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Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

If you cannot beat’em, generalize’em

Instead of looking at (simplicial) polytopes, why not look at the
maximum diameter of more general complexes? We can, for
example, consider:

Pure simplicial complexes. HC(n,d)

Pseudo-manifolds (w. or wo. bdry). Hpm(n,d), Hpm(n,d)

Simplicial manifolds (w. or wo. bdry). HM(n,d), HM(n,d)

Simplicial spheres (or balls). HS(n,d), HB(n,d),
. . .

Remark, in all definitions, n is the number of vertices and d − 1
is the dimension.

H•(n,d) is the (dual) diameter; two simplices are considered
adjacent if they differ by a single vertex.
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Some easy remarks and a toy example

There are the following relations:

HC(n,d) ≥ Hpm(n,d) ≥ HM(n,d) ≥ HB(n,d)
VI VI VI

Hpm(n,d) ≥ HM(n,d) ≥ HS(n,d)

In dimension one (graphs):

HC(n,2) = Hpm(n,2) = HM(n,2) = HB(n,2) = n − 1,

Hpm(n,2) = HM(n,2) = HS(n,2) =
⌊n

2

⌋
,
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HC(n, d) = Hpm(n, d)

Lemma
HC(n,d) is attained at a complex whose dual graph is a path.

Corollary
HC(n,d) = Hpm(n,d)

In fact: HC(n,d) = length of the maximum induced path in the
Johnson graph J(n,d).

(Johnson graph:= adjacency graph of the full simplicial complex
= basis exchange graph of the uniform matroid M(n,d))
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Bounds on the maximum diameter

In dimension two:

Theorem (S. 2013+)
2
9

(n − 1)2 < HC(n,3) = Hpm(n,3) <
1
4

n2.

In higher dimension:

Theorem (S. 2013+)

HC(kn, kd) >
1

2k−1 HC(n,d)k .

Corollary (S. 2013+)

Ω

((n
d
− 1
) 2d

3

)
< HC(n,d) = Hpm(n,d) <

(
n

d − 1

)
.
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Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

Theorem: Hpm(n, 3) > 2
9(n − 1)2

Proof.
1 Without loss of generality assume n = 3k + 1.
2 With the first 2k + 1 vertices, construct k disjoint cycles of

length 2k + 1 (That is, decompose K2k+1 into k disjoint
Hamiltonian cycles).

3 Remove an edge from each cycle to make it a chain, and
join each chain to each of the remaining k vertices.

4 Glue together the k chains using k − 1 triangles.

In this way we get a chain of triangles of length

(2k + 1)k − 2 >
2
9

(3k)2.
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Theorem: HC(kn, kd) > 1
2k−1 HC(n, d)k

Proof.
1 Let ∆ be a complex achieving HC(n,d). W.l.o.g. assume

its dual graph is a path.
2 Take the join ∆∗k of k copies of ∆. ∆∗k is a complex of

dimension kd − 1, with kn vertices and whose dual graph
is a k -dimensional grid of size HC(n,d). (It has
(HC(n,d) + 1)k maximal simplices).

3 In this grid consider a maximal induced path. This can be
done using more than 1

2k−1 of the vertices.
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So, pure simplicial complexes (even pseudo-manifolds) can
have exponential diameters.

What restriction should we put for (having at least hopes of)
getting polynomial diameters?
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Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

Normal simplicial complexes

Definition
A pure simplicial complex is called normal if the dual graph of
every link is connected. (That is, if every link is strongly
connected)

Theorem
Let K be a pure, normal simplicial complex of dimension d − 1
with n vertices. Then:

1 diam(K ) ≤ nlog d+2 [Kalai-Kleitman 1992, Eisenbrand et
al. 2010]

2 diam(K ) ≤ 2d−1n [Larman 1970 , Eisenbrand et al. 2010]
3 If K is, moreover, flag then diam(K ) ≤ n − d (Hirsch

bound!) [Adiprasito-Benedetti 2013+]
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Flag normal simplicial complexes

Definition
A simplicial complex is flag if every “minimal non-simplex” has
two elements. That is, if ∂u ⊂ K for some u ⊂ [n] with |u| ≥ 3 then u ∈ K .
Equivalently, the Stanley-Reisner ring of K is generated in degree two.

The Adiprasito-Benedetti result follows from:
If K is flag then, with the “spherical right-angled metric” for
every simplex, every star in K is geodesically convex
[Gromov’87]
Hence, every geodesic path γ between the interior of two
simplices u and v of K is non-revisiting (it never abandons
a star and then enter it again).
The fact that K is normal (and flag) guarantees that such
paths can be perturbed to not cross simplices of
codimension two or higher, hence they induce
non-revisiting paths in the dual graph.
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Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

Connected layer families

The Kalai-Kleitman and Larman bounds follow from more
general arguments. They are actually valid for connected layer
families.

