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MONOMIAL BASES FOR FREE PRE-LIE ALGEBRAS

MAHDI J. HASAN AL-KAABI

Asstract. We study the concept of a free pre-Lie algebra generated(bgraempty) set. We
review the construction by Agrachev and GamkrelidzeSov. Math17 (1981), 1650-1675] of
monomial bases in free pre-Lie algebras. We describe thexedithe monomial basis vectors
in terms of the rooted trees basis exhibited by Chapoton awnetriet Internat. Math. Res.
Notices8 (2001), 395-408]. Also, we show that this matrix is unipotend we find an explicit
expression for its caicients, which uses a similar procedure for the free magnadgiebra at
the level of planar rooted trees which has been suggestettahini-Fard and Manchon.
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1. INTRODUCTION

Pre-Lie algebra structures appear in various domains dienaatics: dierential geometry,
guantum field theory, dlierential equations. They have been studied intensivebnitgc we
refer for instance to the survey papers [4, 6, 16]. Free peealgebras had already been studied
as early as 1981 by Agrachev and Gamkrelidze [1], and alscelggl$20]. In particular, both
papers give a construction of monomial bases, witfedent approaches. On the other hand,
rooted trees are a classical topic, closely connected td.ipralgebras. They appeared for
example in the study ofector fieldd5], numerical analysi$2], and more recently iguantum
field theory[8]. Bases for free pre-Lie algebras in terms of rooted tmere introduced by
Chapoton and Livernet in [7], using the point of view of oplsaDzhumadil’daev and Lofwall
described independently two bases for free pre-Lie algelmae using the concept of rooted
trees, and the other obtained by considering a basis forgbdron-associative) algebra modulo
the pre-Lie relation [10].

In our paper, we study free pre-Lie algebras. We describexphcg method for finding
suitable monomial bases for them: recall that the spaspanned by (non-planar) rooted trees
forms with the grafting operation=” the free pre-Lie algebra with one generator [7, 10]. A
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monomial in the free pre-Lie algebra with one generator iar@pthesized word built up from
the generators” and the pre-Lie grafting operationrs”, for example:

(o—) o)—)(o—)(o—) o))

We are interested in particular monomial bases which widdded “tree-grounded”. To each
monomial we can associate a “lower-energy term” by reptatie grafting operation-5” by
the Butcher productss”. A monomial basis of/” will be called “tree-grounded” if the lower-
energy terms of each monomial give back the Chapoton—Leteree basis of . We show that
tree-grounded monomial bases are in one-to-one correspoadvith choice$ — S(t) of a
planar representative for each tte&Ve give an explicit expression for the d¢beients of these
monomials in the basis of rooted trees, thus exhibiting @asgmatrix(8s(s, 1)) ... for each
degreen > 0.

This paper consists in two main sections: Section 2 contonge preliminaries on planar
and non-planar rooted trees, Butcher products and grgftioducts. In that section, we also
review the joint work of Ebrahimi-Fard and Manchon (unpsb&d) who described an explicit
algebra isomorphisi¥ between two structures of free magmatic algebras definedeospace
7" of all planar rooted trees, by the left Butcher prodifsf*and the left grafting product,”,
respectively. We give the explicit expression of thefoentsc(o, r) of this isomorphism in
the planar rooted tree basis. Using the work of EbrahimdFfard Manchon, and by defining
a bijective linear maf¥'s which depends on the choice of a sect®of the “forget planarity”
projectionr alluded to above, we find a formula for the @ogientsps(s, t) of ¥s in the (non-
planar) rooted tree basis. This can be visualized by theviatig diagram:

r=m(s,2) e TP —— TP 5 m(s,\)

t= m(., O—>) e 7?1 ‘? ....... > (]T] ) m(., _))
S

for any homogeneous componeﬁpg' and7,.

In Section 3, we recall some basic topics on free pre-Lietalgge We describe the construc-
tion of a monomial basis for each homogeneous subspgida the free pre-Lie algebr&ie
generated by a (non-empty) €etusing a type of algebra isomorphism obtained by Agrachev
and Gamkrelidze [1]. Finally, the constructions in Secti@and 3 can be related as follows:
we show that a tree-grounded monomial basis in a free predgebra defines a secti@of
the projectiont : 7P —s> 7 and, conversely, that any sectionoflefines a tree-grounded
monomial basis.

2. BLANAR AND NON-PLANAR ROOTED TREES

In graph theory, a tree is an undirected connected graphstimgsof vertices which are
connected with each other, without cycles, by simple padiied edges [11]. A rooted tree is
defined as a tree with one distinguished vertex called thie Tdee other remaining vertices are
partitioned intok > 0 disjoint subsets such that each of them in turn represertstad tree,
and a subtree of the whole tree. This can be taken as a rezwsfinition for rooted trees,
widely used in computer algorithms [14]. Rooted trees areramthe most important structures
appearing in many branches of pure and applied mathematics.
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In general, a tree structure can be described as a “braridl@lagionship between vertices,
much like that found in the trees of nature. Many types ofsdefined by all sorts of constraints
on properties of vertices appear to be of interest in comobiies and in related areas such as
formal logic and computer science.

