamiltonian cycles).
- 3 Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- Glue together the k chains using k 1 triangles.

$$(2k+1)k-2>\frac{2}{9}(3k)^2.$$

Connected Layer Multi-families

Theorem:
$$H_{\overline{pm}}(n,3) > \frac{2}{9}(n-1)^2$$

Proof.

- Without loss of generality assume n = 3k + 1.
- With the first 2k + 1 vertices, construct k disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into k disjoint Hamiltonian cycles).
- Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- Glue together the k chains using k 1 triangles.

$$(2k+1)k-2>\frac{2}{9}(3k)^2.$$

Connected Layer Multi-families

Theorem:
$$H_{\overline{pm}}(n,3) > \frac{2}{9}(n-1)^2$$

Proof.

- Without loss of generality assume n = 3k + 1.
- With the first 2k + 1 vertices, construct k disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into k disjoint Hamiltonian cycles).
- Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- Glue together the k chains using k 1 triangles.

$$(2k+1)k-2>\frac{2}{9}(3k)^2.$$

Connected Layer Multi-families

Theorem:
$$H_{\overline{pm}}(n,3) > \frac{2}{9}(n-1)^2$$

Proof.

- Without loss of generality assume n = 3k + 1.
- With the first 2k + 1 vertices, construct k disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into k disjoint Hamiltonian cycles).
- Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- Glue together the k chains using k 1 triangles.

$$(2k+1)k-2>\frac{2}{9}(3k)^2.$$

Connected Layer Multi-families

Theorem: $H_{C}(kn, kd) > \frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

- Let \triangle be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- 2 Take the join Δ^{*k} of k copies of Δ. Δ^{*k} is a complex of dimension kd 1, with kn vertices and whose dual graph is a k-dimensional grid of size H_C(n, d). (It has (H_C(n, d) + 1)^k maximal simplices).
- 3 In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Connected Layer Multi-families

Theorem: $H_{C}(kn, kd) > \frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- 2 Take the join Δ^{*k} of k copies of Δ. Δ^{*k} is a complex of dimension kd − 1, with kn vertices and whose dual graph is a k-dimensional grid of size H_C(n, d). (It has (H_C(n, d) + 1)^k maximal simplices).
- 3 In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Connected Layer Multi-families

Theorem: $H_{C}(kn, kd) > \frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- 2 Take the join ∆^{*k} of k copies of ∆. ∆^{*k} is a complex of dimension kd − 1, with kn vertices and whose dual graph is a k-dimensional grid of size H_C(n, d). (It has (H_C(n, d) + 1)^k maximal simplices).
- In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Connected Layer Multi-families

Theorem: $H_{C}(kn, kd) > \frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- **2** Take the join Δ^{*k} of *k* copies of Δ . Δ^{*k} is a complex of dimension kd 1, with *kn* vertices and whose dual graph is a *k*-dimensional grid of size $H_C(n, d)$. (It has $(H_C(n, d) + 1)^k$ maximal simplices).
- 3 In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Connected Layer Multi-families

Theorem: $H_{C}(kn, kd) > \frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- 2 Take the join Δ^{*k} of k copies of Δ. Δ^{*k} is a complex of dimension kd 1, with kn vertices and whose dual graph is a k-dimensional grid of size H_C(n, d). (It has (H_C(n, d) + 1)^k maximal simplices).
- 3 In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Connected Layer Multi-families

Theorem: $H_{C}(kn, kd) > \frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- **2** Take the join Δ^{*k} of *k* copies of Δ . Δ^{*k} is a complex of dimension kd 1, with *kn* vertices and whose dual graph is a *k*-dimensional grid of size $H_C(n, d)$. (It has $(H_C(n, d) + 1)^k$ maximal simplices).
- 3 In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Connected Layer Multi-families

Theorem: $H_{C}(kn, kd) > \frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- **2** Take the join Δ^{*k} of *k* copies of Δ . Δ^{*k} is a complex of dimension kd 1, with *kn* vertices and whose dual graph is a *k*-dimensional grid of size $H_C(n, d)$. (It has $(H_C(n, d) + 1)^k$ maximal simplices).
- 3 In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Connected Layer Multi-families

So, pure simplicial complexes (even pseudo-manifolds) can have exponential diameters.

What restriction should we put for (having at least hopes of) getting polynomial diameters?

Connected Layer Multi-families

So, pure simplicial complexes (even pseudo-manifolds) can have exponential diameters.

