Combinatorics of asymptotic representation theory

Part 3 joint work with Dan Romik

Piotr Śniady

Technische Universität München and Polska Akademia Nauk and Uniwersytet Wrocławski

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Young graph: irreducible representations of symmetric groups $S_1 \subset S_2 \subset S_3 \subset \ldots$

ヘロト ヘアト ヘヨト ヘ

Tool for studying S_∞

Young graph: irreducible representations of symmetric groups $S_1 \subset S_2 \subset S_3 \subset \ldots$

ヘロト ヘアト ヘヨト ヘ

Tool for studying S_∞

infinite tableau

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

infinite tableau

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

6	15	21	24	
4	12	17	19	•••
3	5	8	11	
1	2	7	9	•••

infinite tableau

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

① start from the first row,

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

④ information about the new box into the recording tableau,

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

ション ふゆ く 山 マ チャット しょうくしゃ

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

ション ふゆ く 山 マ チャット しょうくしゃ

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

ション ふゆ く 山 マ チャット しょうくしゃ

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

ション ふゆ く 山 マ チャット しょうくしゃ

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

◆□▶ ◆□▶ ★目▶ ★目▶ 目 のへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

◆□▶ ◆□▶ ★目▶ ★目▶ 目 のへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

◆□▶ ◆□▶ ★目▶ ★目▶ 目 のへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

◆□▶ ◆□▶ ★目▶ ★目▶ 目 のへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

◆□▶ ◆□▶ ★目▶ ★目▶ 目 のへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

3 insert the bumped element into the next row,

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

3 insert the bumped element into the next row,

F	L	Ν	Т
D	G	М	S
В	Ε	J	Q
А	С	Н	Ι

 7
 16
 22
 25

 6
 10
 14
 24

 4
 5
 9
 17

 1
 2
 3
 8

insertion tableau

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

① start from the first row,

② insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

3 insert the bumped element into the next row,

infinite word $\stackrel{\mathsf{RSK}}{\mapsto}$ recording tableau

7	16	22	25
6	10	14	24
4	5	9	17
1	2	3	8

recording tableau

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

WH&HHHH |¥#\\$XEA|4

F O X D R P B Z U L G E A T W N S M Y V C J H Q I K

infinite word $\stackrel{\mathsf{RSK}}{\mapsto}$ recording tableau

7	16	22	25
6	10	14	24
4	5	9	17
1	2	3	8

MH&HM/VAM/VAM

recording tableau

FOXDRPBZULGEATWNSMYVCJHQIK

if X_0, X_1, \ldots are independent U(0, 1) random variables then $\mathsf{RSK}(X_0, X_1, \ldots) \stackrel{\text{distribution}}{=} \mathsf{Plancherel}$ measure

$$(x_0, x_1, \dots)$$

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆目 ▶ ● ● ● ● ●

$$(x_0, x_1, \dots)$$

RSK \int_t inverse?

(ロ)、(型)、(E)、(E)、 E のQで

jeu de taquin ① start with $t \in \Omega$,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,
- ③ sliding,
- 4 subtract 1 from all boxes

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- ② remove corner box,
- 3 sliding,
- 4 subtract 1 from all boxes

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ① start with $t \in \Omega$,
- 2 remove corner box,
- ③ sliding,
- ④ subtract 1 from all boxes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

output:

- new tableau J(t),
- blue trajectory $\mathbf{c}(t) = (c_1, c_2, \dots)$

- ① start with $t \in \Omega$,
- 2 remove corner box,
- ③ sliding,
- ④ subtract 1 from all boxes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

output:

- new tableau J(t),
- blue trajectory $\mathbf{c}(t)=(c_1,c_2,\dots)$

'how representation of $S_{\{1,2,3,\dots\}}$ is related to its restriction to $S_{\{2,3,\dots\}}?'$

jeu de taquin - overview

L				
8	13	18	32	
6	9	12	23	
4	5	7	19	
1	2	3	10	

8	13	24	32
6	9	18	23
4	5	12	19
2	3	7	10

7	12	23	31	
5	8	17	22	
3	4	11	18	
1	2	6	9	

original tableau t

outcome of slidings

new tableau J(t)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

э

if $t = \mathsf{RSK}(X_0, X_1, \dots) \in \Omega$ is random, Plancherel distributed

then its jdt trajectory c(t)is almost surely asymptotically a straight line,

i.e.