Definition 1. A planar binary tree is a finite oriented tree embedded in lwegy such that each
internal vertex has exactly two incoming edges and one auggedge. One of the internal
vertices, called the root, is a distinguished vertex with tmcoming edges and one edge, like a
tail at the bottom, not ending at a vertex.

The incoming edges in this type of trees are internal (commg¢wo internal vertices), or
external (with one free end). The external incoming edgesalled the leaves. We give here
some examples of planar binary trees:

YN YN YV -

where the single edgd is the unique planar binary tree without internal vertic€se degree

of any planar binary tree is the number of its leaves. Den;ot'égﬁ (respectivelw;?‘”) the set
(respectively the linear span) of planar binary trees.

Define the grafting operation/” on the spacg'p?‘” to be the operation that maps two planar
binary treedy, t; to a new planar binary tree;"vt,”, which takes ther-shaped treéz\/ replacing

the left (respectively the right) branch by(respectivelyt,), see the following examples:

V=V, \vv:v, V| :y/, VVV:V’ ‘VVZV'

Let D be any (non-empty) set, the free magig generated byp can be described to be
the set of planar binary trees with leaves decorated by #raaits oD, together with the V"
product described above [14, 12]. Moreover, the linear §Q’§£h generated by the trees of the
magmaM, defined above, equipped with the grafting’is a description of the free magmatic
algebra.

Definition 2. For a positive integen, a rooted tree of degrag or simplyn-rooted tree, is a
finite oriented tree consisting of vertices. One of them, called the root, is a distinguished
vertex without any outgoing edge. Any vertex can have ablyr many incoming edges, and
any vertex distinct from the root has exactly one outgoingeedVertices with no incoming
edges are called leaves.

A rooted tree is said to be planar, if it is endowed with an esalo®y in the plane. Otherwise,
itis called a (non-planar) rooted tree. Here are the plamated trees up to four vertices:

alvliYlde

Denote byT P (respectivelyT) the set of all planar (respectively non-planar) rootedgrand
by 777 (respectivelyr") the linear space spanned by the elemenf&PbfrespectivelyT). Every
rooted treer can be written as:

(2.1) o=B(o1 - 0w,

whereB, is the operation which grafts a monomdal - - - o of rooted trees on a common root,
which gives a new rooted tree by connecting the root of egdo the new root by an edge.
The planar rooted tree in Formula (2.1) depends on the order of the branch planasirg
whereas this order is not important for the correspondiog-{planar) tree.
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2.1. (Left) Butcher product and left grafting. The (left) Butcher product®.” of two planar
rooted treesr andr is defined by

(2.2) oNT = By(oTy 1),

wherery, ..., 7 € TP, such that = B, (71 - - - 7). It maps the pair of trees( 7) to a new planar
rooted tree induced by grafting the rootmbn the left of the root ot via a new edge.

The usual productss” in the non-planar case, given also by Formula (2.2), is kmew the
Butcher product. It is non-associative permutative (NAR), it satisfies the identity

So»(S'o-t) = Sos(So-t)
for all (non-planar) trees, s, t. Indeed, fort = B, (t; - - - tk), wherety, ..., t, are inT, we have
So-(S'o-t) = So-(B(Sty -+ )
= B.(sSt; -+ 1)
= B.(SSt- 1)
= Sou(B.(St - 1)
= So(So-t).

In [14], Knuth described a relation between planar binaggsrand planar rooted trees. He
introduced a bijectiod : Tg;” — TP called the rotation correspondehgcescursively defined

by:
(2.3) q)(‘) =e, and®(t; V1) = O(t]) A\ D(t,), forty,tr e Tglin.

Let us compute a few terms:

B0))=0() %0 = 1. (/)= 0020 =1, o\Y)= ¥,

cb(v/):i, @(V/)Jf, @({/)Jz, q’(\m:‘;’ AVIERE

The bijection given in (2.3) realizes the free magMg as the set of planar rooted trees
with D-decorated vertices, endowed with the left Butcher praditso, the linear spam ™,
generated by the planar trees of the magdaforms with the product®.” another description
of the free magmatic algebra.

Definition 3. The left grafting “\,” is the bilinear operation defined on the vector sp@adé,
such that for any planar rooted treesandr, we have

(24) oNT= Z o \w T,

v vertex ofr

where ‘o N\, 7" is the tree obtained by grafting the tree on the left, on the vertex of the
treer, such that- becomes the leftmost branch, starting frenof this new tree.

Examplel.

1\£=LLf+U.

1For more details about the rotation correspondence seSgi%,2.3.2], [17], and [12, Sec. 1.5.3].
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This type of grafting again equips the spaté@ with a free magmatic algebra structure:
Ebrahimi-Fard and Manchon showed that the two structurisestbon7 P, one by the product
“A.” and the other by ", are linearly isomorphic. Namely, define the potential rgyed(c)
of a planar rooted tree to be the sum of the heights of its vertices. Introduce theedesing
filtration 77 = 70 > 7P 5 7 5 -, whereT is the vector space spanned by planar
rooted treesr with d(o) > k.

