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if you missed the first talk. .. normalized characters

for m € Sx and A\ F n we define normalized character

r >\7T
Chﬂ()\) = n(n—l)...(n_k+1) -;IC;L)\)

k factors



if you missed the first talk. .. continuous functionals of shape
for k > 2

5 = (k1) | /( IR

4 —




if you missed the first talk. . . dilations

Young diagram A dilated diagram 2\

Sk is homogeneous of degree k:

Sk(rA) = r*Se()



if you missed. .. Stanley’'s character formula

—STANLEY, FERAY, SNIADY
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2,5 3 Y

Np(X) = # embeddings of M to A

Chk()\) _ Z(—l)k_#White vertices NM(/\),
M

where the sum runs over maps M with k edges



if you missed. .. Stanley’'s character formula

—STANLEY, FERAY, SNIADY
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Np(X) = # embeddings of M to A

Chk()\) — Z(_l)kf#white vertices NI\/I(/\)7
M

degree of Ny = k + 1 — genus(M)



free cumulants 1

Chi= S ,
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free cumulants 1

Chy = S,
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free cumulants 2

s — Chy(s)) is a polynomial of degree k + 1

. Chy(s))
. [ek+1 . k
B ) = 1571 Chls) = Jim =505~
free cumulant
—BIANE

Chi(A) ~ Rs1(N)



free cumulants in terms of functionals of shape 1
1 1

Vi

10 O1

Rkv1 = Skr1+ -



free cumulants in terms of functionals of shape 2
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free cumulants in terms of functionals of shape 3

1
2
Ri1 = 5k+1_§k Z 5’1512+ k E : Siy Sip Sis —
’ Il,lz>2 ’.17’.27’.3227
ih+i=k+1 ih+ix+iz=k+1

b

R3(\)

#\\\I_

r_
F

T T R

Ra(X)



Kerov polynomials

‘characters +— shape of the Young diagram

Chy = Ry,
Chy = Rs,

Chz = Ry + Ry,
Chs = Rs + 5Rj,

Chs = Rg + 15R; + 5R3 + 8R»,
Che = R; + 35R5 + 35R3R> + 84R;3.

positivity?



what Kerov polynomials count? transportation problem

coefficient of R;, --- R;, in Chy
counts the number of maps )
with k edges

with black vertices labelled by (\ 4 1
Hyeensip, 4

each black vertex i produces 1
i — 1 units of liquid,

each white vertex demands 1
unit of the liquid, 7

each edge transports strictly — FERAY, DOLEGA & SNIADY

positive amout of liquid from
black to white vertex



what Kerov polynomials count? transportation problem

coefficient of R;, --- R;, in Chy
counts the number of maps
with k edges

with black vertices labelled by
Hyeensip,

each black vertex i produces
i — 1 units of liquid,

each white vertex demands 1
unit of the liquid,

each edge transports strictly
positive amout of liquid from
black to white vertex

\
7

\
4

— FERAY, DOLEGA & SNIADY
strong restriction on the map:

no disconnecting edges

(except for white leaves)



what Kerov polynomials count? Hall marriage theorem

coefficient of R;, --- R;, in Chy
counts the number of maps
with k edges 5

with black vertices labelled by 4
Hyeensip,

(G

— FERAY, DOLEGA & SNIADY



what Kerov polynomials count? Hall marriage theorem

coefficient of R;, --- R;, in Chy
counts the number of maps

with k edges 5
with black vertices labelled by 4
l.]_,...,l.g, :: ::

each black vertex i wants to
be married to i — 1 white
vertices,

— FERAY, DOLEGA & SNIADY



what Kerov polynomials count? Hall marriage theorem

coefficient of R;, --- R;, in Chy
counts the number of maps
with k edges 5

with black vertices labelled by 4
Hyeensip,

(G

— FERAY, DOLEGA & SNIADY



what Kerov polynomials count? Hall marriage theorem

coefficient of R;, --- R;, in Chy
counts the number of maps

with k edges 5
with black vertices labelled by 4
l.]_,...,l.g, :: ::

with i + - -+ + iy vertices,

each nontrivial set B of black
vertices has more than

> (label of vertex) — 1

veB — FERAY, DOLEGA & SNIADY

white neighbors,



toy example: [Ry, Ri,]F

if F = F(X) is a polynomial in Ry, Rs, ... then

2
_P i
ORORy,

Ry=R3=---=0

[Plpzqfl_lqu_l]F(P X q) — [P1P2Q§1+k2_2]F(P X q)

V.




toy example: [R, Ry,] Chy,

We are interested in maps with ky + ko — 2 white and two black
vertices Vi, Vs.

