Dual Bayer-Billera relations and Kazhdan-Lusztig polynomials

FABRIZIO CASELLI (with Francesco Brenti, U Roma)

Bertinoro, September 16, 2013

ALMA MATER STUDIORUM UNIVERSITȦ DI BOLOGNA

0-1 sequences

$\{0,1\}^{n}$ set of binary sequences of length i and

$$
\{0,1\}^{*} \stackrel{\text { def }}{=} \bigcup_{n=0}^{\infty}\{0,1\}^{n}
$$

$\{0,1\}^{*}$ has a monoid structure given by juxtaposition.

Bayer-Billera relations

$\alpha:\{0,1\}^{n} \rightarrow \mathbb{C}$ satisfies the Bayer-Billera (or, generalized Dehn-Sommerville) relations if
for all $T \in\{0,1\}^{n}, T=P \cdot 0^{j} \cdot S, 0^{j}$ maximal sequence of consecutive 0 's in T,

$$
\sum_{i=0}^{j-1}(-1)^{i} \alpha\left(P \cdot 0^{i} 10^{j-i-1} \cdot S\right)=\left(1+(-1)^{j-1}\right) \alpha(T)
$$

The vector space of all functions $\alpha:\{0,1\}^{n} \rightarrow \mathbb{C}$ satisfying the Bayer-Billera relations has dimension F_{n} (where $F_{0}=F_{1}=1$, $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$).

Eulerian posets

P a finite graded Eulerian poset of rank $n+1$, with $\hat{0}, \hat{1}$, and rank function ρ.
For any chain $\mathcal{C}: \hat{0}<x_{1}<\cdots<x_{k}<\hat{1}$ let

$$
\operatorname{supp}(\mathcal{C})=d_{1} \cdots d_{n} \in\{0,1\}^{n}
$$

given by $d_{i}=1$ if and only if $\rho\left(x_{j}\right)=i$ for some j.
The flag f-vector of P is the function $f_{P}:\{0,1\}^{n} \rightarrow \mathbb{N}$ given by

$$
f_{P}(S)=|\{\mathcal{C}: \operatorname{supp}(\mathcal{C})=S\}| \forall S \in\{0,1\}^{n}
$$

Well-known that the function f_{P} satisfies Bayer-Billera relations.
Special cases if poset P is the face lattice of a convex polytope or a Bruhat interval.
Recent generalization by Ehrenborg-Goresky-Readdy for a Whitney stratification of a closed subset of a smooth manifold.

Coxeter groups

The Bayer-Billera relations also arise in another way in the theory of Coxeter groups.
Recall that a Coxeter system is a pair (W, S), where S is a finite set and W is a group defined by:

$$
W \stackrel{\text { def }}{=}<S \mid(s t)^{m(s, t)}=e, \forall s, t \in S>
$$

where, for all $s, t \in S$:

$$
\begin{gathered}
m(s, s)=1 \quad\left(\Rightarrow s^{2}=e \quad \forall s\right) \\
m(s, t)=m(t, s) \\
m(s, t) \in\{2,3, \ldots, \infty\}, \quad \text { if } s \neq t
\end{gathered}
$$

Given $u \in W$ one lets

$$
\ell(u) \stackrel{\text { def }}{=} \min \left\{r: u=s_{1} \cdots s_{r} \text { for some } s_{1}, \ldots, s_{r} \in S\right\}
$$

(length of u).

Reflections and Bruhat order

We let

$$
T \stackrel{\text { def }}{=}\left\{u s u^{-1}: u \in W, s \in S\right\}
$$

(set of reflections of W).
The Bruhat graph of (W, S) is the directed graph $B(W, S)$ with

- W as vertex
- directed edges $x \xrightarrow{t} x t$ where $t \in T$ and $\ell(x)<\ell(x t)$.