Theorem 1. There is a unique linear isomorphisthfrom 7' to 77, defined by
(2.5) P(e) = o, and V(o112 02) = ¥(o1) \, P(0,), forall oq,05 € TP,

It respects the graduation (given by the number of verticasyl the associated graded map
Gr ¥ (with respect to the potential energy filtration above) reglsito the identity.

Proof. The linear map¥ is uniquely determined by virtue of the universal propeftyhe free
magmatic algebrag(”, ), and it obviously respects the number of vertices. For dagay

rooted treesr, o, the equalityr; \, o2 = 012, o> + ¢ holds, witho” € T~ é?((’lo\‘“)”). Then,
for o = 01\ 0, we have

(2.6) Y(o)=0+0",
with o € 7*Y, which proves the theorem. O

From Theorem 1, one can note that the matri¥tfestricted to any homogeneous component
Plis upper triangular unipotent. More preciset{y, 7) = 0 if the potential energg(o) of
o is strictly smaller than the potential energyofandc(o, 7) = 47 if d(o) = d(r). We may
calculate the sum of the entries of this matrix as follows: goy planar rooted tree € T,
let N(o) be the number of trees (with multiplicities) (o). Let o = 010>, Whereo; €
TY, 0, € T, such thap+q = n, for p, > 1. From the fact that, hasq vertices, and from

the definition of the left grafting product\,”, we get

(2.7) N(c) = N(o1) N(o2) a.
Now, define
(2.8) N(TR) = > N(@).

Then, using (2.7), we obtain

N(TS)

Y, D N N@2) g

— pl
p+g=n o1€Tp
PG el

>al Dl N@) || D) N@)

F;:(?Z:: (rlETgl (J’2€Tl§'|
- Z N(TE) N(TP) q.
p+g=n

p.o>1
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Below, we find the first terms of Formula (2.8):
N =NTH =1
N(TS) = NTEYNTP) 1+ NTPY N(TP) 2 =3
N(TP) = N(TEY N(TP) 2+ N(TPY) N(TRY) 24+ N(TP) N(TE') 3= 14
N(TE'Y = NCTP) NCTP) 2+ N(TE') N(TDY) 24+ N(T2) N(T2Y) 3+ N(TP') N(TP') 4 = 85.
This is sequencA088716 in [21]. The generating functidy{x) := Y, a,x", modulo the shift

n>1

a, := N(TP.)), satisfies the dierential equation
A(X) = 1+ XAX)? + XCAX)A (X).

Example2. We display below the matricdds; and M, of the restrictions off to the homoge-
neous componen®” and7,”, respectively:

1111
1 1 01011
Mgz(o 1), M4:O O 1 O 1
0 0012

0 00O

Corollary 2. (77,\)) is another description of the free magmatic algebra.

Here is a table of results of application®¥fand¥~* to small planar rooted trees:

o d(o) ¥(o) ¥Y1o)

° 0 ° °
1 ! :

vl v-1

2

o | :
§

o | ¥

o | e ¥

v 3 \?+LJ+2\}+Y+§ V—b—2§+Y+i

Now we review the (unpublished) work of Ebrahimi-Fard andiglaon on finding a formula
for the codficientc(o, 7) of treeo in ¥(7), for treeso andt in TP Leto be any planar rooted
tree, ands, w be two vertices in the s&f(o) of its vertices, define a partial ordet™as follows:

v < wif there is a path from the root to throughv. The root is the minimal element, and leaves

e, ol el eeee ol een e
a1
-
+

. e e
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are the maximal elements. Define a refinemeat 0f this order to be the transitive closure of
the relationR defined by:v R wif v < w, or bothv andw are linked to a third verten € V(o),
such that lies on the right of, such as in. A further refinement & on V(c) is the total
order recursively defined as follows: << w'if and only if v << w inside V(o) or V(o), or

v e V(o) andw € V(o1), whereo = 010\, 072

4
9&8653
7 2
1

A planar rooted tree with vertices labeled according tol totder “<<”

Theorem 3. For any planar rooted tree, we have
(2.9) (1) = Z (o, 7)o,
oeTh

where the (r, 7)’'s are nonnegative integers. An explicit expression for, €) is given by the
number of bijectiong : V(o) — V(7) which are increasing fronfV (o), <) to (V(7), <), and
such thaty ! is increasing from(V(7), <) to (V(0), <).

Proof. This theorem is proved using induction on the degreétrees. The proof is trivial for
n = 1,2. Given planar rooted trees r € T2, such thatr can be written in a unique way as
T = 1,12, We have

(2.10) c(o, T1NT2) = Z c(oV, t1)c(oy, 2),
veV(o)

whereo is the leftmost branch af starting fromv, ando, is the corresponding trunk, i.e.,
what remains when the branoff is removed. This is immediate from the computation

P(7) = P(11N\12)
W(ry) \ ¥(r2)

c(o’, t)c(o”, 1) o’ N\, 0.

olo”eTh

Denote byb(o, 7) the number of bijections froi (o) to V(7) satisfying the growth conditions of
Theorem 3. Lety be an increasing bijection fronV(o0), <) to (V(r), <«). The decomposition
T = 17,21, defines a partition o¥/ (o) into two partsV; = ¢ 1(V(r)), i = 1,2, such that
V, < Vi, which means that for anye V; andw € V,, eitherw < v, or they are incomparable.
Such partitions are nothing but left admissible cuts [18k &R,, ando, to be the corresponding
pruning and the trunk respectively.

