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MONOMIAL BASES FOR FREE PRE-LIE ALGEBRAS

MAHDI J. HASAN AL-KAABI

Abstract. We study the concept of a free pre-Lie algebra generated by a(non-empty) set. We
review the construction by Agrachev and Gamkrelidze [J. Sov. Math.17 (1981), 1650–1675] of
monomial bases in free pre-Lie algebras. We describe the matrix of the monomial basis vectors
in terms of the rooted trees basis exhibited by Chapoton and Livernet [Internat. Math. Res.
Notices8 (2001), 395–408]. Also, we show that this matrix is unipotent, and we find an explicit
expression for its coefficients, which uses a similar procedure for the free magmaticalgebra at
the level of planar rooted trees which has been suggested by Ebrahimi-Fard and Manchon.
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1. Introduction

Pre-Lie algebra structures appear in various domains of mathematics: differential geometry,
quantum field theory, differential equations. They have been studied intensively recently; we
refer for instance to the survey papers [4, 6, 16]. Free pre-Lie algebras had already been studied
as early as 1981 by Agrachev and Gamkrelidze [1], and also by Segal [20]. In particular, both
papers give a construction of monomial bases, with different approaches. On the other hand,
rooted trees are a classical topic, closely connected to pre-Lie algebras. They appeared for
example in the study ofvector fields[5], numerical analysis[2], and more recently inquantum
field theory[8]. Bases for free pre-Lie algebras in terms of rooted treeswere introduced by
Chapoton and Livernet in [7], using the point of view of operads. Dzhumadil’daev and Löfwall
described independently two bases for free pre-Lie algebras, one using the concept of rooted
trees, and the other obtained by considering a basis for the free (non-associative) algebra modulo
the pre-Lie relation [10].

In our paper, we study free pre-Lie algebras. We describe an explicit method for finding
suitable monomial bases for them: recall that the spaceT spanned by (non-planar) rooted trees
forms with the grafting operation “→” the free pre-Lie algebra with one generator [7, 10]. A
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monomial in the free pre-Lie algebra with one generator is a parenthesized word built up from
the generator “” and the pre-Lie grafting operation “→”, for example:

( → )→
(
→ ( → )

)
.

We are interested in particular monomial bases which will becalled “tree-grounded”. To each
monomial we can associate a “lower-energy term” by replacing the grafting operation “→” by
the Butcher product “�”. A monomial basis ofT will be called “tree-grounded” if the lower-
energy terms of each monomial give back the Chapoton–Livernet tree basis ofT . We show that
tree-grounded monomial bases are in one-to-one correspondence with choicest 7→ S(t) of a
planar representative for each treet. We give an explicit expression for the coefficients of these
monomials in the basis of rooted trees, thus exhibiting a square matrix

(
βS(s, t)

)
s, t∈Tn

for each
degreen > 0.

This paper consists in two main sections: Section 2 containssome preliminaries on planar
and non-planar rooted trees, Butcher products and graftingproducts. In that section, we also
review the joint work of Ebrahimi-Fard and Manchon (unpublished) who described an explicit
algebra isomorphismΨ between two structures of free magmatic algebras defined on the space
T pl of all planar rooted trees, by the left Butcher product “◦ց” and the left grafting product “ց”,
respectively. We give the explicit expression of the coefficientsc(σ, τ) of this isomorphism in
the planar rooted tree basis. Using the work of Ebrahimi-Fard and Manchon, and by defining
a bijective linear map̃ΨS which depends on the choice of a sectionS of the “forget planarity”
projectionπ alluded to above, we find a formula for the coefficientsβS(s, t) of Ψ̃S in the (non-
planar) rooted tree basis. This can be visualized by the following diagram:

τ = m( , ◦ց) ∈ T pl
n

Ψ //

π
����

T
pl

n ∋ m( ,ց)

π
����

t = m( ,�) ∈ Tn
Ψ̃S

//

S

OO

Tn ∋ m( ,→)

for any homogeneous componentsT pl
n andTn.

In Section 3, we recall some basic topics on free pre-Lie algebras. We describe the construc-
tion of a monomial basis for each homogeneous subspaceAn in the free pre-Lie algebraAE

generated by a (non-empty) setE, using a type of algebra isomorphism obtained by Agrachev
and Gamkrelidze [1]. Finally, the constructions in Sections 2 and 3 can be related as follows:
we show that a tree-grounded monomial basis in a free pre-Liealgebra defines a sectionS of
the projectionπ : T pl −→−→ T and, conversely, that any section ofπ defines a tree-grounded
monomial basis.

2. Planar and non-planar rooted trees

In graph theory, a tree is an undirected connected graph consisting of vertices which are
connected with each other, without cycles, by simple paths called edges [11]. A rooted tree is
defined as a tree with one distinguished vertex called the root. The other remaining vertices are
partitioned intok ≥ 0 disjoint subsets such that each of them in turn represents arooted tree,
and a subtree of the whole tree. This can be taken as a recursive definition for rooted trees,
widely used in computer algorithms [14]. Rooted trees are among the most important structures
appearing in many branches of pure and applied mathematics.
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In general, a tree structure can be described as a “branching” relationship between vertices,
much like that found in the trees of nature. Many types of trees defined by all sorts of constraints
on properties of vertices appear to be of interest in combinatorics and in related areas such as
formal logic and computer science.

Definition 1. A planar binary tree is a finite oriented tree embedded in the plane, such that each
internal vertex has exactly two incoming edges and one outgoing edge. One of the internal
vertices, called the root, is a distinguished vertex with two incoming edges and one edge, like a
tail at the bottom, not ending at a vertex.

The incoming edges in this type of trees are internal (connecting two internal vertices), or
external (with one free end). The external incoming edges are called the leaves. We give here
some examples of planar binary trees:

. . . ,

where the single edge “” is the unique planar binary tree without internal vertices. The degree

of any planar binary tree is the number of its leaves. Denote by Tbin
pl (respectivelyT bin

pl ) the set
(respectively the linear span) of planar binary trees.

Define the grafting operation “∨” on the spaceT bin
pl to be the operation that maps two planar

binary treest1, t2 to a new planar binary tree “t1∨ t2”, which takes theY-shaped tree replacing

the left (respectively the right) branch byt1 (respectivelyt2), see the following examples:

∨ = , ∨ = , ∨ = , ∨ = , ∨ = .

