Dual Bayer-Billera relations and Kazhdan-Lusztig polynomials

FABRIZIO CASELLI (with Francesco Brenti, U Roma)

Bertinoro, September 16, 2013

ALMA MATER STUDIORUM Università di Bologna

Fabrizio Caselli Dual Bayer-Billera relations and Kazhdan-Lusztig polynomials

$\{0,1\}^n$ set of binary sequences of length i and

$$\{0,1\}^* \stackrel{\mathrm{def}}{=} \bigcup_{n=0}^{\infty} \{0,1\}^n$$

 $\{0,1\}^*$ has a monoid structure given by juxtaposition.

/□ ▶ < 글 ▶ < 글

 $\alpha: \{0,1\}^n \to \mathbb{C}$ satisfies the Bayer-Billera (or, generalized Dehn-Sommerville) relations if

for all $T \in \{0,1\}^n$, $T = P \cdot 0^j \cdot S$, 0^j maximal sequence of consecutive 0's in T,

$$\sum_{i=0}^{j-1} (-1)^{i} \alpha (P \cdot 0^{i} 10^{j-i-1} \cdot S) = (1 + (-1)^{j-1}) \alpha(T)$$

The vector space of all functions $\alpha : \{0,1\}^n \to \mathbb{C}$ satisfying the Bayer-Billera relations has dimension F_n (where $F_0 = F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$).

P a finite graded Eulerian poset of rank n + 1, with $\hat{0}$, $\hat{1}$, and rank function ρ .

For any chain $\mathcal{C}:\hat{0} < x_1 < \cdots < x_k < \hat{1}$ let

$$supp(\mathcal{C}) = d_1 \cdots d_n \in \{0,1\}^n$$

given by $d_i = 1$ if and only if $\rho(x_j) = i$ for some j. The *flag f-vector* of P is the function $f_P : \{0,1\}^n \to \mathbb{N}$ given by

$$f_{\mathcal{P}}(S) = |\{\mathcal{C}: \operatorname{supp}(\mathcal{C}) = S\}| \ \forall S \in \{0,1\}^n$$

Well-known that the function f_P satisfies Bayer-Billera relations. Special cases if poset P is the face lattice of a convex polytope or a Bruhat interval.

Recent generalization by Ehrenborg-Goresky-Readdy for a Whitney stratification of a closed subset of a smooth manifold.

Coxeter groups

The Bayer-Billera relations also arise in another way in the theory of Coxeter groups.

Recall that a *Coxeter system* is a pair (W, S), where S is a finite set and W is a group defined by:

$$W \stackrel{\mathrm{def}}{=} < S \mid (st)^{m(s,t)} = e, orall s, t \in S >$$

where, for all $s, t \in S$:

$$egin{aligned} m(s,s) &= 1 & (\Rightarrow s^2 = e \quad orall s) \ m(s,t) &= m(t,s) \ m(s,t) \in \{2,3,...,\infty\}, & ext{if } s
eq t \end{aligned}$$

Given $u \in W$ one lets $\ell(u) \stackrel{\text{def}}{=} \min\{r : u = s_1 \cdots s_r \text{ for some } s_1, \dots, s_r \in S\}$ (*length* of u). We let

$$T \stackrel{\mathrm{def}}{=} \{ usu^{-1} : u \in W, \ s \in S \}$$

(set of *reflections* of W).

The Bruhat graph of (W, S) is the directed graph B(W, S) with

• W as vertex

• directed edges $x \xrightarrow{t} xt$ where $t \in T$ and $\ell(x) < \ell(xt)$.

Bruhat order on W is the partial order which is the transitive closure of the Bruhat graph.