As the inversey—! moreover respects the ordet™ there is a unique minimal element
for “<”, namelyy~1(vy), wherev; is the root ofr;. This means that the left cut considered here
is also elementary, i.e., the pruning, is a tree. It is then clear that the restrictignof y to
o, is a bijection fromV (o) to V(z;) which respects the growth conditions of the theorem, for
i = 1,2. Conversely, any vertex of o defines an elementary left cut by taking the leftmost
branchoV starting fromv and the corresponding trunk,, and ify’” : V(o’) — V(1) and
" V(o) — V(1,) are two bijections satisfying the growth conditions of theorem, then
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the bijectiony : V(o) — V() obtained fromy’ andy” also satisfies these conditions. Thus,
we arrive at

(2.11) b(o, 11%r2) = D" b(0, )b, 72),

veV(o)

hence, the cdicientsc(—, —) andb(-, —) satisfy the same recursive relations. This completes
the proof of Theorem 3. |

Example3. We havec(%}, ¥) = 2 according to the table above. Let us name the vertices as

follows:
\Z)
w3
Vi ’ W1 )

Lety : V(x}) — V(%) be a bijective map. We hawe < V3, Vi < Vp < Vg, Vo < V3, as well
asw; < W, << W3 << W,. The growth conditions of Theorem 3 impose

@(V1) = Wi, (Vo) << p(V3).

Hence we have

@(V1) =Wy @(Vi) = Wy
@(V2) = Wa or @(V2) = W2
@(V3) = w3 @(V3) = Wy
@(Va) = Wy @(Va) = W3

The inverses of both bijections obviously respect the oteé&r Hence we find two bijections
verifying the growth conditions of Theorem 3, thus recongti)(x}, v) = 2.

2.2. From planar to non-planar rooted trees. Corresponding to the céi&ientsc(o, 7), with
their explicit expressions, in the matrix of the restriatiof the linear mapl to any homoge-
neous componel‘ifnp', we try to find a similar expression in the non-planar casetheowords,
we build up and explicitly describe the m# in the diagram of the introduction.

Definition 4. The grafting product=” is the bilinear map defined on the vector sp&csuch
that

(2.12) sot= ) sout,

veV(t)
forall s;t € 7, where 's —, t” is the (non-planar) rooted tree obtained by grafting tlee ron
the vertexv of the treet.

Exampled.

miclev 1oicieb

The spacey, with this type of grafting, forms a special algebra stroetoalled pre-Lie
algebra, as will be shown later in Section 3. Recall that yimersetry factor of any (non-planar)
rooted treesis the number syngj of all automorphism® : V(s) — V(s) which are increasing
from (V(9), <) to (V(9), <). This definition is equivalent to the recursive definitior3].

Let¥ = 7o ¥ be the linear map frori ® onto7", wherer is the “forget planarity” projection.
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go —Ls gpl
N

N\
h

Obviously, ¥ is an algebra homomorphism frori ¢!, %) to (7, —). One of the important
results obtained in this article is the following.

Theorem 4. Lett be a planar rooted tree. Then we have

(2.13) ¥(r) = ) a(s7)s

seT
where thex(s, 7)’s are nonnegative integers. The gi@entsa(s, ) coincide with the numbers
b(s, 7) = b(s, 7)/ sym(s), wheresym(s) is the symmetry factor of s described above, Bfir)
is the number of bijectiong : V(s) — V(r) which are increasing fronV(s), <) to (V(7), <),
such thaty! is increasing from(V(r), <) to (V(S), <).

Proof. Note that the restriction d¥ to any homogeneous compon@nﬁ?' reduces the square
matrix of the coéficientsc(c, ) to a rectangular matrifa(s, 7)) 0. Forany planar rooted
treer, we have

(2.14) a(s 1) = Z (o, 7),

oeTP

n(o)=s
wheresis a (non-planar) rooted tree. We prove Theorem 4 using tnmluon the degree of
trees. The proofis trivial in the cases= 1, 2. Letr € Tr?', with r = 11%.75. Then

(2.15) a(s,1i1NT) = Z c(o’, t1)c(oy, 12),

oeTP!
n(o)=s,veV(o)

which is immediate from (2.14), whet# is the leftmost branch af starting fromv, ando-, is
the corresponding trunk.

Now, let s be any (non-planar) rooted treeTy and¢ : V(S) — V() be a bijection which
satisfies the growth conditions given in Theorem 4. Then wedsdine from these conditions
a poset structure on the sé(s) of vertices ofs as follows: forv,w € V(s), vR wif and only
if v < w or there isu € V(s) such that each of andw are related withu by an edge, and
(V) < ¢(w). We denote by, the transitive closure of the relatiét

This structure determines a planar rooted treseich thair(o) = s, with the associated partial
order< on the seV(o) of vertices ofo, together with a poset isomorphisin: (V(o), <) —
(V(9), <,), which in turn defines a bijectiop’ := ¢ o ¢ : V(o) — V(7), which is increasing
from (V(0), <) to (V(7), <), such thatgo!_l is increasing from\{(7), <) to (V(0),<). The
planar rooted tree is unchanged if we replageby ¢ o 9 with ¢ € Aut(s). Moreover, for any
e, ¥ V(s) — V(1) satisfying the growth conditions of Theorem 4, we have

(2.16) ¢ =y ifandonly if o = y o y for ay € Aut(s).