Let D be any (non-empty) set, the free magmaMD generated byD can be described to be
the set of planar binary trees with leaves decorated by the elements ofD, together with the “∨”
product described above [14, 12]. Moreover, the linear spanT bin

pl , generated by the trees of the
magmaMD defined above, equipped with the grafting “∨” is a description of the free magmatic
algebra.

Definition 2. For a positive integern, a rooted tree of degreen, or simplyn-rooted tree, is a
finite oriented tree consisting ofn vertices. One of them, called the root, is a distinguished
vertex without any outgoing edge. Any vertex can have arbitrarily many incoming edges, and
any vertex distinct from the root has exactly one outgoing edge. Vertices with no incoming
edges are called leaves.

A rooted tree is said to be planar, if it is endowed with an embedding in the plane. Otherwise,
it is called a (non-planar) rooted tree. Here are the planar rooted trees up to four vertices:

· · ·

Denote byT pl (respectivelyT) the set of all planar (respectively non-planar) rooted trees, and
byT pl (respectivelyT ) the linear space spanned by the elements ofT pl (respectivelyT). Every
rooted treeσ can be written as:

(2.1) σ = B+(σ1 · · · σk),

whereB+ is the operation which grafts a monomialσ1 · · · σk of rooted trees on a common root,
which gives a new rooted tree by connecting the root of eachσi to the new root by an edge.
The planar rooted treeσ in Formula (2.1) depends on the order of the branch planar treesσ j,
whereas this order is not important for the corresponding (non-planar) tree.
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2.1. (Left) Butcher product and left grafting. The (left) Butcher product “◦ց” of two planar
rooted treesσ andτ is defined by

(2.2) σ◦ցτ := B+(στ1 · · · τk),

whereτ1, . . . , τk ∈ T pl, such thatτ = B+(τ1 · · · τk). It maps the pair of trees (σ, τ) to a new planar
rooted tree induced by grafting the root ofσ on the left of the root ofτ via a new edge.

The usual product “�” in the non-planar case, given also by Formula (2.2), is known as the
Butcher product. It is non-associative permutative (NAP),i.e., it satisfies the identity

s�(s′�t) = s′�(s�t)

for all (non-planar) treess, s′, t. Indeed, fort = B+(t1 · · · tk), wheret1, . . . , tk are inT, we have

s�(s′�t) = s�(B+(s
′t1 · · · tk))

= B+(ss′t1 · · · tk)

= B+(s
′s t1 · · · tk)

= s′�(B+(s t1 · · · tk))

= s′�(s�t).

In [14], Knuth described a relation between planar binary trees and planar rooted trees. He
introduced a bijectionΦ : Tbin

pl −→ T pl called the rotation correspondence1, recursively defined
by:

(2.3) Φ( ) = , andΦ(t1 ∨ t2) = Φ(t1) ◦ցΦ(t2), for t1, t2 ∈ Tbin
pl .

Let us compute a few terms:

Φ( ) = Φ( ) ◦ցΦ( ) = , Φ( ) = Φ( ) ◦ցΦ( ) = , Φ( ) = ,

Φ( ) = , Φ( ) = , Φ( ) = , Φ( ) = , Φ( ) = .

The bijection given in (2.3) realizes the free magmaMD as the set of planar rooted trees
with D-decorated vertices, endowed with the left Butcher product. Also, the linear spanT pl,

generated by the planar trees of the magmaMD, forms with the product “◦ց” another description
of the free magmatic algebra.

Definition 3. The left grafting “ց” is the bilinear operation defined on the vector spaceT pl,
such that for any planar rooted treesσ andτ, we have

(2.4) σց τ =
∑

v vertex ofτ

σցv τ,

where “σ ցv τ” is the tree obtained by grafting the treeσ, on the left, on the vertexv of the
treeτ, such thatσ becomes the leftmost branch, starting fromv, of this new tree.

Example1.

ց = + + .

1For more details about the rotation correspondence see [14,Sec. 2.3.2], [17], and [12, Sec. 1.5.3].
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This type of grafting again equips the spaceT pl with a free magmatic algebra structure:
Ebrahimi-Fard and Manchon showed that the two structures defined onT pl, one by the product
“◦ց” and the other by “ց”, are linearly isomorphic. Namely, define the potential energy d(σ)
of a planar rooted treeσ to be the sum of the heights of its vertices. Introduce the decreasing
filtration T pl = T

(0)
pl ⊃ T

(1)
pl ⊃ T

(2)
pl ⊃ · · · , whereT (k)

pl is the vector space spanned by planar
rooted treesσ with d(σ) ≥ k.

Theorem 1. There is a unique linear isomorphismΨ fromT pl toT pl, defined by

(2.5) Ψ( ) = , andΨ(σ1
◦
ցσ2) = Ψ(σ1)ց Ψ(σ2), for all σ1, σ2 ∈ T pl.

It respects the graduation (given by the number of vertices), and the associated graded map
GrΨ (with respect to the potential energy filtration above) reduces to the identity.

Proof. The linear mapΨ is uniquely determined by virtue of the universal property of the free
magmatic algebra (T pl, ◦ց), and it obviously respects the number of vertices. For any planar

rooted treesσ1, σ2, the equalityσ1ց σ2 = σ1
◦
ցσ2+σ

′ holds, withσ′ ∈ T (d(σ1
◦
ցσ2)+1)

pl . Then,
for σ = σ1

◦
ցσ2, we have

(2.6) Ψ(σ) = σ + σ′′,

with σ′′ ∈ T (d(σ)+1)
pl , which proves the theorem. �

From Theorem 1, one can note that the matrix ofΨ restricted to any homogeneous component
T

pl
n is upper triangular unipotent. More precisely,c(σ, τ) = 0 if the potential energyd(σ) of

σ is strictly smaller than the potential energy ofτ, andc(σ, τ) = δτσ if d(σ) = d(τ). We may
calculate the sum of the entries of this matrix as follows: for any planar rooted treeσ ∈ T pl

n ,
let N(σ) be the number of trees (with multiplicities) inΨ(σ). Let σ = σ1

◦
ցσ2, whereσ1 ∈

T pl
p , σ2 ∈ T pl

q , such thatp+ q = n, for p, q ≥ 1. From the fact thatσ2 hasq vertices, and from
the definition of the left grafting product “ց”, we get

(2.7) N(σ) = N(σ1) N(σ2) q.

