The Hirsch Conjecture and its relatives (part III of III)

Francisco Santos http://personales.unican.es/santosf

Departamento de Matemáticas, Estadística y Computación
Universidad de Cantabria, Spain

$$
\text { SLC'70, Ellwangen } \quad \text { March 25-27, } 2013
$$

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for
example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry)
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).

Remark, in all definitions, n is the number of vertices and $d-1$
is the dimension.
$H_{0}(n, d)$ is the (dual) diameter; two simplices are considered adjacent if they differ by a single vertex.

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry).
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls)

Remark, in all definitions, n is the number of vertices and $d-1$
is the dimension.
$H_{0}(n, d)$ is the (dual) diameter; two simplices are considered adjacent if they differ by a single vertex.

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.

$$
H_{C}(n, d)
$$

- Pseudo-manifolds (w. or wo. bdry).
- Simplicial manifolds (w. or wo. bdry). - Simplicial spheres (or balls).

Remark, in all definitions, n is the number of vertices and $d-1$ is the dimension.
$H_{0}(n, d)$ is the (dual) diameter; two simplices are considered adjacent if they differ by a single vertex.

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes. $H_{C}(n, d)$
- Pseudo-manifolds (w. or wo. bdry). $\quad H_{p m}(n, d), H_{p m}(n, d)$ - Simplicial spheres (or balls)

Remark, in all definitions, n is the number of vertices and $d-1$ is the dimension.
$H_{0}(n, d)$ is the (dual) diameter; two simplices are considered adjacent if they differ by a single vertex.

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry). $\quad H_{p m}(n, d), H_{p m}(n, d)$
- Simplicial manifolds (w. or wo. bdry). $\quad H_{\bar{M}}(n, d), H_{M}(n, d)$

Remark, in all definitions, n is the number of vertices and $d-1$
 is the dimension.
 $H_{0}(n, d)$ is the (dual) diameter; two simplices are considered adjacent if they differ by a single vertex.

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
$H_{C}(n, d)$
- Pseudo-manifolds (w. or wo. bdry). $H_{\overline{p m}}(n, d), H_{p m}(n, d)$
- Simplicial manifolds (w. or wo. bdry). $H_{M}(n, d), H_{M}(n, d)$
- Simplicial spheres (or balls). $H_{S}(n, d), H_{B}(n, d)$,
- ...

Remark, in all definitions, n is the number of vertices and $d-1$ is the dimension.
$H_{0}(n, d)$ is the (dual) diameter; two simplices are considered adjacent if they differ by a single vertex.

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry). $\quad H_{p m}(n, d), H_{p m}(n, d)$
- Simplicial manifolds (w. or wo. bdry). $\quad H_{M}(n, d), H_{M}(n, d)$
- Simplicial spheres (or balls). $\quad H_{S}(n, d), H_{B}(n, d)$,
- ...

Remark, in all definitions, n is the number of vertices and $d-1$ is the dimension.
$H_{0}(n, d)$ is the (dual) diameter; two simplices are considered adjacent if they differ by a single vertex.

If you cannot beat'em, generalize'em

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes? We can, for example, consider:

- Pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry).
- Simplicial manifolds (w. or wo. bdry). $H_{M}(n, d), H_{M}(n, d)$
- Simplicial spheres (or balls). $H_{S}(n, d), H_{B}(n, d)$,
- ...

Remark, in all definitions, n is the number of vertices and $d-1$ is the dimension.
$H_{\bullet}(n, d)$ is the (dual) diameter; two simplices are considered adjacent if they differ by a single vertex.

Some easy remarks and a toy example

There are the following relations:

In dimension one (graphs):

$$
\begin{gathered}
H_{C}(n, 2)=H_{\overline{p m}}(n, 2)=H_{\bar{M}}(n, 2)=H_{B}(n, 2)=n-1 \\
H_{p m}(n, 2)=H_{M}(n, 2)=H_{S}(n, 2)=\left\lfloor\frac{n}{2}\right\rfloor
\end{gathered}
$$

Some easy remarks and a toy example

There are the following relations:

$$
\begin{array}{r}
H_{C}(n, d) \geq H_{p m}(n, d) \geq H_{M}(n, d) \geq H_{B}(n, d) \\
V I \\
V I \\
H_{p m}(n, d) \geq H_{M}(n, d) \geq H_{S}(n, d)
\end{array}
$$

In dimension one (graphs):

$$
H_{p m}(n, 2)=H_{M}(n, 2)=H_{S}(n, 2)=\left\lfloor\frac{n}{2}\right\rfloor
$$

Some easy remarks and a toy example

There are the following relations:

$$
\begin{array}{r}
H_{C}(n, d) \geq H_{p m}(n, d) \geq H_{M}(n, d) \geq H_{B}(n, d) \\
V I \\
V I \\
H_{p m}(n, d) \geq H_{M}(n, d) \geq H_{S}(n, d)
\end{array}
$$

In dimension one (graphs):

$$
\begin{gathered}
H_{C}(n, 2)=H_{\overline{p m}}(n, 2)=H_{\bar{M}}(n, 2)=H_{B}(n, 2)=n-1, \\
H_{p m}(n, 2)=H_{M}(n, 2)=H_{S}(n, 2)=\left\lfloor\frac{n}{2}\right\rfloor
\end{gathered}
$$

$H_{C}(n, d)=H_{p m}(n, d)$

Lemma

$H_{C}(n, d)$ is attained at a complex whose dual graph is a path.