Indeed, ife' = ¢, theny := ytoy : V(s) — V() is a bijection which respects the partial order
“<”, hencey is an element ofut(s) such thaty = o y. The inverse implication is obvious.

Let B(s, 7) (respectivelyB(c, 7)) be the set of bijections : V(s) — V(r) (respectively
Y V(o) — V(1)) satisfying the growth conditions of Theorem 4 (respetivof Theorem 3),

STy, 1€
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and suppose thai(c) = s. Denote byb(s, 7) (respectively byo(c, 7)) the cardinality ofB(s, 7)
(respectively oB(c, 7)). Now, define

(2.17) b(s 7)== ) b(c 7).
o€TP 2(0)=s

Then, according to (2.16), we have
b(s. 7) = b(s, 7)/ sym).
Fort = 7;%.1,, we also have

(2.18) B(s 11%2) = > b(e, )by, 72).

oeTr
n(o)=s,veV(o)

The codficientsc(—, —) andb(—, —) coincide by Theorem 3. So, from (2.15) and (2.18), the

codficientsa(—, -) andb(—, -) satisfy the same recursive relations, which proves theréme.
O

Example5. We havea (%, %) = 1 in the formula for¥?(%). Name the vertices as follows:

Lety : V(%) — V(%) be a bijective map. We ha\w@l <V, V1 < V3, aswellasv; << Wy, <« Ws.
The growth conditions of Theorem 4 impose the relatigw) = w;. Hence we have

Y(vi) = wp Y(vi) = Wy
Y(V2) =Wo o (Vo) = Ws
Y(Va) = Ws Y(Va) = Wy

The inverses of these bijections obviously respect therdrde Hence we find two bijections
satisfying the growth conditions of Theorem 4, th&, ) = 2, but sym(y) = 2. Hence, we
obtainb(%’, %) = 1.

We want to describe a family of linear isomorphisits 7 — 7, which make the following
diagram commute:

gp v gl

O
;oo

b4

For a (non-planar) rooted tréechooser = S(s) to be a planar rooted tree wittfo) = s. This
defines a sectioB : 7 — 7P of the projectionr, i.e.,m o S = id;. One may note that the
mapsS is not unique; for example, if = 4, we have

Ts= {iY 2{ T} andT) = {%Y b \.; *¥}. Then we may defing& by

S(%) = % S(Y) = Y S(¥) =, and forS(b) one can choose betweén and R.;

Let S be a section of. Define¥s := ¥ o S to be the linear map frori to 7~ which makes
the following diagram commute:
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o X pl

SN
:7- ...... e

Ys

Corollary 5. For any (non-planar) rooted tree t, we have

(2.19) ¥s(t) = ) Bs(sD)s

where theBs(s,t)’s are nonnegative integers. The gi@entspgs(s,t), which depend on the
sectionmap S, can be expressed by the nuiw(iser) = b(s, 7)/ sym(s) described in Theorem 4,
with T = S(t).

Proof. Note that the restriction of’s to any homogeneous componént reduces the matrix
of the codficientsa(s, 7) to a upper triangular unipotent mati(#s(s,t)) s . - Lett be a (non-
planar) rooted tree, and let us choose the section $hapch thatS(t) = 7 is a planar rooted
tree. Then

Ps(t) = P() = Y a(s7)s

seT

which means that the cficientsps(s, t) anda(s, ) are the same. Hence, thg(s, t)’s can be
expressed by the numbédss, 7) in the same way as the dieientsa(s, 7). From Theorem 4,
we know that the restriction o to any homogeneous componéﬁf' reduces the matrix of
the codiicientsc(c, 7) to a rectangular matrix. Now, the restriction'B§ to any homogeneous
componenf;, can be represented by the restrictiontoto the componer(77,) (this represen-
tation depends on the section m&@p which means that the matrix of tigg(s, t)’s is an upper
triangular unipotent matrix, because we have

‘?S(t) =t + terms of higher energy

3. RREeE PrRE-LIE ALGEBRAS

The concept of “Pre-Lie algebras” appeared in many puldtinatunder various names. The
first appearance of this notion can be traced back to 1857 &pary Cayley [5]. In 1961,
Koszul studied this type of algebras in [15]. In 1963, Virdhand Gerstenhaber independently
presented the concept under twéelient names: “right symmetric algebras” and “pre-Lie alge-
bras”, respectively, see [22, 13]. Other denominatioms, 8/inberg algebras”, appeared since
then. “Chronological algebras” is the term used by Agracrey Gamkrelidze in [1]. The term
“pre-Lie algebras” is now the standard terminology. We newiew some basics and topics
related to pre-Lie algebras.