The symmetric group

 S_n is a Coxeter group with respect to the generating set

$$S \stackrel{\text{def}}{=} \{(1,2), (2,3), \dots, (n-1,n)\}$$

The reflections are

$$T = \{(a,b): 1 \le a < b \le n\}$$

and the length function is

$$\ell(u) = inv(u)$$

for all $u \in S_n$ (number of inversions of u). If $u = u_1 \cdots u_n \in S_n$ and $t = (a, b) \in T$, (aib) then

$$u \stackrel{t}{\longrightarrow} ut$$

if and only if

$$u_a < u_b$$

(ut is obtained from u by switching u_a and u_b), (a_a)

A reflection ordering is a total ordering $<_{\mathcal{T}}$ on \mathcal{T} satisfying additional properties. In S_n the lex order is a reflection ordering. Given a path $\Delta = (a_0 \xrightarrow{t_1} a_1 \xrightarrow{t_2} \cdots \xrightarrow{t_r} a_r)$ in B(W, S) from a_0 to a_r , we define its *length* to be

$$l(\Delta) \stackrel{\mathrm{def}}{=} r,$$

and its *descent string*, with respect to $<_{T}$, to be

$$D(\Delta) \stackrel{\mathrm{def}}{=} d_1 \cdots d_{r-1} \in \{0,1\}^{r-1}$$

where $d_i = 1$ if and only if $t_i >_T t_{i+1}$.

If $<_T$ is the lex order on S_n and Δ is the path $123456 \xrightarrow{(2,4)} 143256 \xrightarrow{(1,2)} 413256 \xrightarrow{(2,5)} 453216$ $\xrightarrow{(5,6)} 453261 \xrightarrow{(2,5)} 463251$ then $I(\Delta) = 5$ and $D(\Delta) = 1001$

Bayer-Billera relations for descent strings

Given $u, v \in W$, and $n \in \mathbb{N}$, we denote by $B_n(u, v)$ the set of all directed paths in B(W, S) from u to v of length n, and we let $B(u, v) \stackrel{\text{def}}{=} \bigcup_{n \ge 0} B_n(u, v)$. For $u, v \in W$, $n \in \mathbb{P}$ and $S \in \{0, 1\}^{n-1}$ we let

$$c_{\mathcal{S},n}(u,v) \stackrel{\mathrm{def}}{=} |\{\Delta \in B_n(u,v): \ D(\Delta) \leq \mathcal{S}\}|.$$

 $c_{\mathcal{S},n}(u,v)$ does not depend on $<_{\mathcal{T}}$ and

Theorem (Brenti '98)

Let (W, S) be a Coxeter system, $u, v \in W$, and n > 0. The function $S \mapsto c_{S,n}(u, v)$ satisfies the Bayer-Billera relations.

It is often the case in combinatorics that whenever a function $\alpha : \{0,1\}^n \to \mathbb{C}$ satisfies the Bayer-Billera relations then the function $\beta : \{0,1\}^n \to \mathbb{C}$ defined by

$$\beta(S) = \sum_{T < S} (-1)^{|S| - |T|} \alpha(T) \tag{1}$$

is also of combinatorial interest. In fact, very often the function β is the one that is *most* interesting.

This was one of the motivations that led us to ask the following natural question.

If a function $\alpha : \{0,1\}^n \to \mathbb{C}$ satisfies the Bayer-Billera relations, then what relations are satisfied by the function $\beta : \{0,1\}^n \to \mathbb{C}$ defined by (1) ?

伺 ト イ ヨ ト イ ヨ ト

Dual Bayer-Billera relations

It is well known that the function β satisfies the relations

$$\beta(S) = \beta(\bar{S})$$

for all $S \in \{0,1\}^n$, where \overline{S} is the complement string of S. However, these relations are not enough since they are 2^{n-1} , while at least $2^n - F_n$ are needed.