What restriction should we put for (having at least hopes of) getting polynomial diameters?
Normal simplicial complexes

Definition

A pure simplicial complex is called normal if the dual graph of every link is connected. (That is, if every link is strongly connected)

Theorem

- diam(K) ≤ n^{log d+2} [Kalai-Kleitman 1992, Eisenbrand et al. 2010]
- 2 diam(K) $\leq 2^{d-1}n$ [Larman 1970 , Eisenbrand et al. 2010]
- If K is, moreover, flag then diam(K) ≤ n − d (Hirsch bound!) [Adiprasito-Benedetti 2013+]

Normal simplicial complexes

Definition

A pure simplicial complex is called normal if the dual graph of every link is connected. (That is, if every link is strongly connected)

Theorem

- diam(K) ≤ n^{log d+2} [Kalai-Kleitman 1992, Eisenbrand et al. 2010]
- 2 diam $(K) \le 2^{d-1}n$ [Larman 1970, Eisenbrand et al. 2010]
- If K is, moreover, flag then diam(K) ≤ n − d (Hirsch bound!) [Adiprasito-Benedetti 2013+]

Normal simplicial complexes

Definition

A pure simplicial complex is called normal if the dual graph of every link is connected. (That is, if every link is strongly connected)

Theorem

- diam(K) ≤ n^{log d+2} [Kalai-Kleitman 1992, Eisenbrand et al. 2010]
- 2 diam $(K) \leq 2^{d-1}n$ [Larman 1970 , Eisenbrand et al. 2010]
- If K is, moreover, flag then diam(K) ≤ n − d (Hirsch bound!) [Adiprasito-Benedetti 2013+]

Normal simplicial complexes

Definition

A pure simplicial complex is called **normal** if the dual graph of every link is connected. (That is, if every link is strongly connected)

Theorem

- diam(K) ≤ n^{log d+2} [Kalai-Kleitman 1992, Eisenbrand et al. 2010]
- 2 diam $(K) \leq 2^{d-1}n$ [Larman 1970, Eisenbrand et al. 2010]
- ③ If K is, moreover, flag then diam(K) ≤ n − d (Hirsch bound!) [Adiprasito-Benedetti 2013+]

Normal simplicial complexes

Definition

A pure simplicial complex is called normal if the dual graph of every link is connected. (That is, if every link is strongly connected)

Theorem

- diam(K) ≤ n^{log d+2} [Kalai-Kleitman 1992, Eisenbrand et al. 2010]
- 2 diam $(K) \leq 2^{d-1}n$ [Larman 1970, Eisenbrand et al. 2010]
- If K is, moreover, flag then diam(K) ≤ n − d (Hirsch bound!) [Adiprasito-Benedetti 2013+]

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset [n]$ with $|u| \ge 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

- If *K* is flag then, with the "spherical right-angled metric" for every simplex, every star in *K* is *geodesically convex* [Gromov'87]
- Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again).
- The fact that *K* is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset [n]$ with $|u| \ge 3$ then $u \in K$.

Equivalently, the Stanley-Reisner ring of K is generated in degree two.

- If *K* is flag then, with the "spherical right-angled metric" for every simplex, every star in *K* is *geodesically convex* [Gromov'87]
- Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again).
- The fact that *K* is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset [n]$ with $|u| \ge 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

- If *K* is flag then, with the "spherical right-angled metric" for every simplex, every star in *K* is *geodesically convex* [Gromov'87]
- Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again).
- The fact that *K* is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset [n]$ with $|u| \ge 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

- If *K* is flag then, with the "spherical right-angled metric" for every simplex, every star in *K* is *geodesically convex* [Gromov'87]
- Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again).
- The fact that *K* is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset [n]$ with $|u| \ge 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

- If K is flag then, with the "spherical right-angled metric" for every simplex, every star in K is geodesically convex [Gromov'87]
- Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again).
- The fact that *K* is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset [n]$ with $|u| \ge 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

- If K is flag then, with the "spherical right-angled metric" for every simplex, every star in K is geodesically convex [Gromov'87]
- Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again).
- The fact that *K* is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset [n]$ with $|u| \ge 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

- If K is flag then, with the "spherical right-angled metric" for every simplex, every star in K is geodesically convex [Gromov'87]
- Hence, every geodesic path *γ* between the interior of two simplices *u* and *v* of *K* is non-revisiting (it never abandons a star and then enter it again).
- The fact that *K* is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

The Kalai-Kleitman and Larman bounds follow from more general arguments. They are actually valid for connected layer families.

