Combinatorics of asymptotic representation theory

Part 2

Piotr Śniady

Technische Universität München and Polska Akademia Nauk and Uniwersytet Wrocławski

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

if you missed the first talk...normalized characters

for $\pi \in S_k$ and $\lambda \vdash n$ we define normalized character

$$\mathsf{Ch}_{\pi}(\lambda) := \underbrace{n(n-1)\cdots(n-k+1)}_{k \; \mathsf{factors}} rac{\mathsf{Tr} \,
ho^{\lambda}(\pi)}{\dim
ho^{\lambda}}$$

$$\mathsf{Ch}_{k}(\lambda) := \mathsf{Ch}_{\underbrace{(1,2,\ldots,k)}_{\in S_{k}}}(\lambda)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

if you missed the first talk. . . continuous functionals of shape for $k \ge 2$

$$S_k(\lambda) := (k-1) \iint_{(x,y)\in\lambda} (x-y)^{k-2} dx dy$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

if you missed the first talk...dilations

Young diagram λ

dilated diagram 2λ

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 S_k is homogeneous of degree k:

$$S_k(r\lambda) = r^k S_k(\lambda)$$

if you missed... Stanley's character formula

 \rightarrow Stanley, Féray, Śniady

 $N_M(\lambda) = \#$ embeddings of M to λ

(a)

ж

$$\mathsf{Ch}_k(\lambda) = \sum_M (-1)^{k - \# \mathsf{white vertices}} N_M(\lambda),$$

where the sum runs over maps M with k edges

if you missed... Stanley's character formula

 \rightarrow Stanley, Féray, Śniady

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 $N_M(\lambda) = \#$ embeddings of M to λ

 $\mathsf{Ch}_k(\lambda) = \sum_M (-1)^{k-\#\mathsf{white vertices}} N_M(\lambda),$

degree of $N_M = k + 1 - genus(M)$

free cumulants 1

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

free cumulants 1

free cumulants 2

 $s\mapsto {\sf Ch}_k(s\lambda)$ is a polynomial of degree k+1

$$\underbrace{\mathsf{R}_{k+1}(\lambda)}_{\mathsf{free cumulant}} := [s^{k+1}] \operatorname{Ch}_k(s\lambda) = \lim_{s \to \infty} \frac{\operatorname{Ch}_k(s\lambda)}{s^{k+1}}$$

 \longrightarrow Biane

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathsf{Ch}_k(\lambda) \approx \mathsf{R}_{k+1}(\lambda)$

free cumulants in terms of functionals of shape 1

$$R_{k+1}=S_{k+1}+\cdots$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

free cumulants in terms of functionals of shape 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

free cumulants in terms of functionals of shape 3

$$R_{k+1} = S_{k+1} - \frac{1}{2!} k \sum_{\substack{i_1, i_2 \ge 2, \\ i_1 + i_2 = k+1}} S_{i_1} S_{i_2} + \frac{1}{3!} k^2 \sum_{\substack{i_1, i_2, i_3 \ge 2, \\ i_1 + i_2 + i_3 = k+1}} S_{i_1} S_{i_2} S_{i_3} - \cdots$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Kerov polynomials

 $\mathsf{characters} \longleftrightarrow \mathsf{shape}$ of the Young diagram

$$\begin{array}{l} \mathsf{Ch}_1 = R_2, \\ \mathsf{Ch}_2 = R_3, \\ \mathsf{Ch}_3 = R_4 + R_2, \\ \mathsf{Ch}_4 = R_5 + 5R_3, \\ \mathsf{Ch}_5 = R_6 + 15R_4 + 5R_2^2 + 8R_2, \\ \mathsf{Ch}_6 = R_7 + 35R_5 + 35R_3R_2 + 84R_3. \end{array}$$

positivity?

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

what Kerov polynomials count? transportation problem

coefficient of $R_{i_1} \cdots R_{i_\ell}$ in Ch_k counts the number of maps with k edges

with black vertices labelled by i_1, \ldots, i_{ℓ} ,

each black vertex i produces i - 1 units of liquid,

each white vertex demands 1 unit of the liquid,

each edge transports strictly positive amout of liquid from black to white vertex

 \rightarrow Féray, Dołęga & Śniady

what Kerov polynomials count? transportation problem

coefficient of $R_{i_1} \cdots R_{i_\ell}$ in Ch_k counts the number of maps with k edges

with black vertices labelled by i_1, \ldots, i_{ℓ} ,

each black vertex i produces i - 1 units of liquid,

each white vertex demands 1 unit of the liquid,

each edge transports strictly positive amout of liquid from black to white vertex