Now, define

(2.8) N(T pl
n ) =

∑

σ∈T pl
n

N(σ).

Then, using (2.7), we obtain

N(T pl
n ) =

∑

p+q=n

p,q≥1

∑

σ1∈T
pl
p

σ2∈T
pl
q

N(σ1) N(σ2) q

=
∑

p+q=n
p,q≥1

q


∑

σ1∈T
pl
p

N(σ1)




∑

σ2∈T
pl
q

N(σ2)



=
∑

p+q=n
p,q≥1

N(T pl
p ) N(T pl

q ) q.
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Below, we find the first terms of Formula (2.8):

N(T pl
1 ) = N(T pl

2 ) = 1

N(T pl
3 ) = N(T pl

2 ) N(T pl
1 ) 1+ N(T pl

1 ) N(T pl
2 ) 2 = 3

N(T pl
4 ) = N(T pl

3 ) N(T pl
1 ) 1+ N(T pl

2 ) N(T pl
2 ) 2+ N(T pl

1 ) N(T pl
3 ) 3 = 14

N(T pl
5 ) = N(T pl

4 ) N(T pl
1 ) 1+ N(T pl

3 ) N(T pl
2 ) 2+ N(T pl

2 ) N(T pl
3 ) 3+ N(T pl

1 ) N(T pl
4 ) 4 = 85.

This is sequenceA088716 in [21]. The generating functionA(x) :=
∑
n≥1

anxn, modulo the shift

an := N(T pl
n+1), satisfies the differential equation

A(x) = 1+ xA(x)2 + x2A(x)A′(x).

Example2. We display below the matricesM3 andM4 of the restrictions ofΨ to the homoge-
neous componentsT pl

3 andT pl
4 , respectively:

M3 =

(
1 1
0 1

)
, M4 =



1 1 1 1 1
0 1 0 1 1
0 0 1 0 1
0 0 0 1 2
0 0 0 0 1


.

Corollary 2. (T pl,ց) is another description of the free magmatic algebra.

Here is a table of results of application ofΨ andΨ−1 to small planar rooted trees:

Ψ(σ) Ψ−1(σ)d(σ)σ

0

1

3

2 + −

6

5 + −

4 + −

4 + + −

3 + + 2 + + − − 2 + +

Now we review the (unpublished) work of Ebrahimi-Fard and Manchon on finding a formula
for the coefficientc(σ, τ) of treeσ in Ψ(τ), for treesσ andτ in T pl. Letσ be any planar rooted
tree, andv,w be two vertices in the setV(σ) of its vertices, define a partial order “<” as follows:
v < w if there is a path from the root tow throughv. The root is the minimal element, and leaves
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are the maximal elements. Define a refinement “≪” of this order to be the transitive closure of
the relationR defined by:v R wif v < w, or bothv andw are linked to a third vertexu ∈ V(σ),
such thatv lies on the right ofw, such as in

u

w v

. A further refinement “≪” on V(σ) is the total
order recursively defined as follows:v ≪ w if and only if v ≪ w insideV(σ1) or V(σ2), or
v ∈ V(σ2) andw ∈ V(σ1), whereσ = σ1

◦
ցσ2.

1

27

9 58 36

410

A planar rooted tree with vertices labeled according to total order “≪”

Theorem 3. For any planar rooted treeτ, we have

(2.9) Ψ(τ) =
∑

σ∈T pl

c(σ, τ)σ,

where the c(σ, τ)’s are nonnegative integers. An explicit expression for c(σ, τ) is given by the
number of bijectionsψ : V(σ) −→ V(τ) which are increasing from(V(σ),≪) to (V(τ),≪), and
such thatψ−1 is increasing from(V(τ), <) to (V(σ), <).

Proof. This theorem is proved using induction on the degreen of trees. The proof is trivial for
n = 1, 2. Given planar rooted treesσ, τ ∈ T pl

n , such thatτ can be written in a unique way as
τ = τ1

◦
ցτ2, we have

(2.10) c(σ, τ1
◦
ցτ2) =

∑

v∈V(σ)

c(σv, τ1)c(σv, τ2),

whereσv is the leftmost branch ofσ starting fromv, andσv is the corresponding trunk, i.e.,
what remains when the branchσv is removed. This is immediate from the computation

Ψ(τ) = Ψ(τ1
◦
ցτ2)

= Ψ(τ1)ց Ψ(τ2)

=
∑

σ′, σ′′∈T pl

c(σ′, τ1)c(σ′′, τ2)σ
′ ց σ′′.

Denote byb(σ, τ) the number of bijections fromV(σ) toV(τ) satisfying the growth conditions of
Theorem 3. Letψ be an increasing bijection from (V(σ),≪) to (V(τ),≪). The decomposition
τ = τ1

◦
ցτ2 defines a partition ofV(σ) into two partsVi = ψ−1(V(τi)), i = 1, 2, such that

V2 ≪ V1, which means that for anyv ∈ V1 andw ∈ V2, eitherw≪ v, or they are incomparable.
Such partitions are nothing but left admissible cuts [18]. PutσV1 andσV2 to be the corresponding
pruning and the trunk respectively.

As the inverseψ−1 moreover respects the order “<”, there is a unique minimal element inV1

for “<”, namelyψ−1(v1), wherev1 is the root ofτ1. This means that the left cut considered here
is also elementary, i.e., the pruningσV1 is a tree. It is then clear that the restrictionψi of ψ to
σVi is a bijection fromV(σVi) to V(τi) which respects the growth conditions of the theorem, for
i = 1, 2. Conversely, any vertexv of σ defines an elementary left cut by taking the leftmost
branchσv starting fromv and the corresponding trunkσv, and if ψ′ : V(σ′) −→ V(τ1) and
ψ′′ : V(σ′′) −→ V(τ2) are two bijections satisfying the growth conditions of thetheorem, then
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the bijectionψ : V(σ) −→ V(τ) obtained fromψ′ andψ′′ also satisfies these conditions. Thus,
we arrive at

(2.11) b(σ, τ1
◦
ցτ2) =

∑

v∈V(σ)

b(σv, τ1)b(σv, τ2),

hence, the coefficientsc(−,−) andb(−,−) satisfy the same recursive relations. This completes
the proof of Theorem 3. �

Example3. We havec( , ) = 2 according to the table above. Let us name the vertices as
follows:

v1

v3 v2

v4

,
w1

w4
w3

w2

.