Definition (Eisenbrand et al. 2010)

A connected layer family (CLF) of rank *d* on *n* symbols is a pure simplicial complex Δ of dimension *d* - 1 with *n* vertices, together with a map

$\lambda: \mathsf{facets}(\Delta) \to \mathbb{Z}$

Normal complexes and clf's

Connected Layer Multi-families

Connected layer families

The Kalai-Kleitman and Larman bounds follow from more general arguments. They are actually valid for connected layer families.

Definition (Eisenbrand et al. 2010)

A connected layer family (CLF) of rank *d* on *n* symbols is a pure simplicial complex Δ of dimension *d* - 1 with *n* vertices, together with a map

$\lambda: \mathsf{facets}(\Delta) o \mathbb{Z}$

Normal complexes and clf's

Connected Layer Multi-families

Connected layer families

The Kalai-Kleitman and Larman bounds follow from more general arguments. They are actually valid for connected layer families.

Definition (Eisenbrand et al. 2010)

A connected layer family (CLF) of rank *d* on *n* symbols is a pure simplicial complex Δ of dimension *d* - 1 with *n* vertices, together with a map

$\lambda : \mathsf{facets}(\Delta) \to \mathbb{Z}$

The Kalai-Kleitman and Larman bounds follow from more general arguments. They are actually valid for connected layer families.

Definition (Eisenbrand et al. 2010)

A connected layer family (CLF) of rank *d* on *n* symbols is a pure simplicial complex Δ of dimension *d* - 1 with *n* vertices, together with a map

$\lambda : \mathsf{facets}(\Delta) \to \mathbb{Z}$

The Kalai-Kleitman and Larman bounds follow from more general arguments. They are actually valid for connected layer families.

```
Definition (Eisenbrand et al. 2010)
```

A connected layer family (CLF) of rank *d* on *n* symbols is a pure simplicial complex Δ of dimension *d* - 1 with *n* vertices, together with a map

 $\lambda : \mathsf{facets}(\Delta) \to \mathbb{Z}$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.

The length of a CLF is the difference between the maximum and the minimum values taken by λ .

The Kalai-Kleitman and Larman bounds follow from more general arguments. They are actually valid for connected layer families.

```
Definition (Eisenbrand et al. 2010)
```

A connected layer family (CLF) of rank *d* on *n* symbols is a pure simplicial complex Δ of dimension *d* - 1 with *n* vertices, together with a map

 $\lambda : \mathsf{facets}(\Delta) \to \mathbb{Z}$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.

The length of a CLF is the difference between the maximum and the minimum values taken by λ .

Example: A CLF of rank 2 and length $\sim 3n/2$

λ			2							
		13	14 23		35	36		57	58	
Δ	12			34			56			78
		24	23	34	46	45		68	67	

Let $H_{clf}(n, d) :=$ max length of a CLF of rank d on n symbols. The example shows that:

$$H_{clf}(n,2) \ge \left\lfloor \frac{3n}{2}
ight
floor$$

Example: A CLF of rank 2 and length $\sim 3n/2$

λ									8	
		13	14		35	36		57	58 67	
Δ	12			34			56			78
		24	23		46	45		68	67	

Let $H_{clf}(n, d) :=$ max length of a CLF of rank d on n symbols. The example shows that:

$$H_{clf}(n,2) \geq \left\lfloor rac{3n}{2}
ight
floor$$

Two properties of c.l.f.'s

- The clf property is hereditary via links: If Δ is a clf, every link in it (together with the same map λ) is a clf.
- "Conversely", if a pure simplicial complex △ is normal (every link has a connected dual graph), then △ is a clf with respect to the map

$$\lambda(v)=d(u,v),$$

for any "origin simplex" u.

Let $H_{clf}(n, d)$ be the maximum length of clf's of rank d on n elements.

Two properties of c.l.f.'s

- The clf property is hereditary via links: If Δ is a clf, every link in it (together with the same map λ) is a clf.
- "Conversely", if a pure simplicial complex Δ is normal (every link has a connected dual graph), then Δ is a clf with respect to the map

$$\lambda(\mathbf{v})=\mathbf{d}(\mathbf{u},\mathbf{v}),$$

for any "origin simplex" u.

Let $H_{clf}(n, d)$ be the maximum length of clf's of rank d on n elements.

Two properties of c.l.f.'s

- The clf property is hereditary via links: If Δ is a clf, every link in it (together with the same map λ) is a clf.
- "Conversely", if a pure simplicial complex Δ is normal (every link has a connected dual graph), then Δ is a clf with respect to the map

$$\lambda(\mathbf{v})=\mathbf{d}(\mathbf{u},\mathbf{v}),$$

for any "origin simplex" u.