#(maps such that V; has > k; friends, V; has > k; friends) =

#(all maps) — #(maps such that V; has < k; — 1 friends)

—#(maps such that V, has < ky — 1 friends) =

(=1) Z {Plsz{qﬂ Chixq + Z [P1P2CI{CI§.] Chixq

i+j=k1+ka—2, i+j=k1+k2—2,
1<) 1<i<ki—1
i J pPXq _
+ D {Plpququ} Ch,™" =
i+j=ki+ko—2,
1<j<ko—1

ki—1 k2 1 pXq ki+ko—2 pXxq
] Che ] ChP

[p1p2g; —[P1P295



characters on two cycles

the normalized character Chy ;(\)

(1,2, K)k+1,k+2,... k+1)e&Sk+])

Kerov polynomials
Ch3o = R3R4 —5RyR3 — 6Rs — 18R3

not nice!

(abstract) covariance
COV(Chk, Ch/) = Cth - Chk Ch/

COV(Ch3, Chz) = —(6R2R3 + 6Rs + 18R3)

is nicel



surprising cancellations

Chy= R; |,
~~

degree 3

Chs = Ry +Ry,
~—
degree 4

COV(Ch3, Chz) = —(6 RyRs +6 Rs +18R3)
N~~~ ~~

degree only 5 degree only 5

explanation by Kerov polynomials:

Cov(Chs, Chy) counts connected maps with two cells, such that. ..



Gaussian fluctuations
(abstract) cumulant

k(Chj,,...,Ch;) = Ch

fseeip ™
surprising cancellation:

deg k(Chj,,...,Chj,) = degChj, +--- +deg Ch;, —2(¢/ — 1)

Chy, Chy, Chs, ... behave asymptotically as (abstract) Gaussian
random variables

for a large class of reducible representations of &(n),
if we randomly select an irreducible component p*, for n — oo

A will concentrate around some limit shape —BIANE
and the fluctuations are Gaussian —KEROV, SNIADY




random Young tableaux 1




random Young tableaux 1
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random Young tableaux 2

“M,L‘

DA



random Young tableaux 3: explanation

‘characters +— shape of the Young diagram

Chy ~ Res1



random Young tableaux 4: explanation

we decompose p)‘lggnm)) into irreducible components
and randomly select one of them, say p/

kTrx ([k])

Trx*e) '
Trx(lk]) _ karx ([k])
Trx*(e) Trx*(e)

Rk11(A) = Chy () ~

ER41(p) = EChy(p) ~ m*E

thus for a typical random Young diagram u we can expect that

Ri+1(p) ~ (%)k Ri+1(A).



Goulden-Rattan polynomials 1

(k+1)k(k —1)

Chy— Repn = Choo1 +---
~—~—— 24 ~—~——
degree kK +1 degree k — 1

35
Che — Ry :ZQ—, + 42C3,

4 2
Ch; —Rs =14Cs + ga + %c} +180G,.

—GOULDEN & RATTAN
positivity?



Goulden-Rattan polynomials 2

o= Y. I1 Gs— DR,

it tig=k 1<s<¢



Jack polynomials

Chgv) =Ry,

Ch") =Ry + YRy,

Ch{”) =Ry + 37Rs + (1 +29%)Ry,

Ch{") =Rs + 67Rs + YRS + (5 + 1172)Rs + (77 + 67°) Ry,

Ch{" =Rg + 107Rs + 5yRs Ry + 15R + 5R3 + 7°(35Rs + 10R3)+
(557 4 507°)Rs + (8 + 467 + 247*)R;

—LASSALLE
positivity? integer coefficients?



