Combinatorics of asymptotic representation theory

Part 3
joint work with Dan Romik

Piotr Śniady

Technische Universität München
and
Polska Akademia Nauk
and
Uniwersytet Wrocławski

Young graph: irreducible representations of symmetric groups $S_{1} \subset S_{2} \subset S_{3} \subset \ldots$

Tool for studying S_{∞}

Young graph: irreducible representations of symmetric groups $S_{1} \subset S_{2} \subset S_{3} \subset \ldots$

Tool for studying S_{∞}

paths in Young graph \longleftrightarrow tableaux

$$
\begin{array}{ccc}
\square & \square & \square \\
\Lambda^{1} & \Lambda^{2} \quad \Lambda^{3} & \square \\
& \text { infinite path in Young graph }
\end{array}
$$

infinite tableau
$\Omega:=$ set of infinite tableaux / set of infinite paths

paths in Young graph \longleftrightarrow tableaux

$\square \longrightarrow \square \longrightarrow \square \longrightarrow \square \longrightarrow \cdots$
 \wedge^{1}
 Λ^{2}
 Λ^{3}
 \wedge^{4}
 infinite path in Young graph

infinite tableau
$\Omega:=$ set of infinite tableaux / set of infinite paths

paths in Young graph \longleftrightarrow tableaux

$$
\begin{array}{ccc}
\square & \square & \square \\
\Lambda^{1} & \Lambda^{2} \quad \Lambda^{3} & \Lambda^{4} \\
& \text { infinite path in Young graph }
\end{array}
$$

infinite tableau
$\Omega:=$ set of infinite tableaux / set of infinite paths

paths in Young graph \longleftrightarrow tableaux

- $\rightarrow \square$ 也————...
 Λ^{1}
 Λ^{2}
 Λ^{3}
 Λ^{4}
 infinite path in Young graph

infinite tableau
$\Omega:=$ set of infinite tableaux / set of infinite paths

paths in Young graph \longleftrightarrow tableaux

$\square \longrightarrow \square \longrightarrow \square \longrightarrow \square \longrightarrow$
 $\Lambda^{1} \quad \Lambda^{2} \quad \Lambda^{3} \quad \Lambda^{4}$
 infinite path in Young graph

infinite tableau
$\Omega:=$ set of infinite tableaux / set of infinite paths

paths in Young graph \longleftrightarrow tableaux

$$
\begin{array}{ccc}
\square & \square & \square \\
\Lambda^{1} & \Lambda^{2} \quad \Lambda^{3} & \Lambda^{4} \\
& \text { infinite path in Young graph }
\end{array}
$$

\vdots		\vdots		
6	15	21	24	
4	12	17	19	\cdots
3	5	8	11	
1	2	7	9	\cdots

infinite tableau
$\Omega:=$ set of infinite tableaux / set of infinite paths

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK
(1) start from the first row,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

F	L	N	T
D	G	M	S
B	E	J	Q
A	C	H	I

insertion tableau

7	16	22	25
6	10	14	24
4	5	9	17
1	2	3	8

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau

	7	16	22	2	
	6	10	14	2	
	4	5	9	1	
	1	2	3	8	
		,			

FOXDRPBZULGEATWNSMYVCJHQIK
if X_{0}, X_{1}, \ldots are independent $U(0,1)$ random variables then
$\operatorname{RSK}\left(X_{0}, X_{1}, \ldots\right) \stackrel{\text { distribution }}{=}$ Plancherel measure

infinite Robinson-Schensted-Knuth (RSK) map

infinite Robinson-Schensted-Knuth (RSK) map

jeu de taquin
(1) start with $t \in \Omega$,

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,
(4) subtract 1 from all boxes

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,
(4) subtract 1 from all boxes

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,
(4) subtract 1 from all boxes
output:

- new tableau $J(t)$,
- blue trajectory $\mathbf{c}(t)=\left(c_{1}, c_{2}, \ldots\right)$

jeu de taquin
(1) start with $t \in \Omega$,
(2) remove corner box,
(3) sliding,
(4) subtract 1 from all boxes
output:
- new tableau $J(t)$,
- blue trajectory $\mathbf{c}(t)=\left(c_{1}, c_{2}, \ldots\right)$
'how representation of $S_{\{1,2,3, \ldots\}}$ is related to its restriction to $S_{\{2,3, \ldots\}}$?'
jeu de taquin - overview

8	13	18	32
6	9	12	23
4	5	7	19
1	2	3	10

original tableau t

8	13	24	32
6	9	18	23
4	5	12	19
2	3	7	10

outcome of slidings

7	12	23	31
5	8	17	22
3	4	11	18
1	2	6	9

new tableau $J(t)$

trajectories of jeu de taquin

trajectories of jeu de taquin

trajectories of jeu de taquin

trajectories of jeu de taquin

if $t=\operatorname{RSK}\left(X_{0}, X_{1}, \ldots\right) \in \Omega$ is random, Plancherel distributed
then its jdt trajectory $\mathbf{c}(t)$ is almost surely asymptotically a straight line,
i.e.
$\lim _{k \rightarrow \infty} \frac{c_{k}}{\left\|c_{k}\right\|}=(\cos \Theta(t), \sin \Theta(t))$
exists almost surely

jeu de taquin dynamical system (Ω, Plancherel, J)

jeu de taquin dynamical system (Ω, Plancherel, J)

jeu de taquin dynamical system (Ω, Plancherel, J)