Corollary
$H_{C}(n, d)=H_{k}(n, d)$

In fact: $H_{C}(n, d)=$ length of the maximum induced path in the Johnson graph $J(n, d)$.
(Johnson graph:= adjacency graph of the full simplicial complex = basis exchange graph of the uniform matroid $M(n, d)$)

$H_{C}(n, d)=H_{p m}(n, d)$

Lemma

$H_{C}(n, d)$ is attained at a complex whose dual graph is a path.

Corollary

$H_{C}(n, d)=H_{\overline{p m}}(n, d)$
In fact: $H_{C}(n, d)=$ length of the maximum induced path in the Johnson graph $J(n, d)$.
(Johnson graph:= adjacency graph of the full simplicial complex = basis exchange graph of the uniform matroid $M(n, d)$)

$H_{C}(n, d)=H_{p m}(n, d)$

Lemma

$H_{C}(n, d)$ is attained at a complex whose dual graph is a path.

Corollary

$H_{C}(n, d)=H_{\overline{p m}}(n, d)$

In fact: $H_{C}(n, d)=$ length of the maximum induced path in the Johnson graph $J(n, d)$.
(Johnson graph:= adjacency graph of the full simplicial complex
= basis exchange graph of the uniform matroid $M(n, d)$)

$H_{C}(n, d)=H_{p m}(n, d)$

Lemma

$H_{C}(n, d)$ is attained at a complex whose dual graph is a path.

Corollary
$H_{C}(n, d)=H_{\overline{p m}}(n, d)$

In fact: $H_{C}(n, d)=$ length of the maximum induced path in the Johnson graph $J(n, d)$.
(Johnson graph:= adjacency graph of the full simplicial complex = basis exchange graph of the uniform matroid $M(n, d)$)

Bounds on the maximum diameter

In dimension two:

Theorem (S. 2013+)

$$
\frac{2}{9}(n-1)^{2}<H_{C}(n, 3)=H_{p m}(n, 3)<\frac{1}{4} n^{2}
$$

In higher dimension:

Theorem (S. 2013.1

$$
H_{C}(k n, k d)>\frac{1}{2^{k-1}} H_{C}(n, d)^{k}
$$

Corollary (S. 2013+)

Bounds on the maximum diameter

In dimension two:

Theorem (S. 2013+)

$$
\frac{2}{9}(n-1)^{2}<H_{C}(n, 3)=H_{p m}(n, 3)<\frac{1}{4} n^{2} .
$$

In higher dimension:
Theoram (S.2013.)

Corollary (S. 2013+)

Bounds on the maximum diameter

In dimension two:
Theorem (S. 2013+)

$$
\frac{2}{9}(n-1)^{2}<H_{C}(n, 3)=H_{p m}(n, 3)<\frac{1}{4} n^{2}
$$

In higher dimension:

Theorem (S. 2013+)

$$
H_{C}(k n, k d)>\frac{1}{2^{k-1}} H_{C}(n, d)^{k}
$$

Corollary (S. 2013+)

Bounds on the maximum diameter

In dimension two:

Theorem (S. 2013+)

$$
\frac{2}{9}(n-1)^{2}<H_{C}(n, 3)=H_{p m}(n, 3)<\frac{1}{4} n^{2}
$$

In higher dimension:

Theorem (S. 2013+)

$$
H_{C}(k n, k d)>\frac{1}{2^{k-1}} H_{C}(n, d)^{k}
$$

Corollary (S. 2013+)

$$
\Omega\left(\left(\frac{n}{d}-1\right)^{\frac{2 d}{3}}\right)<H_{C}(n, d)=H_{p m}(n, d)<\binom{n}{d-1} .
$$

Theorem: $H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}$

Proof.

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
(4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

$$
(2 k+1) k-2>\frac{2}{9}(3 k)^{2}
$$

Theorem: $H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}$

Proof.

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

$$
(2 k+1) k-2>\frac{2}{9}(3 k)^{2}
$$

Theorem: $H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}$

Proof.

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

Theorem: $H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}$

Proof.

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
(4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

Theorem: $H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}$

Proof.

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
(4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

Theorem: $H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}$

Proof.

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
(4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

Theorem: $H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}$

Proof.

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
(4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

$$
(2 k+1) k-2>\frac{2}{9}(3 k)^{2} .
$$

Theorem: $H_{C}(k n, k d)>\frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

Proof.