Let $H_{clf}(n, d)$ be the maximum length of clf's of rank d on n elements.

$H_{clf}(n,d) \leq n^{\log_2 d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$H_{clf}(n,d) \leq 2H_{clf}(\lfloor n/2 \rfloor,d) + H_{clf}(n-1,d-1) + 2.$$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each i ∈ N, let U_i be the *i*-neighborhood of u (the union of the first i + 1 layers, that is, those at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{i_0}$ having a common vertex. Then:

$$d(u', v') \leq H_{clf}(n-1, d-1).$$

So: $d(u, v) \le d(u, u') + d(u', v') + d(v', v) \le \le 2H_{clf}(\lfloor n/2 \rfloor, d) + H_{clf}(n-1, d-1) + 2.$

$H_{clf}(n, d) \leq n^{\log_2 d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

 $H_{clf}(n,d) \leq 2H_{clf}(\lfloor n/2 \rfloor,d) + H_{clf}(n-1,d-1) + 2.$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each i ∈ N, let U_i be the *i*-neighborhood of U (the union of the first i + 1 layers, that is, those at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

$$d(u', v') \leq H_{clf}(n-1, d-1).$$

So: $d(u, v) \le d(u, u') + d(u', v') + d(v', v) \le \le 2H_{clf}(\lfloor n/2 \rfloor, d) + H_{clf}(n - 1, d - 1) + 2.$

$$H_{clf}(n, d) \leq n^{\log_2 d+2}$$
 (Kalai-Kleitman bound)

 $H_{clf}(n,d) \leq 2H_{clf}(\lfloor n/2 \rfloor,d) + H_{clf}(n-1,d-1) + 2.$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each i ∈ N, let U_i be the *i*-neighborhood of u (the union of the first i + 1 layers, that is, those at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{i_0}$ having a common vertex. Then:

$$d(u', v') \leq H_{clf}(n-1, d-1).$$

So: $d(u, v) \le d(u, u') + d(u', v') + d(v', v) \le \le 2H_{clf}(\lfloor n/2 \rfloor, d) + H_{clf}(n-1, d-1) + 2.$

$$H_{clf}(n, d) \leq n^{\log_2 d+2}$$
 (Kalai-Kleitman bound)

 $H_{clf}(n,d) \leq 2H_{clf}(\lfloor n/2 \rfloor,d) + H_{clf}(n-1,d-1) + 2.$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each i ∈ N, let U_i be the *i*-neighborhood of u (the union of the first i + 1 layers, that is, those at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

 $d(u', v') \leq H_{clf}(n-1, d-1).$

So: $d(u, v) \le d(u, u') + d(u', v') + d(v', v) \le \le 2H_{clf}(\lfloor n/2 \rfloor, d) + H_{clf}(n - 1, d - 1) + 2.$

$$H_{clf}(n, d) \leq n^{\log_2 d+2}$$
 (Kalai-Kleitman bound)

 $H_{clf}(n,d) \leq 2H_{clf}(\lfloor n/2 \rfloor,d) + H_{clf}(n-1,d-1) + 2.$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each i ∈ N, let U_i be the *i*-neighborhood of u (the union of the first i + 1 layers, that is, those at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

 $d(u', v') \leq H_{clf}(n-1, d-1).$

So: $d(u, v) \le d(u, u') + d(u', v') + d(v', v) \le \le 2H_{clf}(\lfloor n/2 \rfloor, d) + H_{clf}(n - 1, d - 1) + 2.$

$$H_{clf}(n, d) \leq n^{\log_2 d+2}$$
 (Kalai-Kleitman bound)

 $H_{clf}(n,d) \leq 2H_{clf}(\lfloor n/2 \rfloor,d) + H_{clf}(n-1,d-1) + 2.$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each i ∈ N, let U_i be the *i*-neighborhood of u (the union of the first i + 1 layers, that is, those at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

$$d(u', v') \leq H_{clf}(n-1, d-1).$$

So: $d(u, v) \le d(u, u') + d(u', v') + d(v', v) \le \le 2H_{clf}(\lfloor n/2 \rfloor, d) + H_{clf}(n-1, d-1) + 2d$

$$H_{clf}(n, d) \leq n^{\log_2 d+2}$$
 (Kalai-Kleitman bound)