Theorem (Brenti-C, '13)

Let $\alpha, \beta : \{0, 1\}^n \to \mathbb{C}$ be such that (1) holds. Then the following are equivalent:

() α satisfies the Bayer-Billera relations;

②
$$\beta(S) = \beta(\overline{S})$$
 for all $S \in \{0, 1\}^n$ and, for all $i \in [2, n-1]$,
 $S \in \{0, 1\}^{i-1}$ and $T \in \{0, 1\}^{n-i}$

$$\beta(S \cdot 0 \cdot T) + \beta(S \cdot 1 \cdot T) = \beta(S \cdot 0 \cdot \overline{T}) + \beta(S \cdot 1 \cdot \overline{T})$$

Call the relations (2) in the previous theorem the *dual Bayer-Billera relations*

Call the submonoid of $\{0,1\}^*$ generated by 0 and 01 the monoid of sparse strings.

It is easy to see that there are F_n sparse strings in $\{0,1\}^n$.

If $\beta : \{0,1\}^n \to \mathbb{C}$ satisfies the dual Bayer-Billera relations then it is uniquely determined by its values on the sparse strings, the other values being linear combinations of these.

We look for such a linear expansion explicitly.

Let $a_1, \ldots, a_k \in \mathbb{P}$ Define $\mathcal{F}(a_1, \ldots, a_k)$ to be the set of all integer sequences (i_1, \ldots, i_k) such that: i) $0 \le i_j \le a_j$ for all j; ii) if $i_{j-1} = a_{j-1}$ then $i_j = 0$; iii) if $i_j = 0$ and $a_j \equiv 1 \pmod{2}$ then $i_{j-1} = a_{j-1}$; for all $j = 1, \ldots, k$.

Example

If $(a_1, a_2, a_3) = (2, 1, 3)$ then $\mathcal{F}(2, 1, 3) = \{(2, 0, 1), (2, 0, 2), (2, 0, 3), (0, 1, 0), (1, 1, 0)\}$

We let $E_{0,a} = 0^a$ and

$$E_{i,a} = 0^{i-1} 10^{a-i} \quad \forall i = 1, \dots, a.$$

Note that the definition of $\mathcal{F}(a_1, \ldots, a_k)$ implies that

$$E_{i_1,a_1}\cdots E_{i_k,a_k}$$

does not have two consecutive 1's. $E \in \{0,1\}^n$; its exponent composition $(a_1, a_2, ...)$ is given by

$$E = \begin{cases} 1^{a_1} 0^{a_2} 1^{a_3} \cdots, & \text{if } E_1 = 1, \\ 0^{a_1} 1^{a_2} 0^{a_3} \cdots, & \text{if } E_1 = 0. \end{cases}$$

For example, the exponent composition of 00110 is (2, 2, 1).

Theorem (Brenti-C, '13)

Let $\beta : \{0,1\}^n \to \mathbb{C}$ satisfy the dual Bayer-Billera relations, $T \in \{0,1\}^n$ and (a_1, \ldots, a_k) be its exponent composition. Then

$$\beta(T) = \sum_{(i_2,...,i_k)\in\mathcal{F}(a_2,...,a_k)} (-1)^{\sum_{j:i_j\neq 0} i_j - 1} \beta(0^{a_1} E_{i_2,a_2} \cdots E_{i_k,a_k}),$$

同 ト イ ヨ ト イ ヨ ト

Application: new non-recursive formula for the Kazhdan-Lusztig polynomials of a Coxeter system (W, S) which holds in complete generality.

Recall $S \mapsto c_{S,n}(u, v)$ satisfies the Bayer-Billera relations. In this case the function given by (1) is

$$b_{S,n}(u,v) = |\{\Delta \in B_n(u,v) : D(\Delta) = S\}|,$$

for all $u, v \in W$, $n \in \mathbb{P}$, and $S \subseteq [n-1]$. Hence, the function $S \mapsto b_{S,n}(u, v)$ satisfies the conclusion of Theorem 3 for all $u, v \in W$ and $n \in \mathbb{P}$. A lattice path on [n] is a function $\Gamma:[n]\to \mathbb{Z}$ such that $\Gamma(0)=0$ and

$$|\Gamma(i+1)-\Gamma(i)|=1$$

for all $i \in [n-1]$. We let $N(\Gamma) \stackrel{\text{def}}{=} \eta_1 \cdots \eta_{n-1} \in \{0,1\}^{n-1}$, where m = 1 if and only if $\Gamma(i) < 0$.