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.l.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of $\Delta . \Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Theorem: $H_{C}(k n, k d)>\frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

Proof.

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.l.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of $\Delta . \Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid consider a maximal inducec path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Theorem: $H_{C}(k n, k d)>\frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

Proof.

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.I.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of $\triangle . \Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Theorem: $H_{C}(k n, k d)>\frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

Proof.

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.I.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of Δ. $\Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Theorem: $H_{C}(k n, k d)>\frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

Proof.

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.l.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of $\Delta . \Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Theorem: $H_{C}(k n, k d)>\frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

Proof.

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.I.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of Δ. $\Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

Theorem: $H_{C}(k n, k d)>\frac{1}{2^{k-1}} H_{C}(n, d)^{k}$

Proof.

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.I.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of Δ. $\Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid consider a maximal induced path. This can be done using more than $\frac{1}{2^{k-1}}$ of the vertices.

So, pure simplicial complexes (even pseudo-manifolds) can have exponential diameters.

What restriction should we put for (having at least hopes of) getting polynomial diameters?

So, pure simplicial complexes (even pseudo-manifolds) can have exponential diameters.

What restriction should we put for (having at least hopes of) getting polynomial diameters?

Normal simplicial complexes

Definition

A pure simplicial complex is called normal if the dual graph of every link is connected. (That is, if every link is strongly connected)

Theorem
Let K be a pure, normal simplicial complex of dimension $d-1$ with n vertices. Then:
(1) diam $(K) \leq n^{\log d+2}$ [Kalai-Kleitman 1992, Eisenbrand et al. 2010]
(2) diam $(K) \leq 2^{d-1} n$ [Larman 1970, Eisenbrand et al. 2010]
(3) If K is, moreover, flag then diam $(K) \leq n-d$ (Hirsch bound!) [Adiprasito-Benedetti 2013+]

Normal simplicial complexes

Definition

A pure simplicial complex is called normal if the dual graph of every link is connected. (That is, if every link is strongly connected)

Theorem

Let K be a pure, normal simplicial complex of dimension d - 1 with n vertices. Then:

Normal simplicial complexes

Definition

A pure simplicial complex is called normal if the dual graph of every link is connected. (That is, if every link is strongly connected)

Theorem

Let K be a pure, normal simplicial complex of dimension $d-1$ with n vertices. Then:
(1) diam $(K) \leq n^{\log d+2}$ [Kalai-Kleitman 1992, Eisenbrand et al. 2010]
(2) diam $(K) \leq 2^{d-1} n$ [Larman 1970, Eisenbrand et al. 2010]
(3) If K is, moreover, flag then diam $(K) \leq n-d$ (Hirsch
bound!) [Adiprasito-Benedetti 2013+]

Normal simplicial complexes

Definition

A pure simplicial complex is called normal if the dual graph of every link is connected. (That is, if every link is strongly connected)

Theorem

Let K be a pure, normal simplicial complex of dimension d - 1 with n vertices. Then:
(1) diam $(K) \leq n^{\log d+2}$ [Kalai-Kleitman 1992, Eisenbrand et al. 2010]
(2) diam $(K) \leq 2^{d-1} n$ [Larman 1970, Eisenbrand et al. 2010]
bound!) [Adiprasito-Benedetti 2013+]

Normal simplicial complexes

Definition

A pure simplicial complex is called normal if the dual graph of every link is connected. (That is, if every link is strongly connected)

Theorem

Let K be a pure, normal simplicial complex of dimension d - 1 with n vertices. Then:
(1) diam $(K) \leq n^{\log d+2}$ [Kalai-Kleitman 1992, Eisenbrand et al. 2010]
(2) $\operatorname{diam}(K) \leq 2^{d-1} n$ [Larman 1970, Eisenbrand et al. 2010]
(3) If K is, moreover, flag then $\operatorname{diam}(K) \leq n-d$ (Hirsch bound!) [Adiprasito-Benedetti 2013+]

Flag normal simplicial complexes

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements.

Equivalently, the Stanley-Reisner ring of K is generated in degree two.
The Adiprasito-Benedetti result follows from:

- If K is flag then, with the "spherical right-angled metric" for every simplex, every star in K is geodesically convex [Gromov'87]
- Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again).
- The fact that K is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Flag normal simplicial complexes

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset[n]$ with $|u| \geq 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

The Adiprasito-Benedetti result follows from:

- If K is flag then, with the "spherical right-angled metric" for every simplex, every star in K is geodesically convex [Gromov'87]
- Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again)
- The fact that K is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Flag normal simplicial complexes

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset[n]$ with $|u| \geq 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

> The Adiprasito-Benedetti result follows from:
> - If K is flag then, with the "spherical right-angled metric" for every simplex, every star in K is geodesically convex [Gromov'87]
> - Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again)
> - The fact that K is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Flag normal simplicial complexes

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset[n]$ with $|u| \geq 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