 $H_{clf}(n,d) \leq 2H_{clf}(\lfloor n/2 \rfloor,d) + H_{clf}(n-1,d-1) + 2.$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each i ∈ N, let U_i be the *i*-neighborhood of u (the union of the first i + 1 layers, that is, those at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{j_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

$$d(u', v') \leq H_{clf}(n-1, d-1).$$

So: $d(u, v) \le d(u, u') + d(u', v') + d(v', v) \le \le 2H_{clf}(\lfloor n/2 \rfloor, d) + H_{clf}(n-1, d-1) + 2$

$$H_{clf}(n, d) \leq n^{\log_2 d+2}$$
 (Kalai-Kleitman bound)

 $H_{clf}(n,d) \leq 2H_{clf}(\lfloor n/2 \rfloor,d) + H_{clf}(n-1,d-1) + 2.$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each i ∈ N, let U_i be the *i*-neighborhood of u (the union of the first i + 1 layers, that is, those at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

$$d(u', v') \leq H_{clf}(n-1, d-1).$$

So:
$$d(u, v) \leq d(u, u') + d(u', v') + d(v', v) \leq \leq 2H_{clf}(\lfloor n/2 \rfloor, d) + H_{clf}(n-1, d-1) + 2.$$

Normal complexes and clf's

Connected Layer Multi-families

$H_{clf}(n,d) \leq 2^{d-1}n$ (Larman bound)

By induction on *d*. The case d = 1 is trivial. For higher *d*: Let U_1 be the maximum interval of layers starting with the first one and such that all layers in U_1 use some common element. Let U_2 be the maximum interval of layers starting with the first one after U_1 and such that all layers in U_2 use some common element. Etc.

Let *k* be the number of pieces U_i that we get. Let n_i be the number of elements used in the *i*-th piece U_i . Then:

- $\text{length}(U_i) \le H_{clf}(n_i 1, d 1) \le 2^{d-2}(n_i 1)$
- Each element is used in at most two of the $U_i \Delta$'s $\Rightarrow \sum n_i \leq 2n$.

$$\begin{aligned} \mathsf{length}(\Delta) &\leq \sum \mathsf{length}(U_i) + (k-1) \\ &\leq 2^{d-2}(2n-k) + (k-1) \leq 2^{d-1}n \end{aligned}$$

$H_{clf}(n,d) \leq 2^{d-1}n$ (Larman bound)

By induction on *d*. The case d = 1 is trivial. For higher *d*:

Let U_1 be the maximum interval of layers starting with the first one and such that all layers in U_1 use some common element. Let U_2 be the maximum interval of layers starting with the first one after U_1 and such that all layers in U_2 use some common element. Etc.

Let *k* be the number of pieces U_i that we get. Let n_i be the number of elements used in the *i*-th piece U_i . Then:

- $\text{length}(U_i) \le H_{clf}(n_i 1, d 1) \le 2^{d-2}(n_i 1)$
- Each element is used in at most two of the $U_i \Delta$'s $\Rightarrow \sum n_i \leq 2n$.

$$\begin{aligned} \mathsf{length}(\Delta) &\leq \sum \mathsf{length}(U_i) + (k-1) \\ &\leq 2^{d-2}(2n-k) + (k-1) \leq 2^{d-1}n \end{aligned}$$

$H_{clf}(n,d) \leq 2^{d-1}n$ (Larman bound)

By induction on *d*. The case d = 1 is trivial. For higher *d*:

Let U_1 be the maximum interval of layers starting with the first one and such that all layers in U_1 use some common element. Let U_2 be the maximum interval of layers starting with the first one after U_1 and such that all layers in U_2 use some common element. Etc.

Let *k* be the number of pieces U_i that we get. Let n_i be the number of elements used in the *i*-th piece U_i . Then:

- $\text{length}(U_i) \le H_{clf}(n_i 1, d 1) \le 2^{d-2}(n_i 1)$
- Each element is used in at most two of the $U_i \Delta$'s $\Rightarrow \sum n_i \leq 2n$.

$$\begin{aligned} \mathsf{length}(\Delta) &\leq \sum \mathsf{length}(U_i) + (k-1) \\ &\leq 2^{d-2}(2n-k) + (k-1) \leq 2^{d-1}n \end{aligned}$$

$H_{clf}(n,d) \leq 2^{d-1}n$ (Larman bound)

By induction on *d*. The case d = 1 is trivial. For higher *d*: Let U_1 be the maximum interval of layers starting with the first one and such that all layers in U_1 use some common element. Let U_2 be the maximum interval of layers starting with the first one after U_1 and such that all layers in U_2 use some common element. Etc.