Let ϕ : V( ) → V( ) be a bijective map. We havev1 ≪ v3, v1 ≪ v2 ≪ v4, v2 ≪ v3, as well
asw1≪ w2≪ w3≪ w4. The growth conditions of Theorem 3 impose

ϕ(v1) = w1, ϕ(v2)≪ ϕ(v3).

Hence we have

ϕ(v1) = w1

ϕ(v2) = w2

ϕ(v3) = w3

ϕ(v4) = w4

or

ϕ(v1) = w1

ϕ(v2) = w2

ϕ(v3) = w4

ϕ(v4) = w3

The inverses of both bijections obviously respect the order“<”. Hence we find two bijections

verifying the growth conditions of Theorem 3, thus recoveringb( , ) = 2.

2.2. From planar to non-planar rooted trees. Corresponding to the coefficientsc(σ, τ), with
their explicit expressions, in the matrix of the restriction of the linear mapΨ to any homoge-
neous componentT pl

n ,we try to find a similar expression in the non-planar case: in other words,
we build up and explicitly describe the map̃ΨS in the diagram of the introduction.

Definition 4. The grafting product “→” is the bilinear map defined on the vector spaceT such
that

(2.12) s→ t =
∑

v∈V(t)

s→v t,

for all s, t ∈ T , where “s→v t” is the (non-planar) rooted tree obtained by grafting the treeson
the vertexv of the treet.

Example4.

→ = + , → = + .

The spaceT , with this type of grafting, forms a special algebra structure called pre-Lie
algebra, as will be shown later in Section 3. Recall that the symmetry factor of any (non-planar)
rooted trees is the number sym(s) of all automorphismsΘ : V(s) −→ V(s) which are increasing
from (V(s), <) to (V(s), <). This definition is equivalent to the recursive definition in [3].

LetΨ = π◦Ψ be the linear map fromT pl ontoT , whereπ is the “forget planarity” projection.
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T pl Ψ //

Ψ

DD
D

""D
DD

D

T pl

π
����
T

Obviously,Ψ is an algebra homomorphism from (T pl, ◦ց) to (T ,→). One of the important
results obtained in this article is the following.

Theorem 4. Letτ be a planar rooted tree. Then we have

(2.13) Ψ(τ) =
∑

s∈T

α(s, τ)s,

where theα(s, τ)’s are nonnegative integers. The coefficientsα(s, τ) coincide with the numbers
b(s, τ) = b̃(s, τ)/ sym(s), wheresym(s) is the symmetry factor of s described above, andb̃(s, τ)
is the number of bijectionsϕ : V(s) −→ V(τ) which are increasing from(V(s), <) to (V(τ),≪),
such thatϕ−1 is increasing from(V(τ), <) to (V(s), <).

Proof. Note that the restriction ofΨ to any homogeneous componentT pl
n reduces the square

matrix of the coefficientsc(σ, τ) to a rectangular matrix
(
α(s, τ)

)
s∈Tn, τ∈T

pl
n

. For any planar rooted
treeτ, we have

(2.14) α(s, τ) =
∑

σ∈T pl

π(σ)=s

c(σ, τ),

wheres is a (non-planar) rooted tree. We prove Theorem 4 using induction on the degree of
trees. The proof is trivial in the casesn = 1, 2. Letτ ∈ T pl

n , with τ = τ1
◦
ցτ2. Then

(2.15) α(s, τ1
◦
ցτ2) =

∑

σ∈T pl

π(σ)=s, v∈V(σ)

c(σv, τ1)c(σv, τ2),

which is immediate from (2.14), whereσv is the leftmost branch ofσ starting fromv, andσv is
the corresponding trunk.

Now, let s be any (non-planar) rooted tree inTn andϕ : V(s) → V(τ) be a bijection which
satisfies the growth conditions given in Theorem 4. Then we can define from these conditions
a poset structure on the setV(s) of vertices ofs as follows: forv,w ∈ V(s), v R w if and only
if v < w or there isu ∈ V(s) such that each ofv andw are related withu by an edge, and
ϕ(v)≪ ϕ(w). We denote by≪ϕ the transitive closure of the relationR.

This structure determines a planar rooted treeσ such thatπ(σ) = s, with the associated partial
order≪ on the setV(σ) of vertices ofσ, together with a poset isomorphismϑ : (V(σ),≪) →
(V(s),≪ϕ), which in turn defines a bijectionϕ! := ϕ ◦ ϑ : V(σ) → V(τ), which is increasing
from (V(σ),≪) to (V(τ),≪), such thatϕ!−1 is increasing from (V(τ), <) to (V(σ), <). The
planar rooted treeσ is unchanged if we replaceϕ by ϕ ◦ ϑ′ with ϑ′ ∈ Aut(s). Moreover, for any
ϕ, ψ : V(s)→ V(τ) satisfying the growth conditions of Theorem 4, we have

(2.16) ϕ! = ψ! if and only if ϕ = ψ ◦ γ for aγ ∈ Aut(s).

Indeed, ifϕ! = ψ! , thenγ := ψ−1◦ϕ : V(s)→ V(s) is a bijection which respects the partial order
“<”, henceγ is an element ofAut(s) such thatϕ = ψ ◦ γ. The inverse implication is obvious.

Let B̃(s, τ) (respectivelyB(σ, τ)) be the set of bijectionsϕ : V(s) → V(τ) (respectively
ψ : V(σ) → V(τ)) satisfying the growth conditions of Theorem 4 (respectively of Theorem 3),
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and suppose thatπ(σ) = s. Denote bỹb(s, τ) (respectively byb(σ, τ)) the cardinality of̃B(s, τ)
(respectively ofB(σ, τ)). Now, define

(2.17) b(s, τ) :=
∑

σ∈T pl, π(σ)=s

b(σ, τ).