The Adiprasito-Benedetti result follows from:
> - If K is flag then, with the "spherical right-angled metric" for every simplex, every star in K is geodesically convex [Gromov'87]
> - Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again)
> - The fact that K is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Flag normal simplicial complexes

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset[n]$ with $|u| \geq 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

The Adiprasito-Benedetti result follows from:

- If K is flag then, with the "spherical right-angled metric" for every simplex, every star in K is geodesically convex [Gromov'87]
- Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again).
- The fact that K is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Flag normal simplicial complexes

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset[n]$ with $|u| \geq 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

The Adiprasito-Benedetti result follows from:

- If K is flag then, with the "spherical right-angled metric" for every simplex, every star in K is geodesically convex [Gromov'87]
- Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again).

Flag normal simplicial complexes

Definition

A simplicial complex is flag if every "minimal non-simplex" has two elements. That is, if $\partial u \subset K$ for some $u \subset[n]$ with $|u| \geq 3$ then $u \in K$. Equivalently, the Stanley-Reisner ring of K is generated in degree two.

The Adiprasito-Benedetti result follows from:

- If K is flag then, with the "spherical right-angled metric" for every simplex, every star in K is geodesically convex [Gromov'87]
- Hence, every geodesic path γ between the interior of two simplices u and v of K is non-revisiting (it never abandons a star and then enter it again).
- The fact that K is normal (and flag) guarantees that such paths can be perturbed to not cross simplices of codimension two or higher, hence they induce non-revisiting paths in the dual graph.

Connected layer families

The Kalai-Kleitman and Larman bounds follow from more general arguments.
families.
Definition (Eisenbrand et al. 2010)
A connected laver family (CLF) of rank d on n symbols is a pure simplicial complex Δ of dimension $d-1$ with n vertices, together with a map

$$
\lambda: \operatorname{facets}(\Delta) \rightarrow \mathbb{Z}
$$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.
The length of a CLF is the difference between the maximum and the minimum values taken by λ.

Connected layer families

The Kalai-Kleitman and Larman bounds follow from more general arguments. They are actually valid for connected layer families.

Definition (Eisenbrand et al. 2010)
A connected layer family (CLF) of rank d on n symbols is a pure simplicial complex Δ of dimension $d-1$ with n vertices, together with a map

$$
\lambda: \operatorname{facets}(\Delta) \rightarrow \mathbb{Z}
$$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.
The length of a CLF is the difference between the maximum and the minimum values taken by λ.

Connected layer families

The Kalai-Kleitman and Larman bounds follow from more general arguments. They are actually valid for connected layer families.

Definition (Eisenbrand et al. 2010)

A connected layer family (CLF) of rank d on n symbols is a pure simplicial complex Δ of dimension $d-1$ with n vertices,
> together with a map
> with the following property: for every simplex (of whatever
> dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.
> The length of a CLF is the difference between the maximum and the minimum values taken by λ.

Connected layer families

The Kalai-Kleitman and Larman bounds follow from more general arguments. They are actually valid for connected layer families.

Definition (Eisenbrand et al. 2010)

A connected layer family (CLF) of rank d on n symbols is a pure simplicial complex Δ of dimension $d-1$ with n vertices, together with a map

$$
\lambda: \operatorname{facets}(\Delta) \rightarrow \mathbb{Z}
$$

with the following property: for every simplex (of whatever
dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an
interval.
The length of a CLF is the difference between the maximum and the minimum values taken by λ.

Connected layer families

The Kalai-Kleitman and Larman bounds follow from more general arguments. They are actually valid for connected layer families.

Definition (Eisenbrand et al. 2010)

A connected layer family (CLF) of rank d on n symbols is a pure simplicial complex Δ of dimension $d-1$ with n vertices, together with a map

$$
\lambda: \operatorname{facets}(\Delta) \rightarrow \mathbb{Z}
$$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.
The length of a CLF is the difference between the maximum and the minimum values taken by λ

Connected layer families

The Kalai-Kleitman and Larman bounds follow from more general arguments. They are actually valid for connected layer families.

Definition (Eisenbrand et al. 2010)

A connected layer family (CLF) of rank d on n symbols is a pure simplicial complex Δ of dimension $d-1$ with n vertices, together with a map

$$
\lambda: \operatorname{facets}(\Delta) \rightarrow \mathbb{Z}
$$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.
The length of a CLF is the difference between the maximum and the minimum values taken by λ.