Let *k* be the number of pieces U_i that we get. Let n_i be the number of elements used in the *i*-th piece U_i . Then:

- $\text{length}(U_i) \le H_{clf}(n_i 1, d 1) \le 2^{d-2}(n_i 1)$
- Each element is used in at most two of the $U_i \Delta$'s $\Rightarrow \sum n_i \leq 2n$.

$$\begin{aligned} \mathsf{length}(\Delta) &\leq \sum \mathsf{length}(U_i) + (k-1) \\ &\leq 2^{d-2}(2n-k) + (k-1) \leq 2^{d-1}n \end{aligned}$$

Normal complexes and clf's

Connected Layer Multi-families

$H_{clf}(n,d) \leq 2^{d-1}n$ (Larman bound)

By induction on *d*. The case d = 1 is trivial. For higher *d*: Let U_1 be the maximum interval of layers starting with the first one and such that all layers in U_1 use some common element. Let U_2 be the maximum interval of layers starting with the first one after U_1 and such that all layers in U_2 use some common element. Etc.

Let k be the number of pieces U_i that we get. Let n_i be the number of elements used in the *i*-th piece U_i . Then:

- $\text{length}(U_i) \le H_{clf}(n_i 1, d 1) \le 2^{d-2}(n_i 1)$
- Each element is used in at most two of the $U_i \Delta$'s $\Rightarrow \sum n_i \leq 2n$.

$$\begin{aligned} \mathsf{length}(\Delta) &\leq \sum \mathsf{length}(U_i) + (k-1) \\ &\leq 2^{d-2}(2n-k) + (k-1) \leq 2^{d-1}n \end{aligned}$$
Connected Layer Multi-families

$H_{clf}(n,d) \leq 2^{d-1}n$ (Larman bound)

By induction on *d*. The case d = 1 is trivial. For higher *d*: Let U_1 be the maximum interval of layers starting with the first one and such that all layers in U_1 use some common element. Let U_2 be the maximum interval of layers starting with the first one after U_1 and such that all layers in U_2 use some common element. Etc.

Let *k* be the number of pieces U_i that we get. Let n_i be the number of elements used in the *i*-th piece U_i . Then:

- $\text{length}(U_i) \le H_{clf}(n_i 1, d 1) \le 2^{d-2}(n_i 1)$
- Each element is used in at most two of the $U_i \Delta$'s $\Rightarrow \sum n_i \leq 2n$.

$$\begin{aligned} \mathsf{length}(\Delta) &\leq \sum \mathsf{length}(U_i) + (k-1) \\ &\leq 2^{d-2}(2n-k) + (k-1) \leq 2^{d-1}n \end{aligned}$$

$H_{clf}(n,d) \leq 2^{d-1}n$ (Larman bound)

By induction on *d*. The case d = 1 is trivial. For higher *d*: Let U_1 be the maximum interval of layers starting with the first one and such that all layers in U_1 use some common element. Let U_2 be the maximum interval of layers starting with the first one after U_1 and such that all layers in U_2 use some common element. Etc.

Let *k* be the number of pieces U_i that we get. Let n_i be the number of elements used in the *i*-th piece U_i . Then:

- length(U_i) $\leq H_{clf}(n_i 1, d 1) \leq 2^{d-2}(n_i 1)$
- Each element is used in at most two of the $U_i \Delta$'s $\Rightarrow \sum n_i \leq 2n$.

$$\begin{aligned} \mathsf{length}(\Delta) &\leq \sum \mathsf{length}(U_i) + (k-1) \\ &\leq 2^{d-2}(2n-k) + (k-1) \leq 2^{d-1}n \end{aligned}$$

$H_{clf}(n,d) \leq 2^{d-1}n$ (Larman bound)

By induction on *d*. The case d = 1 is trivial. For higher *d*: Let U_1 be the maximum interval of layers starting with the first one and such that all layers in U_1 use some common element. Let U_2 be the maximum interval of layers starting with the first one after U_1 and such that all layers in U_2 use some common element. Etc.

Let *k* be the number of pieces U_i that we get. Let n_i be the number of elements used in the *i*-th piece U_i . Then:

- $length(U_i) \le H_{clf}(n_i 1, d 1) \le 2^{d-2}(n_i 1)$
- Each element is used in at most two of the $U_i \Delta$'s $\Rightarrow \sum n_i \leq 2n$.

$$\begin{aligned} \mathsf{length}(\Delta) &\leq \sum \mathsf{length}(U_i) + (k-1) \\ &\leq 2^{d-2}(2n-k) + (k-1) \leq 2^{d-1}n \end{aligned}$$

Connected Layer Multi-families

$H_{clf}(n,d) \leq 2^{d-1}n$ (Larman bound)

By induction on *d*. The case d = 1 is trivial. For higher *d*: Let U_1 be the maximum interval of layers starting with the first one and such that all layers in U_1 use some common element. Let U_2 be the maximum interval of layers starting with the first one after U_1 and such that all layers in U_2 use some common element. Etc.