Definition 5. Let A be a vector space over a fiekd together with a bilinear operation-".
ThenA is called left pre-Lie algebra, if the mapsatisfies the identity

(3.2) X>y)>z-x>(yr2=(Yr>rX)>z-y>(x>2, foralxy,zeA
Identity (3.1) is called left pre-Lie identity, and it can fwritten as
(3.2) Lixy = [Lx, Ly], forallxye A,
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where for every elementin A, there is a linear transformatidr of the vector spacél defined
by Ly(y) = x>y, forally e A, and x,y] = x> y -y > X is the commutator of the elements
xandy in A. The usual commutatot|, L,] = LyL, — LyL of the linear transformations ofl
defines a Lie algebra structure oveion the vector spade(A) of all linear transformations of
A. For any pre-Lie algebral, the bracketf, —] satisfies the Jacobi identity, hence induces a
Lie algebra structure om.

In the vector spac& spanned by the rooted trees, the grafting operatiefi Satisfies the
pre-Lie identity, since fos, t,t" € T, we have

S—>(t—>t’)—(s—>t)—>t’:s—>[z tevt’]—(z S—>ut]—>t'

veV(t') ueV(t)
= Z S— (t—oyt) - Z (s—ut) ot
VeV(t') ueV(t)
= Z S—y (t -y t)
VEV(t') VeV (L)
= D (s ot [ =t oyt
veV(t') ueV(t)

S—v (t -y ),
veV(t') veV(t’)

which is obviously symmetric iis andt.

Free pre-Lie algebras have been handled in terms of rocted by Chapoton and Livernet
[7], who also described the pre-Lie operad explicitly, agddzhumadil’daev and Lofwall in-
dependently [10]. For an elementary version of the apprbgcbhapoton and Livernet without
introducing operads, see e.g. [16, Sec. 6.2].

Theorem 6. Let k be a positive integer. The free pre-Lie algebra with kegators is the vector
space7 of (non-planar) rooted trees with k colors, endowed withfting.

3.1. Construction of monomial bases.Agrachev and Gamkrelidze [1] described a pre-Lie
algebra isomorphism between the free pre-Lie algebra g&tby a (non-empty) set and the
tensor product of the universal enveloping algebra of thaedging Lie algebra with the linear
span of the generating set. This pre-Lie algebra isomonptiitl be the focus of our attention in
this section. Using this isomorphism, we review the cortsion by Agrachev and Gamkrelidze
of monomial bases in free pre-Lie algebras.

We described the free pre-Lie algebra in terms of rootedtrBelow, we give its definition
in terms of a universal property.

Definition 6. Let A be a pre-Lie algebra ané a (non-empty) set with an embedding map
i : E— A. ThenAis called free pre-Lie algebra generatedibif, for any pre-Lie algebrss
and mapf, : E — 8, there is a unique pre-Lie algebra homomorphismA — B which
makes the following diagram commute:

EC '~

fol/
B
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The free pre-Lie algebra generated by aEset unique up to isomorphism. It can be obtained
as the quotient of the free magmatic algeBgawith generating seE by the two-sided ideal
generated by elements of the form

(3.3) X>(y>2-y>(x>2-(x>py-y>Xx) >z forxy,ze Ae.

From Definition 6, we see that any pre-Lie algeBrgenerated by a subsgétc 8 is isomor-
phic to a quotient of the free pre-Lie algelsfbon E by some ideal. Indeed, from the freeness
universal property ofA, there is a unique homomorphisfrwhich is surjective. The quotient
of A by the kernel off is isomorphic taB, as in the following commutative diagram:

EC - A— 2 A/ Ker f

N o~

NV
B
whereq is the quotient map.

We denote byAg the free magmatic algebra, and Bt the free pre-Lie algebra generated
by the (non-empty) seE. The algebraAg has a natural grading, where the elements of degree
1 are linear combinations of the element€nfThe algebraAg can be defined as the quotient
of Ag by the ideal (3.3). This induces a grading @iz, in which the elements of degree 1 are
again the linear combinations of the elementE plby identifying the seE with its image under
the factorization.

Denote by [Ag] the underlying Lie algebra afig, and byU[Ag] its universal enveloping
algebrd. The algebra structure defined 8f{Ag] is endowed with the grading deduced from
the grading ofAg.

The representation of the Lie algebrdd] by the linear transformations

X Ly, forxe Ag,
of the algebraAg is uniquely extended to a representation by the linear toamstions
ue L, forue U[AE],
of the enveloping algebré/[Ag], which makes the following diagram commute:

q

T(Ag) U[AE]

N~ o =

End(A) - End(Ae)

t

whereT (Ag) is the tensor algebra ofig, andL’ is the linear extension df that is induced by
the universal property of the tensor algebra.

Lemma 7. The linear span of the set
Lojag E = {Lus: U € U[Ae], s€ E} c A
coincides with the entire algebrék.

Proof. See [1, Lemma 1.1]. O

2 For more details about the universal enveloping algebrfsd®].
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DefineBe = U[Ae] ® E to be the tensor product of the vector spd¢eAc] with the linear
spank of the setE. The spaceBe has an algebra structure ouerwith multiplication defined

by
(3.4) WLes)(hes) =((L,S)ow)®s, foru,u e U[AE], S, S € E,

where ‘0" is the bilinear associative product #[Ag].