Example: A CLF of rank 2 and length $\sim 3 n / 2$

λ	0	1	2	3	4	5	6	7	8	9
Δ	12	13	14		35	36		57	58	
		24	23		46	45		68	67	78

Let $H_{c l f}(n, d):=$ max length of a CLF of rank d on n symbols.
The example shows that:

Example: A CLF of rank 2 and length $\sim 3 n / 2$

λ	0	1	2	3	4	5	6	7	8	9
Δ	12	13	14		35	36		57	58	
		24	23		46	45		68	67	78

Let $H_{c l f}(n, d):=$ max length of a CLF of rank d on n symbols. The example shows that:

$$
H_{c l f}(n, 2) \geq\left\lfloor\frac{3 n}{2}\right\rfloor
$$

Two properties of c.l.f.'s

- The clf property is hereditary via links: If Δ is a clf, every link in it (together with the same map λ) is a clf.
- "Conversely", if a pure simplicial complex Δ is normal (every link has a connected dual graph), then Δ is a clf with respect to the map

$$
\lambda(v)=d(u, v)
$$

Let $H_{c l f}(n, d)$ be the maximum length of clf's of rank d on n elements.

Two properties of c.l.f.'s

- The clf property is hereditary via links: If Δ is a clf, every link in it (together with the same map λ) is a clf.
- "Conversely", if a pure simplicial complex Δ is normal (every link has a connected dual graph), then Δ is a clf with respect to the map

$$
\lambda(v)=d(u, v)
$$

for any "origin simplex" u.
Let $H_{\text {clf }}(n, d)$ be the maximum length of clf's of rank d on n elements.

Two properties of c.l.f.'s

- The clf property is hereditary via links: If Δ is a clf, every link in it (together with the same map λ) is a clf.
- "Conversely", if a pure simplicial complex Δ is normal (every link has a connected dual graph), then Δ is a clf with respect to the map

$$
\lambda(v)=d(u, v)
$$

for any "origin simplex" u.
Let $H_{c l f}(n, d)$ be the maximum length of clf's of rank d on n elements.

$H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq 2 H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the union of the lirst $i+1$ layers, that is, those at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that $U_{i_{0}}$ and $V_{j_{0}}$ contain more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H_{\text {cuf }}\left(\lfloor n / 2\rfloor, d^{\prime}\right)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
d\left(u^{\prime}, v^{\prime}\right) \leq H_{c \mid f}(n-1, d-1) .
$$

So:

$H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq 2 H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively.

$H_{\text {Clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq 2 H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the union of the first $i+1$ layers, that is, those at distance at most i from u). Call V_{j} the j-neighborhood of v.

$H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq 2 H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the union of the first $i+1$ layers, that is, those at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that $U_{i_{0}}$ and $V_{j_{0}}$ contain more than half of the vertices.

$H_{\text {Clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq 2 H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the union of the first $i+1$ layers, that is, those at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that $U_{i_{0}}$ and $V_{j_{0}}$ contain more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H_{\text {clf }}(\lfloor n / 2\rfloor, d)$.

$H_{\text {Clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq 2 H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the union of the first $i+1$ layers, that is, those at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that $U_{i_{0}}$ and $V_{j_{0}}$ contain more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H_{c l f}(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
d\left(u^{\prime}, v^{\prime}\right) \leq H_{c l f}(n-1, d-1)
$$

$H_{\text {Clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq 2 H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the union of the first $i+1$ layers, that is, those at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that $U_{i_{0}}$ and $V_{j_{0}}$ contain more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H_{c l f}(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
d\left(u^{\prime}, v^{\prime}\right) \leq H_{c l f}(n-1, d-1)
$$

So: $\quad d(u, v) \leq d\left(u, u^{\prime}\right)+d\left(u^{\prime}, v^{\prime}\right)+d\left(v^{\prime}, v\right) \leq$

$H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq 2 H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be simplices in the first and last layer, respectively. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the union of the first $i+1$ layers, that is, those at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that $U_{i_{0}}$ and $V_{j_{0}}$ contain more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H_{c l f}(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
d\left(u^{\prime}, v^{\prime}\right) \leq H_{c l f}(n-1, d-1) .
$$

So:

$$
\begin{aligned}
d(u, v) & \leq d\left(u, u^{\prime}\right)+d\left(u^{\prime}, v^{\prime}\right)+d\left(v^{\prime}, v\right) \leq \\
& \leq 2 H_{c \mid f}(\lfloor n / 2\rfloor, d)+H_{c \mid f}(n-1, d-1)+2 .
\end{aligned}
$$

$H_{\text {clf }}(n, d) \leq 2^{d-1} n$ (Larman bound)

By induction on \boldsymbol{d}. The case $d=1$ is trivial. For higher d :
Let U_{1} be the maximum interval of layers starting with the first one and such that all layers in U_{1} use some common element. Let U_{2} be the maximum interval of layers starting with the first one after U_{1} and such that all layers in U_{2} use some common element. Etc.
Let k be the number of pieces U_{i} that we get. Let n_{i} be the number of elements used in the i-th piece U_{i}. Then:

- length $\left(U_{i}\right) \leq H_{c l f}\left(n_{i}-1, d-1\right) \leq 2^{d-2}\left(n_{i}-1\right)$
- Each element is used in at most two of the $U_{i} \Delta$'s

$$
\Rightarrow \sum n_{i} \leq 2 n
$$

Hence:

$$
\begin{aligned}
\operatorname{length}(\Delta) & \leq \sum \operatorname{length}\left(U_{i}\right)+(k-1) \\
& \leq 2^{d-2}(2 n-k)+(k-1) \leq 2^{d-1} n
\end{aligned}
$$