Definition (Eisenbrand et al. 2010)
A connected layer family (CLF) of rank d on n symbols is a pure
simplicial complex ∆ of dimension d − 1 with n vertices,
together with a map

λ : facets(∆)→ Z

with the following property: for every simplex (of whatever
dimension) τ ∈ ∆ the values taken by λ in the star of τ form an
interval.
The length of a CLF is the difference between the maximum
and the minimum values taken by λ.
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Example: A CLF of rank 2 and length ∼ 3n/2

λ 0 1 2 3 4 5 6 7 8 9
13 14 35 36 57 58

∆ 12 34 56 78
24 23 46 45 68 67

Let Hclf (n,d) := max length of a CLF of rank d on n symbols.
The example shows that:

Hclf (n,2) ≥
⌊

3n
2

⌋

12
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Two properties of c.l.f.’s

The clf property is hereditary via links: If ∆ is a clf, every
link in it (together with the same map λ) is a clf.

“Conversely”, if a pure simplicial complex ∆ is normal
(every link has a connected dual graph), then ∆ is a clf
with respect to the map

λ(v) = d(u, v),

for any “origin simplex” u.

Let Hclf (n,d) be the maximum length of clf’s of rank d on n
elements.
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Hclf (n, d) ≤ nlog2 d+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

Hclf (n,d) ≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

To prove the recursion:
Let u and v be simplices in the first and last layer,
respectively. For each i ∈ N, let Ui be the i-neighborhood
of u (the union of the first i + 1 layers, that is, those at distance at most
i from u). Call Vj the j-neighborhood of v .
Let i0 and j0 be the smallest values such that Ui0 and Vj0
contain more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most Hclf (bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

d(u′, v ′) ≤ Hclf (n − 1,d − 1).

So: d(u, v) ≤ d(u,u′) + d(u′, v ′) + d(v ′, v) ≤
≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

14



Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

Hclf (n, d) ≤ nlog2 d+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

Hclf (n,d) ≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

To prove the recursion:
Let u and v be simplices in the first and last layer,
respectively. For each i ∈ N, let Ui be the i-neighborhood
of u (the union of the first i + 1 layers, that is, those at distance at most
i from u). Call Vj the j-neighborhood of v .
Let i0 and j0 be the smallest values such that Ui0 and Vj0
contain more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most Hclf (bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

d(u′, v ′) ≤ Hclf (n − 1,d − 1).

So: d(u, v) ≤ d(u,u′) + d(u′, v ′) + d(v ′, v) ≤
≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

14



Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

Hclf (n, d) ≤ nlog2 d+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

Hclf (n,d) ≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

To prove the recursion:
Let u and v be simplices in the first and last layer,
respectively. For each i ∈ N, let Ui be the i-neighborhood
of u (the union of the first i + 1 layers, that is, those at distance at most
i from u). Call Vj the j-neighborhood of v .
Let i0 and j0 be the smallest values such that Ui0 and Vj0
contain more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most Hclf (bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

d(u′, v ′) ≤ Hclf (n − 1,d − 1).

So: d(u, v) ≤ d(u,u′) + d(u′, v ′) + d(v ′, v) ≤
≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

14



Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

Hclf (n, d) ≤ nlog2 d+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

Hclf (n,d) ≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

To prove the recursion:
Let u and v be simplices in the first and last layer,
respectively. For each i ∈ N, let Ui be the i-neighborhood
of u (the union of the first i + 1 layers, that is, those at distance at most
i from u). Call Vj the j-neighborhood of v .
Let i0 and j0 be the smallest values such that Ui0 and Vj0
contain more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most Hclf (bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

d(u′, v ′) ≤ Hclf (n − 1,d − 1).

So: d(u, v) ≤ d(u,u′) + d(u′, v ′) + d(v ′, v) ≤
≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

14



Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

Hclf (n, d) ≤ nlog2 d+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

Hclf (n,d) ≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

To prove the recursion:
Let u and v be simplices in the first and last layer,
respectively. For each i ∈ N, let Ui be the i-neighborhood
of u (the union of the first i + 1 layers, that is, those at distance at most
i from u). Call Vj the j-neighborhood of v .
Let i0 and j0 be the smallest values such that Ui0 and Vj0
contain more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most Hclf (bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

d(u′, v ′) ≤ Hclf (n − 1,d − 1).