Then, according to (2.16), we have

b(s, τ) = b̃(s, τ)/ sym(s).

Forτ = τ1
◦
ցτ2, we also have

(2.18) b(s, τ1
◦
ցτ2) =

∑

σ∈T pl

π(σ)=s, v∈V(σ)

b(σv, τ1)b(σv, τ2).

The coefficientsc(−,−) andb(−,−) coincide by Theorem 3. So, from (2.15) and (2.18), the
coefficientsα(−,−) andb(−,−) satisfy the same recursive relations, which proves the theorem.

�

Example5. We haveα( , ) = 1 in the formula forΨ( ). Name the vertices as follows:

v1

v2 v3

,
w1

w3 w2

.

Letψ : V( )→ V( ) be a bijective map. We havev1 < v2, v1 < v3, as well asw1≪ w2≪ w3.
The growth conditions of Theorem 4 impose the relationψ(v1) = w1. Hence we have

ψ(v1) = w1 ψ(v1) = w1

ψ(v2) = w2 or ψ(v2) = w3

ψ(v3) = w3 ψ(v3) = w2

The inverses of these bijections obviously respect the order “<”. Hence we find two bijections
satisfying the growth conditions of Theorem 4, thusb̃( , ) = 2, but sym( ) = 2. Hence, we
obtainb( , ) = 1.

We want to describe a family of linear isomorphismsΨ̃ : T −→ T , which make the following
diagram commute:

T pl Ψ //

Ψ

DD
D

""D
DD

Dπ
����

T pl

π
����

T
Ψ̃

// T

For a (non-planar) rooted treet, chooseσ = S(s) to be a planar rooted tree withπ(σ) = s. This
defines a sectionS : T −→ T pl of the projectionπ, i.e.,π ◦ S = idT . One may note that the
mapS is not unique; for example, ifn = 4, we have

T4 = { , , , } andT pl
4 = { , , , , }. Then we may defineS by

S( ) = , S( ) = , S( ) = , and forS( ) one can choose between and .

Let S be a section ofπ. DefineΨ̃S := Ψ ◦ S to be the linear map fromT to T which makes
the following diagram commute:
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T pl Ψ //

Ψ

DD
D

""DD
DDπ

����

T pl

π
����

T
Ψ̃S

//

S

OO

T

Corollary 5. For any (non-planar) rooted tree t, we have

(2.19) Ψ̃S(t) =
∑

s∈T

βS(s, t)s,

where theβS(s, t)’s are nonnegative integers. The coefficientsβS(s, t), which depend on the
section map S , can be expressed by the numberb(s, τ) = b̃(s, τ)/ sym(s) described in Theorem 4,
with τ = S(t).

Proof. Note that the restriction of̃ΨS to any homogeneous componentTn reduces the matrix
of the coefficientsα(s, τ) to a upper triangular unipotent matrix

(
βS(s, t)

)
s, t∈Tn

. Let t be a (non-
planar) rooted tree, and let us choose the section mapS such thatS(t) = τ is a planar rooted
tree. Then

Ψ̃S(t) = Ψ(τ) =
∑

s∈T

α(s, τ)s,

which means that the coefficientsβS(s, t) andα(s, τ) are the same. Hence, theβS(s, t)’s can be
expressed by the numbersb(s, τ) in the same way as the coefficientsα(s, τ). From Theorem 4,
we know that the restriction ofΨ to any homogeneous componentT pl

n reduces the matrix of
the coefficientsc(σ, τ) to a rectangular matrix. Now, the restriction ofΨ̃S to any homogeneous
componentTn can be represented by the restriction ofΨ to the componentS(Tn) (this represen-
tation depends on the section mapS), which means that the matrix of theβS(s, t)’s is an upper
triangular unipotent matrix, because we have

Ψ̃S(t) = t + terms of higher energy.

�

3. Free Pre-Lie algebras

The concept of “Pre-Lie algebras” appeared in many publications under various names. The
first appearance of this notion can be traced back to 1857 to a paper by Cayley [5]. In 1961,
Koszul studied this type of algebras in [15]. In 1963, Vinberg and Gerstenhaber independently
presented the concept under two different names: “right symmetric algebras” and “pre-Lie alge-
bras”, respectively, see [22, 13]. Other denominations, e.g., “Vinberg algebras”, appeared since
then. “Chronological algebras” is the term used by Agrachevand Gamkrelidze in [1]. The term
“pre-Lie algebras” is now the standard terminology. We now review some basics and topics
related to pre-Lie algebras.

Definition 5. Let A be a vector space over a fieldK together with a bilinear operation “⊲”.
ThenA is called left pre-Lie algebra, if the map⊲ satisfies the identity

(3.1) (x ⊲ y) ⊲ z− x ⊲ (y ⊲ z) = (y ⊲ x) ⊲ z− y ⊲ (x ⊲ z), for all x, y, z ∈ A.

Identity (3.1) is called left pre-Lie identity, and it can berewritten as

(3.2) L[x,y] = [Lx, Ly], for all x, y ∈ A,
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where for every elementx inA, there is a linear transformationLx of the vector spaceA defined
by Lx(y) = x ⊲ y, for all y ∈ A, and [x, y] = x ⊲ y − y ⊲ x is the commutator of the elements
x andy in A. The usual commutator [Lx, Ly] = LxLy − LyLx of the linear transformations ofA
defines a Lie algebra structure overK on the vector spaceL(A) of all linear transformations of
A. For any pre-Lie algebraA, the bracket [−,−] satisfies the Jacobi identity, hence induces a
Lie algebra structure onA.

In the vector spaceT spanned by the rooted trees, the grafting operation “→” satisfies the
pre-Lie identity, since fors, t, t′ ∈ T, we have

s→ (t → t′) − (s→ t)→ t′ = s→


∑

v∈V(t′)

t →v t′
 −


∑

u∈V(t)

s→u t

→ t′

=
∑

v∈V(t′)

s→ (t →v t′) −
∑

u∈V(t)

(s→u t)→ t′

=
∑

v∈V(t′)

∑

v′∈V(t′′)

s→v′ (t →v t′)

−
∑

v∈V(t′)

∑

u∈V(t)

(s→u t)→v t′, [t′′ = t →v t′]

=
∑

v∈V(t′)

∑

v′∈V(t′)

s→v′ (t →v t′),

which is obviously symmetric ins andt.