The grading of the algebré[Ag] uniquely determines a grading 8k, by setting the degree
of the element®sequal to the degree ofplus 1. One can verify that the multiplication defined
in (3.4) satisfies the pre-Lie identity, which means tBatis a graded pre-Lie algebra.

Theorem 8. The graded pre-Lie algebr&g is isomorphic to the free pre-Lie algeb(&g, ).

Proof. Let f, : E — Bg be the map defined bf,(s) = 1® s, for s € E, where 1 is the unit
element of [ Ag]. Using the freeness property of the pre-Lie algelsta there is a unique
homomorphisnt : Az — Bg such that

f(s)=f.(9)=1®s, forseE cAe.

From Lemma 7, we infer that for any elemenin Ag there exisu € U[Ag] ands € E such
thatx = LS. Now, definef by

(3.5) f(Lys) =u®s, forx=L,S€ AE.
Then the mapf is bijective (see [1, Theorem 1.1]), hence it is an isoma@phiwhich proves
the theorem. O

Choose a total order on the elementskof Then, as a corollary of Theorem 8 and the
Poincaré-Birkh&—Witt theorem, we obtain

(36) \?(n 5 Bn = %[n_l ®E, fOI' n Z 1,
where, for alln > 2, a basis ofif,,_; is given by

r
{x?lo...ox.e': E jk=n-1, andx‘?lz---zx?'}.
J1 Ir J1 Ir
k=1

Here we use a monomial basilfz ... X of the subspaceAd;j, foranyj = 1,...,n— 1, given

by the induction hypothesis. We endow this basis with thal totderx; < ... < x‘jj", which
in turn defines a total order on the basis®f @ - - - & A,_1, obtained by the disjoint union, by
demanding thax] > X}, if j > j.

Hence, using Formula (3.6) and the isomorphisitescribed in (3.5), we get the following
monomial basis for the homogeneous compoét

r
(3.7) {xﬁ1>(xf§1>(---l>(xﬁ>sj)~~)):ij:n—1, X2 X andsjeE}.
k=1

We have
ﬂ15ﬂ0®E
=({(1®s:1€K,seE),

and consequently B
A =({L1s=s:seE)=E.
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We also have

A = UL @ Ay
=(S1®S: S, € E),

and consequently

A =(LgS=51> %5, €E).
We have

Az = U @ Ay
=(06®s (X oxP)®s:e=1...,d,, @,8=1,...,d, & > &, secE),

so a monomial basis ofl3 is given by

(s> )> 3.8, SSEEJU{SI> (> %) S, SS€EE, 51> ).
We have

.7(457/[3®ﬂ1
=(€®s (¢ oxX)®s (X oxTox)®s:e=1,...,03 € =1,...,0,
eLe,ee=1...,dh, &>€3>€, scE),

thus a monomial basis ofi, is given by

{((Sg_DSQ)DSg)DSzl: sj € Efor j :1,2,3,4}
u{(sl|>(szl>sg))>s4:sjeEforj:l,2,3,4, 51252}
u{(sl>sg)>(ss>s4):sjeEforj:1,2,3,4}

U{S:Ll>(Sgl>(Sgl>S4))ZSjGEfOFj:1,2,3,4, 81232233}.

Furthermore, we have

As = U, @ Ay
= (E®s (X 0 ) ®5 (5 0X) 85 (% 0x0x)
@S (XPoxPoxPox')®s:
e=1....d, €=1...,0s &. 6,6 =1,....,dp, g=1,....0, fori=1,...,7,
€ >€,6>63 €>6>62¢€, ScE).
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Hence, a monomial basis &5 is given by

{((si>sg)>sg)>s4)>35:sjeEforj:l,...,S}
U{(SLD(SZDS;))D&)D%:SjEEfOI'jZl,...,5, slzsz}

}

)
u{(51>(521>(53|>54)))>55,:5jEEforj:].,...,5, 51252253}
)

}

U{(81l>(32l>53))>(34>35):5jGEforjzl,...,s, 51252}

U{((s:> 92) > (s> ) ss: s € Efor =1,
u{((si>sg)>sg)>(s4>sg,):s,-eEforj:l,..

U{(sp ) > (s> s) > Ss) 1S eEforj=1.....5, 5> % > 3 Sy
u{(sil>sg)[>(sgl>(s41>sg,)) :sjeEforj=1,...,5 s> 54}
IJ{Sll>(SQI>(Sgl>(S4I>S5))) :sjeEforj=1...,5 > >5> 54}.
3.2. Base change from a monomial basis to the rooted tree basi¥Ve relate now any Agra-
chev—Gamkrelidze type monomial basis in a free pre-Lielakgeobtained from Formula (3.6),
with the presentation of the free pre-Lie algebra as thalispar/~ of the (non-planar) rooted

trees with one generat¢#}, endowed with the grafting=". In the following, we give the tree
expansions of the first five homogeneous components of suadnammal basis:

Ti1=(e1=).
T2=(e—e) =(a1=1).

Ts=((s—>9) 2e, e (e —>0)) = (a1 = E & = £+V>-

Ta={((e >0 >¢) >0 (e >(e—>0) >0 (60 o(s—0), e >(s—(s—0)))

=<61:§,ez:§+Y,e3:§+b, e4:§+Y+3b+\If>.