 \rightarrow FÉRAY, DOŁĘGA & ŚNIADY strong restriction on the map: no disconnecting edges (except for white leaves)

coefficient of $R_{i_1} \cdots R_{i_\ell}$ in Ch_k counts the number of maps with k edges

with black vertices labelled by i_1, \ldots, i_{ℓ} ,

 \rightarrow Féray, Dołęga & Śniady

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

coefficient of $R_{i_1} \cdots R_{i_\ell}$ in Ch_k counts the number of maps with k edges

with black vertices labelled by i_1, \ldots, i_{ℓ} ,

each black vertex i wants to be married to i - 1 white vertices,

 \rightarrow Féray, Dołęga & Śniady

ション ふゆ く 山 マ チャット しょうくしゃ

coefficient of $R_{i_1} \cdots R_{i_\ell}$ in Ch_k counts the number of maps with k edges

with black vertices labelled by i_1, \ldots, i_{ℓ} ,

 \rightarrow Féray, Dołęga & Śniady

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

coefficient of $R_{i_1} \cdots R_{i_\ell}$ in Ch_k counts the number of maps with k edges

with black vertices labelled by i_1, \ldots, i_{ℓ} ,

with $i_1 + \cdots + i_\ell$ vertices,

each nontrivial set *B* of black vertices has more than

 $\sum_{v \in B} (\text{label of vertex}) - 1$

white neighbors,

 \rightarrow Féray, Dołęga & Śniady

・ロ・・雪・・雪・・雪・・白・

toy example: $[R_{k_1}R_{k_2}]F$

Theorem

if $F = F(\lambda)$ is a polynomial in R_2, R_3, \ldots then

$$\frac{\partial^2}{\partial R_{k_1}\partial R_{k_2}}F\Big|_{\substack{R_2=R_3=\cdots=0\\ [p_1p_2q_1^{k_1-1}q_2^{k_2-1}]}F(\mathbf{p}\times\mathbf{q})-[p_1p_2q_2^{k_1+k_2-2}]F(\mathbf{p}\times\mathbf{q})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

toy example: $[R_{k_1}R_{k_2}]$ Ch_n

We are interested in maps with $k_1 + k_2 - 2$ white and two black vertices V_1, V_2 .

 $\#(maps \text{ such that } V_1 \text{ has } \geq k_1 \text{ friends}, V_2 \text{ has } \geq k_2 \text{ friends}) =$

$$\#(\mathsf{all\ maps})-\#(\mathsf{maps}\ \mathsf{such\ that\ }V_1\ \mathsf{has}\leq k_1-1\ \mathsf{friends})$$

$$-\#(maps such that V_2 has \le k_2 - 1 friends) =$$

$$(-1) \sum_{\substack{i+j=k_1+k_2-2, \\ 1 \le j}} \left[p_1 p_2 q_1^i q_2^j \right] \operatorname{Ch}_k^{\mathbf{p} \times \mathbf{q}} + \sum_{\substack{i+j=k_1+k_2-2, \\ 1 \le i \le k_1-1}} \left[p_1 p_2 q_1^j q_2^j \right] \operatorname{Ch}_k^{\mathbf{p} \times \mathbf{q}} = \sum_{\substack{i+j=k_1+k_2-2, \\ 1 \le j \le k_2-1}} \left[p_1 p_2 q_1^i q_2^j \right] \operatorname{Ch}_k^{\mathbf{p} \times \mathbf{q}} = \left[p_1 p_2 q_1^{k_1-1} q_2^{k_2-1} \right] \operatorname{Ch}_n^{\mathbf{p} \times \mathbf{q}} - \left[p_1 p_2 q_2^{k_1+k_2-2} \right] \operatorname{Ch}_n^{\mathbf{p} \times \mathbf{q}}$$

characters on two cycles

the normalized character $Ch_{k,l}(\lambda)$

$$(1,2,\ldots,k)(k+1,k+2,\ldots,k+l)\in\mathfrak{S}(k+l)$$

Kerov polynomials

not nice!

(abstract) covariance

$$Cov(Ch_k, Ch_I) := Ch_{k,I} - Ch_k Ch_I$$
$$Cov(Ch_3, Ch_2) = -(6R_2R_3 + 6R_5 + 18R_3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is nice!

surprising cancellations

explanation by Kerov polynomials: Cov(Ch₃, Ch₂) counts connected maps with two cells, such that...

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Gaussian fluctuations

(abstract) cumulant

$$k(\operatorname{Ch}_{i_1},\ldots,\operatorname{Ch}_{i_\ell})=\operatorname{Ch}_{i_1,\ldots,i_\ell}-\cdots$$

surprising cancellation:

$$\deg k(\operatorname{Ch}_{i_1},\ldots,\operatorname{Ch}_{i_\ell}) = \deg \operatorname{Ch}_{i_1} + \cdots + \deg \operatorname{Ch}_{i_\ell} - 2(\ell-1)$$

 $\mathsf{Ch}_1,\mathsf{Ch}_2,\mathsf{Ch}_3,\ldots$ behave asymptotically as (abstract) Gaussian random variables