$H_{c l f}(n, d) \leq 2^{d-1} n$ (Larman bound)

By induction on d. The case $d=1$ is trivial. For higher d :
Let U_{1} be the maximum interval of layers starting with the first one and such that all layers in U_{1} use some common element. Let U_{2} be the maximum interval of layers starting with the first one after U_{1} and such that all layers in U_{2} use some common element. Etc.
Let k be the number of pieces U_{i} that we get. Let n_{i} be the number of elements used in the i-th piece U_{i}. Then:

- length $\left(U_{i}\right) \leq H_{c l f}\left(n_{i}-1, d-1\right) \leq 2^{d-2}\left(n_{i}-1\right)$
- Each element is used in at most two of the $U_{i} \Delta$'s $\Rightarrow \sum n_{i} \leq 2 n$.
Hence:
$\operatorname{length}(\Delta) \leq \sum \operatorname{length}\left(U_{i}\right)+(k-1)$

$H_{c l f}(n, d) \leq 2^{d-1} n$ (Larman bound)

By induction on d. The case $d=1$ is trivial. For higher d :
Let U_{1} be the maximum interval of layers starting with the first one and such that all layers in U_{1} use some common element. Let U_{2} be the maximum interval of layers starting with the first one after U_{1} and such that all layers in U_{2} use some common element. Etc.
Let k be the number of pieces U_{i} that we get. Let n_{i} be the number of elements used in the i-th piece U_{i}. Then:

- length $\left(U_{i}\right) \leq H_{c l f}\left(n_{i}-1, d-1\right) \leq 2^{d-2}\left(n_{i}-1\right)$
- Each element is used in at most two of the $U_{i} \Delta$'s $\Rightarrow \sum n_{i} \leq 2 n$.
Hence:
$\operatorname{length}(\Delta) \leq \sum \operatorname{length}\left(U_{i}\right)+(k-1)$

$H_{c l f}(n, d) \leq 2^{d-1} n$ (Larman bound)

By induction on d. The case $d=1$ is trivial. For higher d : Let U_{1} be the maximum interval of layers starting with the first one and such that all layers in U_{1} use some common element.
one after U_{1} and such that all layers in U_{2} use some common element. Etc.
Let k be the number of pieces U_{i} that we get. Let n_{i} be the number of elements used in the i-th piece U_{i}. Then:

- length $\left(U_{i}\right) \leq H_{C l f}\left(n_{i}-1, d-1\right) \leq 2^{d-2}\left(n_{i}-1\right)$
- Each element is used in at most two of the $U_{i} \Delta$'s $\Rightarrow \sum n_{i} \leq 2 n$.
Hence:
length(\triangle)

$H_{c l f}(n, d) \leq 2^{d-1} n$ (Larman bound)

By induction on d. The case $d=1$ is trivial. For higher d : Let U_{1} be the maximum interval of layers starting with the first one and such that all layers in U_{1} use some common element. Let U_{2} be the maximum interval of layers starting with the first one after U_{1} and such that all layers in U_{2} use some common element.
length(Δ)

$H_{c l f}(n, d) \leq 2^{d-1} n$ (Larman bound)

By induction on d. The case $d=1$ is trivial. For higher d : Let U_{1} be the maximum interval of layers starting with the first one and such that all layers in U_{1} use some common element. Let U_{2} be the maximum interval of layers starting with the first one after U_{1} and such that all layers in U_{2} use some common element. Etc.
Let k be the number of pieces U_{i} that we get. Let n_{i} be the number of elements used in the i-th piece U_{i}. Then:
length(Δ)

$H_{c l f}(n, d) \leq 2^{d-1} n$ (Larman bound)

By induction on d. The case $d=1$ is trivial. For higher d : Let U_{1} be the maximum interval of layers starting with the first one and such that all layers in U_{1} use some common element. Let U_{2} be the maximum interval of layers starting with the first one after U_{1} and such that all layers in U_{2} use some common element. Etc.
Let k be the number of pieces U_{i} that we get. Let n_{i} be the number of elements used in the i-th piece U_{i}. Then:

Hence:
length $(\Delta) \leq \sum$ length $\left(U_{i}\right)+(k-1)$

$H_{c l f}(n, d) \leq 2^{d-1} n$ (Larman bound)

By induction on d. The case $d=1$ is trivial. For higher d : Let U_{1} be the maximum interval of layers starting with the first one and such that all layers in U_{1} use some common element. Let U_{2} be the maximum interval of layers starting with the first one after U_{1} and such that all layers in U_{2} use some common element. Etc.
Let k be the number of pieces U_{i} that we get. Let n_{i} be the number of elements used in the i-th piece U_{i}. Then:

- length $\left(U_{i}\right) \leq H_{\text {clf }}\left(n_{i}-1, d-1\right) \leq 2^{d-2}\left(n_{i}-1\right)$ Hence:
length $(\Delta) \leq \sum$ length $\left(U_{i}\right)+(k-1)$

$H_{c l f}(n, d) \leq 2^{d-1} n$ (Larman bound)

By induction on d. The case $d=1$ is trivial. For higher d : Let U_{1} be the maximum interval of layers starting with the first one and such that all layers in U_{1} use some common element. Let U_{2} be the maximum interval of layers starting with the first one after U_{1} and such that all layers in U_{2} use some common element. Etc.
Let k be the number of pieces U_{i} that we get. Let n_{i} be the number of elements used in the i-th piece U_{i}. Then:

- length $\left(U_{i}\right) \leq H_{\text {clf }}\left(n_{i}-1, d-1\right) \leq 2^{d-2}\left(n_{i}-1\right)$
- Each element is used in at most two of the $U_{i} \Delta$'s

$$
\Rightarrow \sum n_{i} \leq 2 n .
$$

Hence:
$\operatorname{lengh}(\mathbf{L}) \leq \sum \operatorname{leg} \ln (())+(k-1)$

$H_{c l f}(n, d) \leq 2^{d-1} n$ (Larman bound)

By induction on d. The case $d=1$ is trivial. For higher d : Let U_{1} be the maximum interval of layers starting with the first one and such that all layers in U_{1} use some common element. Let U_{2} be the maximum interval of layers starting with the first one after U_{1} and such that all layers in U_{2} use some common element. Etc.
Let k be the number of pieces U_{i} that we get. Let n_{i} be the number of elements used in the i-th piece U_{i}. Then:

- length $\left(U_{i}\right) \leq H_{\text {clf }}\left(n_{i}-1, d-1\right) \leq 2^{d-2}\left(n_{i}-1\right)$
- Each element is used in at most two of the $U_{i} \Delta$'s

$$
\Rightarrow \sum n_{i} \leq 2 n .
$$

Hence:

$$
\begin{aligned}
\text { length }(\Delta) & \leq \sum \operatorname{length}\left(U_{i}\right)+(k-1) \\
& \leq 2^{d-2}(2 n-k)+(k-1) \leq 2^{d-1} n
\end{aligned}
$$

Connected Layer Multi-families

A further generalization:
Definition (Hähnle@polymath3, 2010)
A connected layer multifamily (CLMF) of rank d on n symbols is the same as a CLF, except we allow a pure simplicial multicomplex Δ (simplices are multisets of vertices, with repetitions allowed)

Connected Layer Multi-families

A further generalization:
Definition (Hähnle@polymath3, 2010)
A connected layer multifamily (CLMF) of rank d on n symbols is the same as a CLF, except we allow a pure simplicial multicomplex Δ (simplices are multisets of vertices, with repetitions allowed)

Connected Layer Multi-families

A further generalization:
Definition (Hähnle@polymath3, 2010)
A connected layer multifamily (CLMF) of rank d on n symbols is the same as a CLF, except we allow a pure simplicial multicomplex Δ (simplices are multisets of vertices, with repetitions allowed)

A CLMF of length $d(n-1)$:

λ	3	4	5	6	7	8	9	10	11	12
Δ	111	112	113	114	124	134	144	244	344	444
			122	123	133	224	234	334		
				222	223	233	333			

Connected Layer Multi-families

A further generalization:
Definition (Hähnle@polymath3, 2010)
A connected layer multifamily (CLMF) of rank d on n symbols is the same as a CLF, except we allow a pure simplicial multicomplex Δ (simplices are multisets of vertices, with repetitions allowed)

Another CLMF of length $d(n-1)$:

λ	3	4	5	6	7	8	9	10	11	12
Δ	111	112	122	222	223	233	333	334	344	444

Complete and injective clmf's

"Complete" and "injective" cImf's are (the) two extremal cases.

It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than d($n-1$).

Complete and injective clmf's

"Complete" and "injective" clmf's are (the) two extremal cases.
A complete CLMF of length $d(n-1)$:

λ	3	4	5	6	7	8	9	10	11	12
Δ	111	112	113	114	124	134	144	244	344	444
			122	123	133	224	234	334		

It turns out that in these two cases:

A Connected Layer (Multi)-Family with λ injective or Δ
complete cannot have length greater than $d(n-1)$.

Complete and injective clmf's

"Complete" and "injective" clmf's are (the) two extremal cases.
An injective CLMF of length $d(n-1)$:

λ	3	4	5	6	7	8	9	10	11	12
Δ	111	112	122	222	223	233	333	334	344	444

It turns out that in these two cases:

A Connected Layer (Multi)-Family with λ injective or Δ
complete cannot have length greater than $d(n-1)$.