Let *k* be the number of pieces U_i that we get. Let n_i be the number of elements used in the *i*-th piece U_i . Then:

- length(U_i) $\leq H_{clf}(n_i 1, d 1) \leq 2^{d-2}(n_i 1)$
- Each element is used in at most two of the $U_i \Delta$'s $\Rightarrow \sum n_i \leq 2n$.

$$length(\Delta) \leq \sum length(U_i) + (k-1)$$
$$\leq 2^{d-2}(2n-k) + (k-1) \leq 2^{d-1}n$$

Connected Layer Multi-families

$H_{clf}(n,d) \leq 2^{d-1}n$ (Larman bound)

By induction on *d*. The case d = 1 is trivial. For higher *d*: Let U_1 be the maximum interval of layers starting with the first one and such that all layers in U_1 use some common element. Let U_2 be the maximum interval of layers starting with the first one after U_1 and such that all layers in U_2 use some common element. Etc.

Let *k* be the number of pieces U_i that we get. Let n_i be the number of elements used in the *i*-th piece U_i . Then:

- length(U_i) $\leq H_{clf}(n_i 1, d 1) \leq 2^{d-2}(n_i 1)$
- Each element is used in at most two of the $U_i \Delta$'s $\Rightarrow \sum n_i \leq 2n$.

$$\begin{aligned} \text{length}(\Delta) &\leq \sum_{i=1}^{l} \text{length}(U_i) + (k-1) \\ &\leq 2^{d-2}(2n-k) + (k-1) \leq 2^{d-1}n \end{aligned}$$

Connected Layer Multi-families

A further generalization:

Definition (Hähnle@polymath3, 2010)

A further generalization:

Definition (Hähnle@polymath3, 2010)

A further generalization:

Definition (Hähnle@polymath3, 2010)

4	4 CI		ot len	gth d	(<i>n</i> – 1):						
$\lambda \mid$ 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10 \mid 11 \mid 12												
	λ	3	4	5	6	7	8	9	10	11	12	
	Δ	111	112	113	114	124	134	144	244	344	444	
				122	123	133	224	234	334			
				113 122	222	223	233	333				

A further generalization:

Definition (Hähnle@polymath3, 2010)

/	Ano ⁻	ther C	CLMF	of ler	ngth d	d(n –	1):				
	λ	3	4	5	6	7 223	8	9	10	11	12
	Δ	111	112	122	222	223	233	333	334	344	444

Complete and injective clmf's

"Complete" and "injective" clmf's are (the) two extremal cases.

It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)

"Complete" and "injective" clmf's are (the) two extremal cases.

A comp	lete CLMF	[:] of length d((n - 1)	1

				6						
Δ	111	112	113	114	124	134	144	244	344	444
			122	123	133	224	234	334		
				222	223	233	333			

It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)

"Complete" and "injective" clmf's are (the) two extremal cases.

/	An i	njecti	ve CL	.MF o	f leng	th d	<i>n</i> – 1):			
	λ	3	4	5	6	7	8	9	10	11	12
	Δ	111	112	122	222	223	233	333	10 334	344	444

It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)

"Complete" and "injective" clmf's are (the) two extremal cases.

An i	njecti	ve CL	.MF o	f leng	th d	<i>n</i> – 1):			
λ	3	4	5	6	7	8	9	10	11	12 444
Δ	111	112	122	222	223	233	333	334	344	444

It turns out that in these two cases:

Theorem (Hahnle et al@polymath3, 2010) A Connected Layer (Multi)-Family with λ injective or Lcomplete cannot have length greater than d(n - 1).

"Complete" and "injective" clmf's are (the) two extremal cases.

An i	njecti	ve CL	.MF o	f leng	th d(<i>n</i> – 1):			
λ	3	4	5	6	7	8	9	10 334	11	12
Δ	111	112	122	222	223	233	333	334	344	444

It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)

"Complete" and "injective" clmf's are (the) two extremal cases.