Ts={(((e > ¢) > 0) >0) >0 ((6 >(e—9) —>0) e ((6 >0) >(e—0) — o
(o—)(o—)(o—)o))) — e, (((o—)o —>o) —>(o—)o), ((o—)(o—)o)) —>(o—)o),

(e >0 o((e—>0) —0), (¢ >0 (e (s—0)), e > (s> (e —>(e—09))))

=<61:Le2:l+\f,e3:1+%, e4:l+\{+3lf+\f,e5:l+i(,
ecb Voo bach Fobach bodbottnd
e9=L¥+3Lf+\f+4iz+4‘{;+3v+6x£'+v>.

Now, for any homogeneous componéfit each vector in the monomial basis described
above is defined as a monomia(e, —) of the tree with one vertexs" multiplied (by itself)
using the pre-Lie grafting=” with the parentheses. This monomial in turn determines two
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monomials in the algebrag ¢, ) and (7, o-), respectively. One of these monomials is ob-
tained by replacing the graftings” by the left Butcher product®.”, which induces a planar
rooted treer. The other monomial is deduced by replacing the produet by the usual
Butcher product, which in turn defines a (non-planar) rooteelt.

Definition 7. A monomial basis for a free pre-Lie algebra is called a “geednded” monomial
basis if we obtain the Chapoton—Livernet tree basis wherepiace the pre-Lie productin each
monomial in this basis by the Butcher produet™ For a positive integen, a monomial basis
of 7, will also be called tree-grounded if this property holdsjn

Examples. In the space of all (non-planar) rooted tréesthe homogeneous componénthas
four types of monomial bases, namely

Blz{((o—)o —e) e, (o—)(o—)o))—)o, (o—)o)—)(o—)o), o—)(o—)(o—)o))}

:{elzi,ezzi‘FY,es:i‘i'b, e4=i+Y+3b+\zf}.

Br={((s =) 2o) 2o (s 2(e29)) 2o e ((¢20) 20), e (02 ()

:{el=£,ez:§+Y,eszi+Y+Iv, e4:§+Y+3Iv+'if}.

Bi={((s =) =) = (6= = (s o) o (¢ 9) =) e (s = (s =)

={el=§,ez:§+b,e3:§+Y+b, e4:§+Y+3b+\zf}.

84:{(°—>(0—>o))—>o, (e >0) > (e —>0), e ((e >0) —0), o—>(._>(._>.))}

={e1:§+\f,ez:§+b,e3:§+¥+b, e4:§+Y+3b+\zf}.

We find that the monomial bas&$, and B, are tree-grounded monomial bases7af be-
cause replacing the pre-Lie grafting>” by the Butcher product&s” returns the tree basis

{3, Y 2{ ‘¢’ ). But one should note that the baggsand$, are not tree-grounded.

Lemma 9. A monomial basis for the free pre-Lie algebra with one getwrs tree-grounded
if and only if it comes from a section map S according to thedimmapW¥s.

Proof. For any element = m(s, —) of some tree-grounded monomial basis3&) = m(e, %),
wheret = m(e, o) is the lower-energy term of By Definition 7, these lower-energy terms form
a basis of7", hencesS is uniquely defined that way, and it is a sectiommpfs in the following
diagram:

M(s, &) € TP — = 7P 5 (e, \,)

o

t = m(e, o5) T é--->7’ 5> X =M(e, —)

S

On the other hand, any monomial basis induced by a section3niapobviously a tree-
grounded monomial basis. O

3We thank the referee for having suggested this example to us.
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Lemma 10. The Agrachev—Gamkrelidze monomial bases are tree-gralnde

Proof. From the construction of Agrachev—Gamkrelidze monomiaklsaand using the presen-
tation of the free pre-Lie algebra in terms of rooted treeg (Bheorem 6), with one generator,
Formula (3.6) can be written as

ﬂn E 7/{[']_1, fOI’ n Z 1,

so that, for a homogeneous componght the monomial basis in (3.7) becomes
r
{x‘i —>(x‘j3§ - (- (X?: S ED)E ij:n—l, X‘E Z---ije:}.
k=1

The monomial basis faf;, namely{s}, is obviously tree-grounded in the sense of Definition
7. Suppose, by induction hypothesis, that the monomiaBt{a%’L . x?} is a tree-grounded

basis ofAj, for j = 1,...,n— 1. Consider the corresponding lower-energy tetfhs..,t‘jaj

obtained by replacing the grafting=
lower-energy term of the monomial

(3.8) I I SR G I

is given by

by the Butcher productds” in each monomial. The

tros(tos( - oo(tfove) -+ )) = B (1] .. . 17).
Hence we recover the tree basisf by taking the lower-energy term of each monomial (3.8),
thus proving the lemma. O

As a particular case of our general construction, by meartdefsomorphism (3.5), an
Agrachev—Gamkrelidze monomial basis gives rise to somtcp&ar sectionS. Conversely,
any sectiors of 7 defines a tree-grounded monomial basis for the free prelgebea (7, —).
For any integem > 1, the matrix of the cd&cients of the tree-grounded monomial 0f

associated with the secti@is exactly the matriXss(s,t)) ..~ described in Corollary 5 in the
preceding section.
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