Algebraic properties of some statistics on permutations

V. Vong

Laboratoire d'Informatique Gaspard-Monge – Université Paris-Est Marne-la-Vallée

March 26, 2013

Outline

Background

- Some statistics on permutations
- Some combinatorial objects and these statistics
- The algebra FQSym
- Quotient by an equivalence relation
- The different quotients
 - Zoology
 - Sketch of the proof
- New products on 2-colored Motzkin paths and Dyck paths
 - A product on 2-colored Motzkin paths
 - A bijection between 2-colored Motzkin paths and Dyck paths
 - A product on Dyck paths

Some statistics on permutations

Let σ be in \mathfrak{S}_n . By convention, $\sigma(0) = 0$, and $\sigma(n+1) = 0$. Let *i* be a position between $\{1, \dots, n\}$. The value σ_i is a:

Background

Example: $\sigma = 859723416$

$$P(\sigma) = \{ 8, 9, 4, 6 \}$$

$$V(\sigma) = \{ 5, 2, 1 \}$$

$$Dr(\sigma) = \{ 3 \}$$

$$Dd(\sigma) = \{ 7 \}$$

2-colored Motzkin path: example

Connection between statistics on permutations on 2-colored Motzkin paths

Consider the following map ϕ from permutations to paths. If σ is a permutation, the *i*-th step of $\phi(\sigma)$ is a:

For $\sigma = 859723416$, here is $\phi(\sigma)$:

$$P(\sigma) = \{ 8, 9, 4, 6 \}$$

$$V(\sigma) = \{ 5, 2, 1 \}$$

$$Dr(\sigma) = \{ 3 \}$$

$$Dd(\sigma) = \{ 7 \}$$

Background

Increasing binary tree of $\sigma = 859723416$:

The algebra **FQSym**

FQSym is a graded algebra whose components of weight *n* have dimensions *n*!. One can index the bases by permutations. The product on the basis F_{σ} is given by the shifted shuffle:

$$F_{\sigma}F_{\tau} = \sum_{s \in \sigma \overline{\square} au} F_s$$

Example

If $\sigma = 312$, and $\tau = 12$, we have:

$$F_{312}F_{12} = F_{31245} + F_{31425} + \dots + F_{45312}$$

Quotient by an equivalence relation

- $\bullet~$ Let $\sim~$ be an equivalence relation on permutations.
- Consider the vector space ${\cal I}$ generated by $(F_\sigma-F_\tau)_{\sigma\sim au}$
- Is it a two-sided ideal ?
- If so, $\textbf{FQSym}/\mathcal{I}$ is a well-defined quotient algebra.

Proving that $\ensuremath{\mathcal{I}}$ is a two-sided ideal if and only if:

 $\text{if } \sigma \sim \tau \left\{ \begin{array}{l} \exists \phi_s: \ \sigma \ \overline{\sqcup} \ s \to \tau \ \overline{\amalg} \ s \text{ a bijection such that } \phi_s(p) \sim p, \\ \exists \psi_s: \ s \ \overline{\sqcup} \ \sigma \to s \ \overline{\sqcup} \ \tau \text{ a bijection such that } \psi_s(p) \sim p. \end{array} \right.$

Examples of equivalence relation

Notations	Definitions	Examples
(P,V, $Dr \cup Dd$)	same peaks, valleys,	
	union of double rises	4132 and 2413
	and double descents sets	
$(P \cup Dd, V \cup Dr)$	same union of peaks and double	
	descents, same union of valleys	35142 and 13542
	and double rises sets	

quotient by	dimensions	quotient algebras	free algebras
(P, V, Dr, Dd)	C _n	yes	yes
(P,V, $Dr \cup Dd$)	M_{n-1}	yes	yes
$(P,V\cupDr\cupDd)$	$\binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}{2^{n-1}}$	no	no
$(P \cup V \cup Dr, Dd)$	_	no	no
$(P \cup V, Dr, Dd)$	$\frac{3^{n-1}+1}{2}$	no	no
(P, Dr, V \cup Dd)	A_{n-1}	no	no
$(P \cup V, Dr \cup Dd)$	2^{n-2}	no	no
$(P \cup Dd, V \cup Dr)$	2^{n-1}	yes	yes
$(P \cup V \cup Dr \cup Dd)$	1	yes	yes

Sketch of the proof

What do we have to prove?