Free pre-Lie algebras have been handled in terms of rooted trees by Chapoton and Livernet
[7], who also described the pre-Lie operad explicitly, and by Dzhumadil’daev and Löfwall in-
dependently [10]. For an elementary version of the approachby Chapoton and Livernet without
introducing operads, see e.g. [16, Sec. 6.2].

Theorem 6. Let k be a positive integer. The free pre-Lie algebra with k generators is the vector
spaceT of (non-planar) rooted trees with k colors, endowed with grafting.

3.1. Construction of monomial bases.Agrachev and Gamkrelidze [1] described a pre-Lie
algebra isomorphism between the free pre-Lie algebra generated by a (non-empty) set and the
tensor product of the universal enveloping algebra of the underlying Lie algebra with the linear
span of the generating set. This pre-Lie algebra isomorphism will be the focus of our attention in
this section. Using this isomorphism, we review the construction by Agrachev and Gamkrelidze
of monomial bases in free pre-Lie algebras.

We described the free pre-Lie algebra in terms of rooted trees. Below, we give its definition
in terms of a universal property.

Definition 6. Let A be a pre-Lie algebra andE a (non-empty) set with an embedding map
i : E ֒→ A. ThenA is called free pre-Lie algebra generated byE if, for any pre-Lie algebraB
and mapf◦ : E −→ B, there is a unique pre-Lie algebra homomorphismf : A −→ B which
makes the following diagram commute:

E �
� i //

f◦
��

A

f~
~~

��~~
~

B
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The free pre-Lie algebra generated by a setE is unique up to isomorphism. It can be obtained
as the quotient of the free magmatic algebraAE with generating setE by the two-sided ideal
generated by elements of the form

(3.3) x ⊲ (y ⊲ z) − y ⊲ (x ⊲ z) − (x ⊲ y− y ⊲ x) ⊲ z, for x, y, z ∈ AE.

From Definition 6, we see that any pre-Lie algebraB generated by a subsetE ⊂ B is isomor-
phic to a quotient of the free pre-Lie algebraA on E by some ideal. Indeed, from the freeness
universal property ofA, there is a unique homomorphismf which is surjective. The quotient
ofA by the kernel off is isomorphic toB, as in the following commutative diagram:

E �
� i //
� o

j
??

??

��?
??

?

A
q // //

f
����

A/ ker f

=̃
vv

vv

zzvvv
vv

B

whereq is the quotient map.
We denote byAE the free magmatic algebra, and byAE the free pre-Lie algebra generated

by the (non-empty) setE. The algebraAE has a natural grading, where the elements of degree
1 are linear combinations of the elements ofE. The algebraAE can be defined as the quotient
of AE by the ideal (3.3). This induces a grading onAE, in which the elements of degree 1 are
again the linear combinations of the elements ofE, by identifying the setE with its image under
the factorization.

Denote by [AE] the underlying Lie algebra ofAE, and byU[AE] its universal enveloping
algebra2. The algebra structure defined onU[AE] is endowed with the grading deduced from
the grading ofAE.

The representation of the Lie algebra [AE] by the linear transformations

x 7→ Lx, for x ∈ AE,

of the algebraAE is uniquely extended to a representation by the linear transformations

u 7→ Lu, for u ∈ U[AE],

of the enveloping algebraU[AE], which makes the following diagram commute:

AE
�
� i //

L $$JJJJJJJJJ
T(AE)

q // //

L′xxrrrrrrrrrr
U[AE]

L ,xxrrrrrrrrrr

End(AE) =̃ // End(AE)

whereT(AE) is the tensor algebra ofAE, andL′ is the linear extension ofL that is induced by
the universal property of the tensor algebra.

Lemma 7. The linear span of the set

LU[AE]E = {Lus : u ∈ U[AE], s ∈ E} ⊂ AE

coincides with the entire algebraAE.

Proof. See [1, Lemma 1.1]. �

2For more details about the universal enveloping algebra see[9, 19].
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DefineBE = U[AE] ⊗ E to be the tensor product of the vector spaceU[AE] with the linear
spanE of the setE. The spaceBE has an algebra structure overK with multiplication defined
by

(3.4) (u1 ⊗ s1)(u2 ⊗ s2) = ((Lu1 s1) ◦ u2) ⊗ s2, for u1, u2 ∈ U[AE], s1, s2 ∈ E,

where “◦” is the bilinear associative product inU[AE].
The grading of the algebraU[AE] uniquely determines a grading ofBE, by setting the degree

of the elementu⊗sequal to the degree ofu plus 1. One can verify that the multiplication defined
in (3.4) satisfies the pre-Lie identity, which means thatBE is a graded pre-Lie algebra.

Theorem 8. The graded pre-Lie algebraBE is isomorphic to the free pre-Lie algebra(AE,⊲).

Proof. Let f◦ : E −→ BE be the map defined byf◦(s) = 1 ⊗ s, for s ∈ E, where 1 is the unit
element ofU[AE]. Using the freeness property of the pre-Lie algebraAE, there is a unique
homomorphismf : AE −→ BE such that

f (s) = f◦(s) = 1⊗ s, for s ∈ E ⊂ AE.

From Lemma 7, we infer that for any elementx in AE there existu ∈ U[AE] and s ∈ E such
thatx = Lus. Now, definef by

(3.5) f (Lus) = u⊗ s, for x = Lus ∈ AE.

Then the mapf is bijective (see [1, Theorem 1.1]), hence it is an isomorphism, which proves
the theorem. �

Choose a total order on the elements ofE. Then, as a corollary of Theorem 8 and the
Poincaré–Birkhoff–Witt theorem, we obtain

(3.6) An =̃ Bn = Un−1 ⊗ E, for n ≥ 1,

where, for alln ≥ 2, a basis ofUn−1 is given by
xe1

j1
◦ · · · ◦ xer

jr
:

r∑

k=1

jk = n− 1, andxe1
j1
≥ · · · ≥ xer

jr

 .