A complete CLMF of length d(n-1):

				6						
Δ	11	11		114					344	444
			122	123	133	224	234	334		
				222	223	233	333			

It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)

Connected Layer Multi-families

Hähnle's Conjecture

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)

The length of a clmf of rank d on n symbols cannot exceed

d(*n* – 1).

Theorem (Hähnle@polymath3, 2010)

The lengths of clmf's still satisfy the Kalai-Kleitman ($n^{\log d+1}$) and the Larman-Barnette ($2^{d-1}n$) bounds.

Connected Layer Multi-families

Hähnle's Conjecture

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)

The length of a clmf of rank d on n symbols cannot exceed

d(n-1).

Theorem (Hähnle@polymath3, 2010)

The lengths of clmf's still satisfy the Kalai-Kleitman ($n^{\log d+1}$) and the Larman-Barnette ($2^{d-1}n$) bounds.

Connected Layer Multi-families

Hähnle's Conjecture

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)

The length of a clmf of rank d on n symbols cannot exceed

d(n-1).

Theorem (Hähnle@polymath3, 2010)

The lengths of clmf's still satisfy the Kalai-Kleitman $(n^{\log d+1})$ and the Larman-Barnette $(2^{d-1}n)$ bounds.

Connected Layer Multi-families

A New Hope

Hähnle's Conjecture has been checked for all the values of n and d satisfying $n \le 3$, $d \le 2$, $n + d \le 11$, or $6n + d \le 37$.

If true, it would imply:

Conjecture

The diameter of a *d*-polytope with *n*-facets cannot exceed

d(n-d) + 1.

Connected Layer Multi-families

A New Hope

Hähnle's Conjecture has been checked for all the values of *n* and *d* satisfying $n \le 3$, $d \le 2$, $n + d \le 11$, or $6n + d \le 37$.

If true, it would imply:

Conjecture

The diameter of a *d*-polytope with *n*-facets cannot exceed

d(n-d) + 1.

Connected Layer Multi-families

A New Hope

Hähnle's Conjecture has been checked for all the values of *n* and *d* satisfying $n \le 3$, $d \le 2$, $n + d \le 11$, or $6n + d \le 37$.

If true, it would imply:

Conjecture

The diameter of a *d*-polytope with *n*-facets cannot exceed

d(n-d) + 1.

Connected Layer Multi-families

A concrete open case

For connected layer multifamilies of rank 3 we know:

• There are clfm's of rank 3 and length 3(n-1).

Question

What is the sharp bound? $3(= d)?, 4(= 2^{d-1})?$

Connected Layer Multi-families

A concrete open case

For connected layer multifamilies of rank 3 we know:

• There are clfm's of rank 3 and length 3(n-1).

Connected Layer Multi-families

A concrete open case

For connected layer multifamilies of rank 3 we know:

• There are clfm's of rank 3 and length 3(n-1).

Connected Layer Multi-families

A concrete open case

For connected layer multifamilies of rank 3 we know:

• There are clfm's of rank 3 and length 3(n-1).

An CLMF of rank 3 and length 3(n-1):

λ	3	4	5	6	7	8	9	10	11	12	• • •
Δ	111	112	122	222	223	233	333	334	344	444	• • • •
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Wha	at is th		rp boi	und?							

A concrete open case

For connected layer multifamilies of rank 3 we know:

- There are clfm's of rank 3 and length 3(n-1).
- Every clfm of rank 3 has length $\leq 4(n-1)$.

Question What is the sharp bound? 3(=d)?, $4(=2^{d-1})$?

Connected Layer Multi-families

A concrete open case

For connected layer multifamilies of rank 3 we know:

- There are clfm's of rank 3 and length 3(n-1).
- Every clfm of rank 3 has length $\leq 4(n-1)$.

QuestionWhat is the sharp bound?3(=d)?, $4(=2^{d-1})$?

A concrete open case

For connected layer multifamilies of rank 3 we know:

- There are clfm's of rank 3 and length 3(n-1).
- Every clfm of rank 3 has length $\leq 4(n-1)$.

Question

What is the sharp bound? 3(= d)?, $4(= 2^{d-1})$?

A concrete open case

For connected layer multifamilies of rank 3 we know:

- There are clfm's of rank 3 and length 3(n-1).
- Every clfm of rank 3 has length $\leq 4(n-1)$.

Question

What is the sharp bound? 3(= d)?, $4(= 2^{d-1})$?

Simplicial complexes

Normal complexes and clf's

Connected Layer Multi-families

Thank you

THE END

21

Simplicial complexes

Normal complexes and clf's

Connected Layer Multi-families

THE END

21