Bruhat order on W is the partial order which is the transitive closure of the Bruhat graph.
S_{n} is a Coxeter group with respect to the generating set

$$
S \stackrel{\text { def }}{=}\{(1,2),(2,3), \ldots,(n-1, n)\}
$$

The reflections are

$$
T=\{(a, b): 1 \leq a<b \leq n\}
$$

and the length function is

$$
\ell(u)=\operatorname{inv}(u)
$$

for all $u \in S_{n}$ (number of inversions of u). If $u=u_{1} \cdots u_{n} \in S_{n}$ and $t=(a, b) \in T$, $(\mathrm{aj} \mathrm{b})$ then

$$
u \xrightarrow{t} u t
$$

if and only if

$$
u_{a}<u_{b}
$$

($u t$ is obtained from u by switching u_{a} and $u_{b_{c}}$),

Reflection orderings

A reflection ordering is a total ordering $<_{T}$ on T satisfying additional properties. In S_{n} the lex order is a reflection ordering. Given a path $\Delta=\left(a_{0} \xrightarrow{t_{1}} a_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{r}} a_{r}\right)$ in $B(W, S)$ from a_{0} to a_{r}, we define its length to be

$$
I(\Delta) \stackrel{\text { def }}{=} r
$$

and its descent string, with respect to $<_{T}$, to be

$$
D(\Delta) \stackrel{\text { def }}{=} d_{1} \cdots d_{r-1} \in\{0,1\}^{r-1}
$$

where $d_{i}=1$ if and only if $t_{i}>_{T} t_{i+1}$.

An example

If $<_{T}$ is the lex order on S_{n} and Δ is the path

$$
\begin{aligned}
123456 & \xrightarrow{(2,4)} 143256 \xrightarrow{(1,2)} 413256 \xrightarrow{(2,5)} 453216 \\
& \xrightarrow{(5,6)} 453261 \xrightarrow{(2,5)} 463251
\end{aligned}
$$

then $I(\Delta)=5$ and $D(\Delta)=1001$

Bayer-Billera relations for descent strings

Given $u, v \in W$, and $n \in \mathbb{N}$, we denote by $B_{n}(u, v)$ the set of all directed paths in $B(W, S)$ from u to v of length n, and we let $B(u, v) \stackrel{\text { def }}{=} \bigcup_{n \geq 0} B_{n}(u, v)$.
For $u, v \in W, n \in \mathbb{P}$ and $S \in\{0,1\}^{n-1}$ we let

$$
c_{S, n}(u, v) \stackrel{\text { def }}{=}\left|\left\{\Delta \in B_{n}(u, v): D(\Delta) \leq S\right\}\right| .
$$

$c_{S, n}(u, v)$ does not depend on $<_{T}$ and

Theorem (Brenti '98)

Let (W, S) be a Coxeter system, $u, v \in W$, and $n>0$. The function $S \mapsto c_{S, n}(u, v)$ satisfies the Bayer-Billera relations.

β-functions

It is often the case in combinatorics that whenever a function $\alpha:\{0,1\}^{n} \rightarrow \mathbb{C}$ satisfies the Bayer-Billera relations then the function $\beta:\{0,1\}^{n} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
\beta(S)=\sum_{T<S}(-1)^{|S|-|T|} \alpha(T) \tag{1}
\end{equation*}
$$

is also of combinatorial interest. In fact, very often the function β is the one that is most interesting.
This was one of the motivations that led us to ask the following natural question.
If a function $\alpha:\{0,1\}^{n} \rightarrow \mathbb{C}$ satisfies the Bayer-Billera relations, then what relations are satisfied by the function $\beta:\{0,1\}^{n} \rightarrow \mathbb{C}$ defined by (1) ?

Dual Bayer-Billera relations

It is well known that the function β satisfies the relations

$$
\beta(S)=\beta(\bar{S})
$$

for all $S \in\{0,1\}^{n}$, where \bar{S} is the complement string of S. However, these relations are not enough since they are 2^{n-1}, while at least $2^{n}-F_{n}$ are needed.

Theorem (Brenti-C, '13)

Let $\alpha, \beta:\{0,1\}^{n} \rightarrow \mathbb{C}$ be such that (1) holds. Then the following are equivalent:
(1) α satisfies the Bayer-Billera relations;
(2) $\beta(S)=\beta(\bar{S})$ for all $S \in\{0,1\}^{n}$ and, for all $i \in[2, n-1]$, $S \in\{0,1\}^{i-1}$ and $T \in\{0,1\}^{n-i}$

$$
\beta(S \cdot 0 \cdot T)+\beta(S \cdot 1 \cdot T)=\beta(S \cdot 0 \cdot \bar{T})+\beta(S \cdot 1 \cdot \bar{T})
$$

Sparse strings

Call the relations (2) in the previous theorem the dual Bayer-Billera relations

Call the submonoid of $\{0,1\}^{*}$ generated by 0 and 01 the monoid of sparse strings.