So: d(u, v) ≤ d(u,u′) + d(u′, v ′) + d(v ′, v) ≤
≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

14



Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

Hclf (n, d) ≤ nlog2 d+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

Hclf (n,d) ≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

To prove the recursion:
Let u and v be simplices in the first and last layer,
respectively. For each i ∈ N, let Ui be the i-neighborhood
of u (the union of the first i + 1 layers, that is, those at distance at most
i from u). Call Vj the j-neighborhood of v .
Let i0 and j0 be the smallest values such that Ui0 and Vj0
contain more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most Hclf (bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

d(u′, v ′) ≤ Hclf (n − 1,d − 1).

So: d(u, v) ≤ d(u,u′) + d(u′, v ′) + d(v ′, v) ≤
≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

14



Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

Hclf (n, d) ≤ nlog2 d+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

Hclf (n,d) ≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

To prove the recursion:
Let u and v be simplices in the first and last layer,
respectively. For each i ∈ N, let Ui be the i-neighborhood
of u (the union of the first i + 1 layers, that is, those at distance at most
i from u). Call Vj the j-neighborhood of v .
Let i0 and j0 be the smallest values such that Ui0 and Vj0
contain more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most Hclf (bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

d(u′, v ′) ≤ Hclf (n − 1,d − 1).

So: d(u, v) ≤ d(u,u′) + d(u′, v ′) + d(v ′, v) ≤
≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

14



Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

Hclf (n, d) ≤ nlog2 d+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

Hclf (n,d) ≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

To prove the recursion:
Let u and v be simplices in the first and last layer,
respectively. For each i ∈ N, let Ui be the i-neighborhood
of u (the union of the first i + 1 layers, that is, those at distance at most
i from u). Call Vj the j-neighborhood of v .
Let i0 and j0 be the smallest values such that Ui0 and Vj0
contain more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most Hclf (bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

d(u′, v ′) ≤ Hclf (n − 1,d − 1).

So: d(u, v) ≤ d(u,u′) + d(u′, v ′) + d(v ′, v) ≤
≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

14



Simplicial complexes Normal complexes and clf’s Connected Layer Multi-families

Hclf (n, d) ≤ 2d−1n (Larman bound)

By induction on d . The case d = 1 is trivial. For higher d :
Let U1 be the maximum interval of layers starting with the first
one and such that all layers in U1 use some common element.
Let U2 be the maximum interval of layers starting with the first
one after U1 and such that all layers in U2 use some common
element. Etc.
Let k be the number of pieces Ui that we get. Let ni be the
number of elements used in the i-th piece Ui . Then:

length(Ui) ≤ Hclf (ni − 1,d − 1) ≤ 2d−2(ni − 1)

Each element is used in at most two of the Ui∆’s
⇒
∑

ni ≤ 2n.
Hence:

length(∆) ≤
∑

length(Ui) + (k − 1)

≤ 2d−2(2n − k) + (k − 1) ≤ 2d−1n

15
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length(∆) ≤
∑

length(Ui) + (k − 1)

≤ 2d−2(2n − k) + (k − 1) ≤ 2d−1n
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Connected Layer Multi-families

A further generalization:

Definition (Hähnle@polymath3, 2010)
A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex ∆ (simplices are multisets of vertices, with
repetitions allowed)
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A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex ∆ (simplices are multisets of vertices, with
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A CLMF of length d(n − 1):

λ 3 4 5 6 7 8 9 10 11 12
∆ 111 112 113 114 124 134 144 244 344 444

122 123 133 224 234 334
222 223 233 333
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Connected Layer Multi-families

A further generalization:

Definition (Hähnle@polymath3, 2010)
A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex ∆ (simplices are multisets of vertices, with
repetitions allowed)

Another CLMF of length d(n − 1):

λ 3 4 5 6 7 8 9 10 11 12
∆ 111 112 122 222 223 233 333 334 344 444
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Complete and injective clmf’s

“Complete” and “injective” clmf’s are (the) two extremal cases.

It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or ∆
complete cannot have length greater than d(n − 1).
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Hähnle’s Conjecture

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)
The length of a clmf of rank d on n symbols cannot exceed

d(n − 1).

Theorem (Hähnle@polymath3, 2010)

The lengths of clmf’s still satisfy the Kalai-Kleitman (nlog d+1)
and the Larman-Barnette (2d−1n) bounds.
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A New Hope

Hähnle’s Conjecture has been checked for all the values of n
and d satisfying n ≤ 3, d ≤ 2, n + d ≤ 11, or 6n + d ≤ 37.

If true, it would imply:

Conjecture
The diameter of a d-polytope with n-facets cannot exceed

d(n − d) + 1.
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A concrete open case

For connected layer multifamilies of rank 3 we know:

There are clfm’s of rank 3 and length 3(n − 1).

Question
What is the sharp bound? 3(= d)?, 4(= 2d−1)?
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Thank you

T H E E N D
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