$$\lim_{k\to\infty}\frac{c_k}{\|c_k\|}=\big(\cos\Theta(t),\sin\Theta(t)\big)$$

exists almost surely

・ロト ・聞 ・ ・目 ・ ・目 ・ うへぐ

・ロト・4回ト・4回ト・4回ト・4日ト

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

jeu de taquin dynamical system $(\Omega, Plancherel, J)$

the jeu de taquin dynamical system is isomorphic to i.i.d. shift the inverse map is given by $x_i = f^{-1}(\theta_i)$

some consequences of the isomorphism:

- jdt is a measure-preserving transformation,
- jdt is ergodic,
- slope angles $\theta_0, \theta_1, \ldots$ are independent random variables (put paths $\mathbf{c}(t_0), \mathbf{c}(t_1), \ldots$ are not independent),
- generalizations to other probability measures on Ω / other representations of S_∞ ,

うして ふゆう ふほう ふほう うらつ

why Θ exists and is a function of x_0 ?

x₀ is fixed

 x_1, x_2, \ldots are random, independent U(0, 1)

why Θ exists and is a function of x_0 ?

x₀ is fixed

 x_1, x_2, \ldots are random, independent U(0, 1)

why Θ exists and is a function of x_0 ?

 x_0 is fixed

 x_1, x_2, \ldots are random, independent U(0, 1)

Is it true that asymptotically position of \blacksquare depends only on x_0 ?

the easy part:

 $\overline{\Lambda}^n$ with high probability concentrates around some limit shape LOGAN, SHEPP, VERSHIK, KEROV

 \blacksquare is somewhere on the boundary of $\overline{\Lambda}^n$

instead of (for deterministic x_0) studying

$$\mathsf{RSK}(x_0,\ldots,x_n)\setminus\mathsf{RSK}(x_1,\ldots,x_n)=$$

we study (for random $0 < t_1 < \cdots < t_k < 1$) $\mathsf{RSK}(t_1, \ldots, t_k, x_1, \ldots, x_n) \setminus \mathsf{RSK}(x_1, \ldots, x_n) = \{ \fbox{1}, \ldots, \widecheck{k} \}$

plactic Littlewood-Richarson rule

if $0 \leq x_1, \ldots, x_n \leq 1$ is a random sequence, conditioned in such a way that

shape of
$$\mathsf{RSK}(x_1,\ldots,x_n) = \lambda$$
;

and $0 \leq t_1, \ldots, t_k \leq 1$ is a random sequence, conditioned in such a way that

shape of
$$\mathsf{RSK}(t_1,\ldots,t_k)=\mu;$$

then the random Young diagram

shape of
$$\mathsf{RSK}(t_1,\ldots,t_k,x_1,\ldots,x_n)$$

has the same distribution as random irreducible component of

$$V^{\lambda} \otimes V^{\mu} \uparrow^{S_{n+k}}_{S_n \times S_k}$$

plactic Littlewood-Richarson rule

if $0 \leq x_1, \ldots, x_n \leq 1$ is a random sequence, conditioned in such a way that

shape of
$$\mathsf{RSK}(x_1,\ldots,x_n) = \lambda$$
;

and $0 \leq t_1, \ldots, t_k \leq 1$ is a random sequence, conditioned in such a way that

shape of
$$\mathsf{RSK}(t_1,\ldots,t_k) = (k);$$

then the random Young diagram

shape of
$$\mathsf{RSK}(t_1,\ldots,t_k,x_1,\ldots,x_n)$$

has the same distribution as random irreducible component of

$$V^{\lambda} \otimes V^{(k)} \uparrow^{S_{n+k}}_{S_n \times S_k}$$

growth of Young diagrams and Jucys-Murphy elements