Theorem

 $\begin{array}{ll} \text{for a large class of reducible representations of } \mathfrak{S}(n),\\ \text{if we randomly select an irreducible component } \rho^{\lambda}, \text{ for } n \to \infty\\ \lambda \text{ will concentrate around some limit shape} & \to \text{BIANE}\\ \text{and the fluctuations are Gaussian} & \to \text{KEROV}, \text{ $SNIADY} \end{array}$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

75	81	89	98	100										
58	60	72	94	99										
51	56	62	93	95										
26	38	54	79	92										
18	33	37	59	87										
12	20	35	36	42	46	67	68	70	78	82	84	88	90	97
11	17	19	22	30	43	52	55	64	65	66	74	83	85	96
8	10	13	21	23	29	34	45	47	49	63	71	76	80	91
2	7	9	15	16	24	27	39	41	44	48	57	69	77	86
1	3	4	5	6	14	25	28	31	32	40	50	53	61	73

					_											
75	81	89	98	100												
58	60	72	94	99												
51	56	62	93	95	restriction $ ho^\lambdaigert_{\mathfrak{S}(m)}^{\mathfrak{S}(n)}$ to a subgroup											
26	38	54	79	92												
18	33	37	59	87												
12	20	35	36	42	46	67	68	70	78	82	84	88	90	97		
11	17	19	22	30	43	52	55	64	65	66	74	83	85	96		
8	10	13	21	23	29	34	45	47	49	63	71	76	80	91		
2	7	9	15	16	24	27	39	41	44	48	57	69	77	86		
1	3	4	5	6	14	25	28	31	32	40	50	53	61	73		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

random Young tableaux 3: explanation

 $\mathsf{characters} \longleftrightarrow \mathsf{shape} \text{ of the Young diagram}$

 $\mathsf{Ch}_k \approx R_{k+1}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

random Young tableaux 4: explanation

we decompose $\rho^{\lambda} \downarrow_{\mathfrak{S}(m)}^{\mathfrak{S}(n)}$ into irreducible components and randomly select one of them, say ρ^{μ}

$$R_{k+1}(\lambda) \approx \operatorname{Ch}_{k}(\lambda) \approx n^{k} \frac{\operatorname{Tr} \chi^{\lambda}([k])}{\operatorname{Tr} \chi^{\lambda}(e)},$$
$$\mathbb{E}R_{k+1}(\mu) \approx \mathbb{E}\operatorname{Ch}_{k}(\mu) \approx m^{k} \mathbb{E}\frac{\operatorname{Tr} \chi^{\mu}([k])}{\operatorname{Tr} \chi^{\mu}(e)} = m^{k} \frac{\operatorname{Tr} \chi^{\lambda}([k])}{\operatorname{Tr} \chi^{\lambda}(e)}$$

thus for a typical random Young diagram μ we can expect that

$$R_{k+1}(\mu) \approx \left(\frac{m}{n}\right)^k R_{k+1}(\lambda).$$

Goulden-Rattan polynomials 1

÷

$$Ch_k - \underbrace{R_{k+1}}_{\text{degree } k+1} = \frac{(k+1)k(k-1)}{24} \underbrace{C_{k-1}}_{\text{degree } k-1} + \cdots$$

$$Ch_{6} - R_{7} = \frac{35}{4}C_{5} + 42C_{3},$$

$$Ch_{7} - R_{8} = 14C_{6} + \frac{469}{3}C_{4} + \frac{203}{3}C_{2}^{2} + 180C_{2}.$$

 \rightarrow Goulden & Rattan

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

positivity?

Goulden-Rattan polynomials 2

$$C_k = \sum_{i_1 + \dots + i_\ell = k} \prod_{1 \le s \le \ell} (i_s - 1) R_{i_s}$$

Jack polynomials

$$\begin{aligned} \operatorname{Ch}_{1}^{(\gamma)} &= R_{2}, \\ \operatorname{Ch}_{2}^{(\gamma)} &= R_{3} + \gamma R_{2}, \\ \operatorname{Ch}_{3}^{(\gamma)} &= R_{4} + 3\gamma R_{3} + (1 + 2\gamma^{2}) R_{2}, \\ \operatorname{Ch}_{4}^{(\gamma)} &= R_{5} + 6\gamma R_{4} + \gamma R_{2}^{2} + (5 + 11\gamma^{2}) R_{3} + (7\gamma + 6\gamma^{3}) R_{2}, \\ \operatorname{Ch}_{5}^{(\gamma)} &= R_{6} + 10\gamma R_{5} + 5\gamma R_{3} R_{2} + 15 R_{4} + 5 R_{2}^{2} + \gamma^{2} (35 R_{4} + 10 R_{2}^{2}) + \\ &\quad (55\gamma + 50\gamma^{3}) R_{3} + (8 + 46\gamma^{2} + 24\gamma^{4}) R_{2} \end{aligned}$$

 $\rightarrow \mathrm{Lassalle}$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

positivity? integer coefficients?