- Step 1: if $\sigma \sim \tau$, find a bijection ϕ from $\sigma \square s$ to $\tau \square s$ such that $\phi(p) \sim p$.
- Step 2: if $\sigma \sim \tau$, find a bijection ψ from $s \square \sigma$ to $s \square \tau$ such that $\psi(p) \sim p$.

Step 1

- Interpretation of the shifted shuffle in term of trees
- Example of construction of the bijection

Step 2

- Factorization of permutations and statistics
- Example of construction of the bijection

Sketch of the proof

shifted shuffle and increasing binary trees: example

For $\sigma_1 = 52341$, s = 3421, $\sigma = 859723416 \in \sigma_1 \square s$, we have:

The grafting operation and the bijection ϕ_s

Thanks to the element σ , we have a decomposition of s, and graft locations in the increasing tree of σ_1 . In the tree of σ_2 , we have the same graft locations. So we graft at the places the blocks of s.

$$\sigma_1 = 52341, \ s = 3421$$
 $\sigma_2 = 35241, \ s = 3421, \ \phi(\sigma)$:

The different steps of the bijection ψ_s

 $\sigma_1 = 52341$ and $\sigma_2 = 35241$ and s = 4132, $\sigma = 964173852 \in s \square \sigma_1$, and the construction of the corresponding τ :

- **(**) the factorization of σ_1 by deleting letter of s in σ : 52|3|41,
- 2 the corresponding factorization for σ_2 : 3|52|41,
- **③** the factorization of *s* by deleting letters of shifted σ_1 in σ : |41|3|2,
- the corresponding τ : 741963852.

Let σ and τ two permutations having the same four statistics. Let $\sigma = v_1 \cdots v_r$. Then there exists a unique factorization of $\tau = w_1 \cdots w_r$ such that each letter *i* in v_k , has the same status in a w_l .

An example of the factorization algorithm:

 $\sigma = 859723416$ $\tau = 956138724$

Let σ and τ two permutations having the same four statistics. Let $\sigma = v_1 \cdots v_r$. Then there exists a unique factorization of $\tau = w_1 \cdots w_r$ such that each letter *i* in v_k , has the same status in a w_l .

An example of the factorization algorithm:

 $\sigma = 85|9723416$ $\tau = 95|6138724$

Let σ and τ two permutations having the same four statistics. Let $\sigma = v_1 \cdots v_r$. Then there exists a unique factorization of $\tau = w_1 \cdots w_r$ such that each letter *i* in v_k , has the same status in a w_l .

An example of the factorization algorithm:

 $\sigma = 85|972|3416$ $\tau = 95|613872|4$

Let σ and τ two permutations having the same four statistics. Let $\sigma = v_1 \cdots v_r$. Then there exists a unique factorization of $\tau = w_1 \cdots w_r$ such that each letter *i* in v_k , has the same status in a w_l .

An example of the factorization algorithm:

 $\sigma = 85|972|3|416 \qquad \qquad \tau = 95|613|872|4$

Let σ and τ two permutations having the same four statistics. Let $\sigma = v_1 \cdots v_r$. Then there exists a unique factorization of $\tau = w_1 \cdots w_r$ such that each letter *i* in v_k , has the same status in a w_l .

An example of the factorization algorithm:

 $\sigma = 85|972|3|41|6 \qquad \qquad \tau = 95|61|3|872|4$

New products on 2-colored Motzkin paths and Dyck paths

Product on 2-colored Motzkin paths: example

New products on 2-colored Motzkin paths and Dyck paths

Product on Dyck paths: example

For $C_1 = UUDUDD$ and $C_2 = UDUUDD$ we have the following product:

$$C_1 \cdot C_2 = \sum_{C = UU * U * * * D * * DD} C$$