It is easy to see that there are F_{n} sparse strings in $\{0,1\}^{n}$.
If $\beta:\{0,1\}^{n} \rightarrow \mathbb{C}$ satisfies the dual Bayer-Billera relations then it is uniquely determined by its values on the sparse strings, the other values being linear combinations of these.

We look for such a linear expansion explicitly.

A sparse expansion

Let $a_{1}, \ldots, a_{k} \in \mathbb{P}$
Define $\mathcal{F}\left(a_{1}, \ldots, a_{k}\right)$ to be the set of all integer sequences
$\left(i_{1}, \ldots, i_{k}\right)$ such that:
i) $0 \leq i_{j} \leq a_{j}$ for all j;
ii) if $i_{j-1}=a_{j-1}$ then $i_{j}=0$;
iii) if $i_{j}=0$ and $a_{j} \equiv 1(\bmod 2)$ then $i_{j-1}=a_{j-1}$;
for all $j=1, \ldots, k$.

Example

If $\left(a_{1}, a_{2}, a_{3}\right)=(2,1,3)$ then

$$
\mathcal{F}(2,1,3)=\{(2,0,1),(2,0,2),(2,0,3),(0,1,0),(1,1,0)\}
$$

A sparse expansion

We let $E_{0, a}=0^{a}$ and

$$
E_{i, a}=0^{i-1} 10^{a-i} \forall i=1, \ldots, a
$$

Note that the definition of $\mathcal{F}\left(a_{1}, \ldots, a_{k}\right)$ implies that

$$
E_{i_{1}, a_{1}} \cdots E_{i_{k}, a_{k}}
$$

does not have two consecutive 1's.
$E \in\{0,1\}^{n}$; its exponent composition $\left(a_{1}, a_{2}, \ldots\right)$ is given by

$$
E= \begin{cases}1^{a_{1}} 0^{a_{2}} 1^{a_{3}} \cdots, & \text { if } E_{1}=1 \\ 0^{a_{1}} 1^{a_{2}} 0^{a_{3}} \cdots, & \text { if } E_{1}=0 .\end{cases}
$$

For example, the exponent composition of 00110 is $(2,2,1)$.

A sparse expansion

Theorem (Brenti-C, '13)

Let $\beta:\{0,1\}^{n} \rightarrow \mathbb{C}$ satisfy the dual Bayer-Billera relations, $T \in\{0,1\}^{n}$ and $\left(a_{1}, \ldots, a_{k}\right)$ be its exponent composition. Then

$$
\beta(T)=\sum_{\left(i_{2}, \ldots, i_{k}\right) \in \mathcal{F}\left(a_{2}, \ldots, a_{k}\right)}(-1)^{\sum_{j: i j \neq 0} i_{j}-1} \beta\left(0^{a_{1}} E_{i_{2}, a_{2}} \cdots E_{i_{k}, a_{k}}\right),
$$

$b_{s, n}$

Application: new non-recursive formula for the Kazhdan-Lusztig polynomials of a Coxeter system (W, S) which holds in complete generality.
Recall $S \mapsto c_{S, n}(u, v)$ satisfies the Bayer-Billera relations. In this case the function given by (1) is

$$
b_{S, n}(u, v)=\left|\left\{\Delta \in B_{n}(u, v): D(\Delta)=S\right\}\right|
$$

for all $u, v \in W, n \in \mathbb{P}$, and $S \subseteq[n-1]$.
Hence, the function $S \mapsto b_{S, n}(u, v)$ satisfies the conclusion of Theorem 3 for all $u, v \in W$ and $n \in \mathbb{P}$.

Lattice paths

A lattice path on $[n]$ is a function $\Gamma:[n] \rightarrow \mathbb{Z}$ such that $\Gamma(0)=0$ and

$$
|\Gamma(i+1)-\Gamma(i)|=1
$$

for all $i \in[n-1]$.
We let

$$
N(\Gamma) \stackrel{\text { def }}{=} \eta_{1} \cdots \eta_{n-1} \in\{0,1\}^{n-1}
$$

where $\eta_{i}=1$ if and only if $\Gamma(i)<0$, and $d_{+}(\Gamma) \stackrel{\text { def }}{=}$ number of up-steps of Γ.