Complete and injective clmf's

"Complete" and "injective" clmf's are (the) two extremal cases.
An injective CLMF of length $d(n-1)$:

λ	3	4	5	6	7	8	9	10	11	12
Δ	111	112	122	222	223	233	333	334	344	444

It turns out that in these two cases:

A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than $d(n-1)$.

Complete and injective clmf's

"Complete" and "injective" clmf's are (the) two extremal cases.
An injective CLMF of length $d(n-1)$:

λ	3	4	5	6	7	8	9	10	11	12
Δ	111	112	122	222	223	233	333	334	344	444

It turns out that in these two cases:
Theorem (Hähnle et al@polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than $d(n-1)$.

Complete and injective clmf's

"Complete" and "injective" clmf's are (the) two extremal cases.

A complete CLMF of length $d(n-1)$:

λ	3	4	5	6	7	8	9	10	11	12
Δ	111	112	113	114	124	134	144	244	344	444
			122	123	133	224	234	334		

It turns out that in these two cases:
Theorem (Hähnle et al@polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than $d(n-1)$.

Hähnle's Conjecture

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)
The length of a clmf of rank d on n symbols cannot exceed

$$
d(n-1)
$$

Theorem (Hähnle@polymath3, 2010)
The lengths of clmf's still satisfy the Kalai-Kleitman ($n{ }^{\log d+1}$) and the Larman-Barnette $\left(2^{d-1} n\right)$ bounds.

Hähnle's Conjecture

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)

The length of a clmf of rank d on n symbols cannot exceed

$$
d(n-1)
$$

Theorem (Hähnle@polymath3, 2010)
The lengths of clmf's still satisfy the Kalai-Kleitman ($n \log d+1$) and the Larman-Barnette $\left(2^{d-1} n\right)$ bounds.

Hähnle's Conjecture

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)

The length of a clmf of rank d on n symbols cannot exceed

$$
d(n-1)
$$

Theorem (Hähnle@polymath3, 2010)

The lengths of clmf's still satisfy the Kalai-Kleitman ($n^{\log d+1}$) and the Larman-Barnette $\left(2^{d-1} n\right)$ bounds.

A New Hope

> Hähnle's Conjecture has been checked for all the values of n and d satisfying $n \leq 3, d \leq 2, n+d \leq 11$, or $6 n+d \leq 37$.

> If true, it would imply:
> Conjecture
> The diameter of a d-polytope with n-facets cannot exceed

$$
d^{\prime}\left(n-d^{\prime}\right)+1
$$

A New Hope

Hähnle's Conjecture has been checked for all the values of n and d satisfying $n \leq 3, d \leq 2, n+d \leq 11$, or $6 n+d \leq 37$.

If true, it would imply:
Conjecture
The diameter of a d-polytope with n-facets cannot exceed

A New Hope

Hähnle's Conjecture has been checked for all the values of n and d satisfying $n \leq 3, d \leq 2, n+d \leq 11$, or $6 n+d \leq 37$.

If true, it would imply:

Conjecture

The diameter of a d-polytope with n-facets cannot exceed

$$
d(n-d)+1
$$

A concrete open case

For connected layer multifamilies of rank 3 we know: - There are clfm's of rank 3 and length $3(n-1)$.

What is the sharp bound?

A concrete open case

For connected layer multifamilies of rank 3 we know:

- There are clfm's of rank 3 and length $3(n-1)$.

What is the sharp bound?

A concrete open case

For connected layer multifamilies of rank 3 we know:

- There are clfm's of rank 3 and length $3(n-1)$.

What is the sharp bound?

A concrete open case

For connected layer multifamilies of rank 3 we know:

- There are clfm's of rank 3 and length $3(n-1)$.

An CLMF of rank 3 and length $3(n-1)$:

λ	3	4	5	6	7	8	9	10	11	12	\cdots
Δ	111	112	122	222	223	233	333	334	344	444	\cdots

A concrete open case

For connected layer multifamilies of rank 3 we know:

- There are clfm's of rank 3 and length $3(n-1)$.
- Every clfm of rank 3 has length $\leq 4(n-1)$.

A concrete open case

For connected layer multifamilies of rank 3 we know:

- There are clfm's of rank 3 and length $3(n-1)$.
- Every clfm of rank 3 has length $\leq 4(n-1)$.

Question

What is the sharp bound?

A concrete open case

For connected layer multifamilies of rank 3 we know:

- There are clfm's of rank 3 and length $3(n-1)$.
- Every clfm of rank 3 has length $\leq 4(n-1)$.

Question

What is the sharp bound? $\quad 3(=d)$?,

A concrete open case

For connected layer multifamilies of rank 3 we know:

- There are clfm's of rank 3 and length $3(n-1)$.
- Every clfm of rank 3 has length $\leq 4(n-1)$.

Question

What is the sharp bound? $\quad 3(=d) ?, \quad 4\left(=2^{d-1}\right)$?

Thank you

THE END

Thank you

THE END