Here we use a monomial basisx1
j , . . . , x

dj

j of the subspaceA j, for any j = 1, . . . , n − 1, given

by the induction hypothesis. We endow this basis with the total orderx1
j < . . . < x

dj

j , which
in turn defines a total order on the basis ofA1 ⊕ · · · ⊕ An−1, obtained by the disjoint union, by
demanding thatxr

j > xr ′
j′ if j > j′.

Hence, using Formula (3.6) and the isomorphismf described in (3.5), we get the following
monomial basis for the homogeneous componentAn:

(3.7)

xe1
j1
⊲

(
xe2

j2
⊲ (· · · ⊲ (xer

jr
⊲ sj) · · · )

)
:

r∑

k=1

jk = n− 1, xe1
j1
≥ · · · ≥ xer

jr
andsj ∈ E

 .

We have

A1 =̃ U0 ⊗ E

= 〈1⊗ s : 1 ∈ K, s ∈ E〉,

and consequently
A1 = 〈L1s= s : s ∈ E〉 = E.
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We also have

A2 =̃ U1 ⊗A1

= 〈s1 ⊗ s2 : s1, s2 ∈ E〉,

and consequently

A2 = 〈Ls1 s2 = s1 ⊲ s2 : s1, s2 ∈ E〉.

We have

A3 =̃ U2 ⊗ A1

= 〈xe
2 ⊗ s, (xe1

1 ◦ xe2
1 ) ⊗ s : e= 1, . . . , d2, e1, e2 = 1, . . . , d, e1 ≥ e2, s ∈ E〉,

so a monomial basis ofA3 is given by

{(s1 ⊲ s2) ⊲ s3 : s1, s2, s3 ∈ E} ⊔ {s1 ⊲ (s2 ⊲ s3) : s1, s2, s3 ∈ E, s1 ≥ s2} .

We have

A4 =̃ U3 ⊗ A1

= 〈xe
3 ⊗ s, (xe′

2 ◦ xe1
1 ) ⊗ s, (xe2

1 ◦ xe3
1 ◦ xe4

1 ) ⊗ s : e= 1, . . . , d3, e′ = 1, . . . , d2,

e1, e2, e3, e4 = 1, . . . , d1, e2 ≥ e3 ≥ e4, s ∈ E〉,

thus a monomial basis ofA4 is given by

{
((s1 ⊲ s2) ⊲ s3) ⊲ s4 : sj ∈ E for j = 1, 2, 3, 4

}

⊔
{
(s1 ⊲ (s2 ⊲ s3)) ⊲ s4 : sj ∈ E for j = 1, 2, 3, 4, s1 ≥ s2

}

⊔
{
(s1 ⊲ s2) ⊲ (s3 ⊲ s4) : sj ∈ E for j = 1, 2, 3, 4

}

⊔
{
s1 ⊲ (s2 ⊲ (s3 ⊲ s4)) : sj ∈ E for j = 1, 2, 3, 4, s1 ≥ s2 ≥ s3

}
.

Furthermore, we have

A5 =̃ U4 ⊗A1

= 〈xe
4 ⊗ s, (xe′

3 ◦ xe1
1 ) ⊗ s, (x

e′2
2 ◦ x

e′′2
2 ) ⊗ s, (x

e′′′2
2 ◦ xe2

1 ◦ xe3
1 )

⊗ s, (xe4
1 ◦ xe5

1 ◦ xe6
1 ◦ xe7

1 ) ⊗ s :

e= 1, . . . , d4, e′ = 1, . . . , d3, e′2, e
′′
2 , e

′′′
2 = 1, . . . , d2, ei = 1, . . . , d1, for i = 1, . . . , 7,

e′2 ≥ e′′2 , e2 ≥ e3, e4 ≥ e5 ≥ e6 ≥ e7, s ∈ E〉.
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Hence, a monomial basis ofA5 is given by
{
((s1 ⊲ s2) ⊲ s3) ⊲ s4) ⊲ s5 : sj ∈ E for j = 1, . . . , 5

}

⊔
{
(s1 ⊲ (s2 ⊲ s3)) ⊲ s4) ⊲ s5 : sj ∈ E for j = 1, . . . , 5, s1 ≥ s2

}

⊔
{
((s1 ⊲ s2) ⊲ (s3 ⊲ s4)) ⊲ s5 : sj ∈ E for j = 1, . . . , 5

}

⊔
{
(s1 ⊲ (s2 ⊲ (s3 ⊲ s4))) ⊲ s5 : sj ∈ E for j = 1, . . . , 5, s1 ≥ s2 ≥ s3

}

⊔
{
((s1 ⊲ s2) ⊲ s3) ⊲ (s4 ⊲ s5) : sj ∈ E for j = 1, . . . , 5

}

⊔
{
(s1 ⊲ (s2 ⊲ s3)) ⊲ (s4 ⊲ s5) : sj ∈ E for j = 1, . . . , 5, s1 ≥ s2

}

⊔
{
(s1 ⊲ s2) ⊲ ((s3 ⊲ s4) ⊲ s5) : sj ∈ E for j = 1, . . . , 5, s1 ⊲ s2 ≥ s3 ⊲ s4

}

⊔
{
(s1 ⊲ s2) ⊲ (s3 ⊲ (s4 ⊲ s5)) : sj ∈ E for j = 1, . . . , 5, s3 ≥ s4

}

⊔
{
s1 ⊲ (s2 ⊲ (s3 ⊲ (s4 ⊲ s5))) : sj ∈ E for j = 1, . . . , 5, s1 ≥ s2 ≥ s3 ≥ s4

}
.

3.2. Base change from a monomial basis to the rooted tree basis.We relate now any Agra-
chev–Gamkrelidze type monomial basis in a free pre-Lie algebra, obtained from Formula (3.6),
with the presentation of the free pre-Lie algebra as the linear spanT of the (non-planar) rooted
trees with one generator{ }, endowed with the grafting “→”. In the following, we give the tree
expansions of the first five homogeneous components of such a monomial basis:

T1 = 〈e1 = 〉.

T2 = 〈 → 〉 = 〈e1 = 〉.

T3 = 〈( → )→ , → ( → ) 〉 = 〈e1 = , e2 = + 〉.

T4 = 〈(( → )→ )→ , ( → ( → ))→ , ( → )→ ( → ), → ( → ( → )) 〉

= 〈e1 = , e2 = + , e3 = + , e4 = + + 3 + 〉.