jeu de taquin dynamical system (Ω, Plancherel, J)
i.i.d. shift dynamical system $\left([0,1]^{\mathbb{N}}, \prod\right.$ Lebesgue, $\left.s\right)$

jeu de taquin dynamical system (Ω, Plancherel, J)
i.i.d. shift dynamical system $\left([0,1]^{\mathbb{N}}, \prod\right.$ Lebesgue, $\left.s\right)$

jeu de taquin dynamical system (Ω, Plancherel, J)
i.i.d. shift dynamical system $\left([0,1]^{\mathbb{N}}, \prod\right.$ Lebesgue, $\left.s\right)$

jeu de taquin dynamical system (Ω, Plancherel, J)
i.i.d. shift dynamical system $\left([0,1]^{\mathbb{N}}, \prod\right.$ Lebesgue, $\left.s\right)$
$\left(x_{0}, x_{1}, \ldots\right) \stackrel{s}{\longmapsto}\left(x_{1}, x_{2}, \ldots\right) \stackrel{s}{\longmapsto}$

$\theta_{0}=f\left(x_{0}\right)$

$$
\theta_{1}=f\left(x_{1}\right)
$$

jeu de taquin dynamical system (Ω, Plancherel, J)
i.i.d. shift dynamical system $\left([0,1]^{\mathbb{N}}, \prod\right.$ Lebesgue, $\left.s\right)$
$\left(x_{0}, x_{1}, \ldots\right) \stackrel{s}{\longmapsto}\left(x_{1}, x_{2}, \ldots\right) \stackrel{s}{\longmapsto}$

$\theta_{0}=f\left(x_{0}\right)$

$$
\theta_{1}=f\left(x_{1}\right)
$$

jeu de taquin dynamical system (Ω, Plancherel, J)
the jeu de taquin dynamical system is isomorphic to i.i.d. shift the inverse map is given by $x_{i}=f^{-1}\left(\theta_{i}\right)$

some consequences of the isomorphism:

- jdt is a measure-preserving transformation,
- jdt is ergodic,
- slope angles $\theta_{0}, \theta_{1}, \ldots$ are independent random variables (put paths $\mathbf{c}\left(t_{0}\right), \mathbf{c}\left(t_{1}\right), \ldots$ are not independent),
- generalizations to other probability measures on Ω / other representations of S_{∞},

why Θ exists and is a function of x_{0} ?

x_{0} is fixed
x_{1}, x_{2}, \ldots are random, independent $U(0,1)$

why Θ exists and is a function of x_{0} ?

x_{0} is fixed
x_{1}, x_{2}, \ldots are random, independent $U(0,1)$

why Θ exists and is a function of x_{0} ?

x_{0} is fixed
x_{1}, x_{2}, \ldots are random, independent $U(0,1)$

$$
{ }^{*}=\Lambda^{n+1} \backslash \bar{\Lambda}^{n}=\operatorname{RSK}\left(x_{0}, \ldots, x_{n}\right) \backslash \operatorname{RSK}\left(x_{1}, \ldots, x_{n}\right)
$$

Is it true that asymptotically position of ${ }^{*}$ depends only on x_{0} ?

instead of (for deterministic x_{0}) studying

$$
\operatorname{RSK}\left(x_{0}, \ldots, x_{n}\right) \backslash \operatorname{RSK}\left(x_{1}, \ldots, x_{n}\right)=*
$$

we study (for random $0<t_{1}<\cdots<t_{k}<1$)
$\operatorname{RSK}\left(t_{1}, \ldots, t_{k}, x_{1}, \ldots, x_{n}\right) \backslash \operatorname{RSK}\left(x_{1}, \ldots, x_{n}\right)=\{1, \ldots, \boxed{\boxed{1}}\}$

plactic Littlewood-Richarson rule

if $0 \leq x_{1}, \ldots, x_{n} \leq 1$ is a random sequence, conditioned in such a way that

$$
\text { shape of } \operatorname{RSK}\left(x_{1}, \ldots, x_{n}\right)=\lambda ;
$$

and $0 \leq t_{1}, \ldots, t_{k} \leq 1$ is a random sequence, conditioned in such a way that

$$
\text { shape of } \operatorname{RSK}\left(t_{1}, \ldots, t_{k}\right)=\mu \text {; }
$$

then the random Young diagram

$$
\text { shape of } \operatorname{RSK}\left(t_{1}, \ldots, t_{k}, x_{1}, \ldots, x_{n}\right)
$$

has the same distribution as random irreducible component of

$$
V^{\lambda} \otimes V^{\mu} \uparrow_{S_{n} \times S_{k}}^{S_{n+k}}
$$

plactic Littlewood-Richarson rule

if $0 \leq x_{1}, \ldots, x_{n} \leq 1$ is a random sequence, conditioned in such a way that

$$
\text { shape of } \operatorname{RSK}\left(x_{1}, \ldots, x_{n}\right)=\lambda ;
$$

and $0 \leq t_{1}, \ldots, t_{k} \leq 1$ is a random sequence, conditioned in such a way that

$$
\text { shape of } \operatorname{RSK}\left(t_{1}, \ldots, t_{k}\right)=(k) ;
$$

then the random Young diagram

$$
\text { shape of } \operatorname{RSK}\left(t_{1}, \ldots, t_{k}, x_{1}, \ldots, x_{n}\right)
$$

has the same distribution as random irreducible component of

$$
V^{\lambda} \otimes V^{(k)} \uparrow_{S_{n} \times S_{k}}^{S_{n+k}}
$$

growth of Young diagrams and Jucys-Murphy elements