Upsilon polynomials

Let $\mathcal{L}(n)$ the set of all the lattice paths Γ on $[0, n]$ such that $\Gamma(n)<0$.
Given $E \in\{0,1\}^{n-1}$ we define a polynomial $\Upsilon_{E}(q)$ by

$$
\Upsilon_{E}(q) \stackrel{\text { def }}{=}(-1)^{m_{0}(E)} \sum_{\{\Gamma \in \mathcal{L}(n): N(\Gamma)=E\}}(-q)^{d_{+}(\Gamma)}
$$

where $m_{0}(E) \stackrel{\text { def }}{=}\left|\left\{j \in[n-1]: E_{j}=0\right\}\right|$.

For $E \in\{0,1\}^{n-1}$ let

$$
\partial(E) \stackrel{\text { def }}{=}\left\{i \in[n-2]: E_{i} \neq E_{i+1}\right\} .
$$

Let $T \in\{0,1\}^{n-1}$ and $s_{1}<\cdots<s_{t}$ be the positions of the 1 's in $T, s_{0} \stackrel{\text { def }}{=} 0, s_{t+1} \stackrel{\text { def }}{=} n$. We define $\mathcal{G}(T)$ to be the set of all $E \in\{0,1\}^{n-1}$ such that:
i) $\left|\partial(E) \cap\left(s_{j}, s_{j+1}\right)\right|=1$ for all $j \in[0, t-1]$;
ii) $\left|\partial(E) \cap\left(s_{t}, s_{t+1}\right)\right| \leq 1$;
iii) if $\partial(E) \cap\left(s_{t}, s_{t+1}\right)=\{x\}$ then $x \equiv n-1(\bmod 2)$.

Note that $\mathcal{G}(T)$ is empty if T is not sparse.

Given such an $E \in \mathcal{G}(T)$ we define

$$
\operatorname{sgn}(E, T) \stackrel{\text { def }}{=}(-1)^{\sum_{i=1}^{t}\left(s_{i}-x_{i}-1\right)}
$$

where $\left\{x_{i}\right\} \stackrel{\text { def }}{=} \partial(E) \cap\left(s_{i-1}, s_{i}\right)$ for $i \in[t]$, and let

$$
\Omega_{T}(q) \stackrel{\text { def }}{=} \sum_{E \in \mathcal{G}(T)} \operatorname{sgn}(E, T) \Upsilon_{E}(q) .
$$

Recall that $\mathcal{G}(T)=\emptyset$ (and hence $\left.\Omega_{T}(q)=0\right)$ if T is not sparse.

Given a Coxeter system $(W, S), u, v \in W, u<v$, let $P_{u, v}(q)$ be the Kazhdan-Lusztig polynomial of u, v.
Then we have

Theorem (Brenti-C, '13)

Let (W, S) be a Coxeter system and $u, v \in W, u<v$. Then

$$
P_{u, v}(q)=\sum_{T \in\{0,1\}^{*}} q^{\frac{\ell(u, v)-1-\ell(T)}{2}} b_{T}(u, v) \Omega_{T}(q)
$$

Other relations?

All combinatorial nonrecursive formulas known for the Kazhdan-Lusztig polynomials which hold in complete generality express each coefficient of the Kazhdan-Lusztig polynomial of u, v as a linear combination of the numbers $b_{T}(u, v)$.
This was one of the motivations that led us to ask the following natural question
Are there any other linear relations that hold among the numbers $b_{S}(u, v)$, besides those implied by Theorem 2 (i.e., by the dual Bayer-Billera relations)?
Are there any non-trivial linear relations that hold among the numbers

$$
\left\{b_{T}(u, v): T \in\{0,1\}^{*}, \text { Tsparse }\right\} ?
$$

No other linear relations

The answer to the last question is "no".

Theorem

Let $\left\{a_{T}\right\}_{\left\{T \in\{0,1\}^{*}, T \text { sparse }\right\}} \subseteq \mathbb{C}$ be such that

$$
\sum_{\left\{T \in\{0,1\}^{*}, \text { Tsparse }\right\}} a_{T} b_{T}(u, v)=0
$$

for all Coxeter systems (W, S) and all $u, v \in W$. Then $a_{T}=0$ for all $T \in\{0,1\}^{*}, T$ sparse.