T5 = 〈((( → )→ )→ )→ , (( → ( → ))→ )→ , (( → )→ ( → ))→ ,

( → ( → ( → )))→ , ((( → )→ )→ ( → ), (( → ( → ))→ ( → ),

( → )→ (( → )→ ), ( → )→ ( → ( → )), → ( → ( → ( → )))〉

= 〈e1 = , e2 = + , e3 = + , e4 = + + 3 + , e5 = + ,

e6 = + + + , e7 = + + , e8 = + + 2 + + ,

e9 = + + 3 + + 4 + 4 + 3 + 6 + 〉.

Now, for any homogeneous componentTn, each vector in the monomial basis described
above is defined as a monomialm( ,→) of the tree with one vertex “” multiplied (by itself)
using the pre-Lie grafting “→” with the parentheses. This monomial in turn determines two
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monomials in the algebras (T pl, ◦ց) and (T ,�), respectively. One of these monomials is ob-
tained by replacing the grafting “→” by the left Butcher product “◦ց”, which induces a planar
rooted treeτ. The other monomial is deduced by replacing the product “→” by the usual
Butcher product, which in turn defines a (non-planar) rootedtreet.

Definition 7. A monomial basis for a free pre-Lie algebra is called a “tree-grounded” monomial
basis if we obtain the Chapoton–Livernet tree basis when we replace the pre-Lie product in each
monomial in this basis by the Butcher product “�”. For a positive integern, a monomial basis
of Tn will also be called tree-grounded if this property holds inTn.

Example6. In the space of all (non-planar) rooted treesT , the homogeneous componentT4 has
four types of monomial bases, namely

B1 =
{
(( → )→ )→ , ( → ( → ))→ , ( → )→ ( → ), → ( → ( → ))

}

=
{
e1 = , e2 = + , e3 = + , e4 = + + 3 +

}
.

B2 =
{
(( → )→ )→ , ( → ( → ))→ , → (( → )→ ), → ( → ( → ))

}

=
{
e1 = , e2 = + , e3 = + + , e4 = + + 3 +

}
.

B3 =
{
(( → )→ )→ , ( → )→ ( → ), → (( → )→ ), → ( → ( → ))

}

=
{
e1 = , e2 = + , e3 = + + , e4 = + + 3 +

}
.

B4 =
{
( → ( → ))→ , ( → )→ ( → ), → (( → )→ ), → ( → ( → ))

}

=
{
e1 = + , e2 = + , e3 = + + , e4 = + + 3 +

}
.

We find that the monomial basesB1 andB2 are tree-grounded monomial bases ofT4, be-
cause replacing the pre-Lie grafting “→” by the Butcher product “�” returns the tree basis

{
, , ,

}
. But one should note that the basesB3 andB4 are not tree-grounded.3

Lemma 9. A monomial basis for the free pre-Lie algebra with one generator is tree-grounded
if and only if it comes from a section map S according to the linear mapΨ̃S.

Proof. For any elementx = m( ,→) of some tree-grounded monomial basis, letS(t) = m( , ◦ց),
wheret = m( ,�) is the lower-energy term ofx. By Definition 7, these lower-energy terms form
a basis ofT , henceS is uniquely defined that way, and it is a section ofπ, as in the following
diagram:

m( , ◦ց) ∈ T pl Ψ //

π
����

T pl ∋ m( ,ց)

π
����

t = m( ,�) ∈ T
Ψ̃S

//

S

OO

T ∋ x = m( ,→)

On the other hand, any monomial basis induced by a section mapS is obviously a tree-
grounded monomial basis. �

3We thank the referee for having suggested this example to us.
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Lemma 10. The Agrachev–Gamkrelidze monomial bases are tree-grounded.

Proof. From the construction of Agrachev–Gamkrelidze monomial bases, and using the presen-
tation of the free pre-Lie algebra in terms of rooted trees (see Theorem 6), with one generator,
Formula (3.6) can be written as

An =̃ Un−1, for n ≥ 1,

so that, for a homogeneous componentAn, the monomial basis in (3.7) becomes
xe1

j1
→

(
xe2

j2
→ (· · · → (xer

jr
→ ) · · · )

)
:

r∑

k=1

jk = n− 1, xe1
j1
≥ · · · ≥ xer

jr

 .

The monomial basis forA1, namely{ }, is obviously tree-grounded in the sense of Definition
7. Suppose, by induction hypothesis, that the monomial basis {xe1

j , . . . , x
ej

j } is a tree-grounded
basis ofA j, for j = 1, . . . , n − 1. Consider the corresponding lower-energy termste1

j , . . . , t
ej

j
obtained by replacing the grafting “→” by the Butcher product “�” in each monomial. The
lower-energy term of the monomial

(3.8) xe1
j1
→

(
xe2

j2
→ (· · · → (xer

jr
→ ) · · · )

)

is given by
te1

j1
�

(
te2

j2
�(· · ·�(ter

jr
� ) · · · )

)
= B

+
(te1

j1
. . . ter

jr
).

Hence we recover the tree basis ofAn by taking the lower-energy term of each monomial (3.8),
thus proving the lemma. �

As a particular case of our general construction, by means ofthe isomorphism (3.5), an
Agrachev–Gamkrelidze monomial basis gives rise to some particular sectionS. Conversely,
any sectionS of π defines a tree-grounded monomial basis for the free pre-Lie algebra (T ,→).
For any integern ≥ 1, the matrix of the coefficients of the tree-grounded monomial ofTn

associated with the sectionS is exactly the matrix
(
βS(s, t)

)
s, t∈Tn

described in Corollary 5 in the
preceding section.
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Algebra 164, 750–772 (1994).
[21] N. J. A. Sloane,The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[22] E. B. Vinberg,The theory of homogeneous convex cones, Transl. Moscow Math. Soc. 12, 340–403

(1963).

Mathematics Department, College of Science, Al-Mustansiriya University, Palestine Street, P.O.Box 14022,
Baghdad, IRAQ.
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Cézeaux, BP 80026, F63171 Aubière, CEDEX, France.

E-mail address: Mahdi.Alkaabi@math.univ-bpclermont.fr