where $\eta_i = 1$ if and only if $\Gamma(i) < 0$, and $d_+(\Gamma) \stackrel{\text{def}}{=}$ number of up-steps of Γ . Let $\mathcal{L}(n)$ the set of all the lattice paths Γ on [0, n] such that $\Gamma(n) < 0$. Given $E \in \{0, 1\}^{n-1}$ we define a polynomial $\Upsilon_E(q)$ by

$$\Upsilon_E(q) \stackrel{\mathrm{def}}{=} (-1)^{m_0(E)} \sum_{\{\Gamma \in \mathcal{L}(n) : N(\Gamma) = E\}} (-q)^{d_+(\Gamma)}$$

where $m_0(E) \stackrel{\text{def}}{=} |\{j \in [n-1] : E_j = 0\}|.$

For $E \in \{0,1\}^{n-1}$ let

$$\partial(E) \stackrel{\mathrm{def}}{=} \{i \in [n-2] : E_i \neq E_{i+1}\}.$$

Let $T \in \{0,1\}^{n-1}$ and $s_1 < \cdots < s_t$ be the positions of the 1's in T, $s_0 \stackrel{\text{def}}{=} 0$, $s_{t+1} \stackrel{\text{def}}{=} n$. We define $\mathcal{G}(T)$ to be the set of all $E \in \{0,1\}^{n-1}$ such that:

i)
$$|\partial(E) \cap (s_j, s_{j+1})| = 1$$
 for all $j \in [0, t-1]$;
ii) $|\partial(E) \cap (s_t, s_{t+1})| \le 1$;
iii) if $\partial(E) \cap (s_t, s_{t+1}) = \{x\}$ then $x \equiv n-1 \pmod{2}$.
Note that $\mathcal{G}(T)$ is empty if T is not sparse.

Given such an $E \in \mathcal{G}(T)$ we define

$$sgn(E, T) \stackrel{\text{def}}{=} (-1)^{\sum_{i=1}^{t} (s_i - x_i - 1)}$$

where $\{x_i\} \stackrel{\text{def}}{=} \partial(E) \cap (s_{i-1}, s_i)$ for $i \in [t]$, and let

$$\Omega_{\mathcal{T}}(q) \stackrel{\text{def}}{=} \sum_{E \in \mathcal{G}(\mathcal{T})} \operatorname{sgn}(E, \mathcal{T}) \Upsilon_{E}(q).$$

Recall that $\mathcal{G}(T) = \emptyset$ (and hence $\Omega_T(q) = 0$) if T is not sparse.

Given a Coxeter system (W, S), $u, v \in W$, u < v, let $P_{u,v}(q)$ be the Kazhdan-Lusztig polynomial of u, v. Then we have

Theorem (Brenti-C, '13)

Let (W, S) be a Coxeter system and $u, v \in W$, u < v. Then

$$P_{u,v}(q) = \sum_{T \in \{0,1\}^*} q^{\frac{\ell(u,v)-1-\ell(T)}{2}} b_T(u,v) \Omega_T(q).$$

All combinatorial nonrecursive formulas known for the Kazhdan-Lusztig polynomials which hold in complete generality express each coefficient of the Kazhdan-Lusztig polynomial of u, v as a linear combination of the numbers $b_T(u, v)$.

This was one of the motivations that led us to ask the following natural question

Are there any other linear relations that hold among the numbers $b_S(u, v)$, besides those implied by Theorem 2 (i.e., by the dual Bayer-Billera relations)?

Are there any non-trivial linear relations that hold among the numbers

$${b_T(u, v) : T \in {0, 1}^*, Tsparse}?$$

伺 ト イヨト イヨト

The answer to the last question is "no".

Theorem Let $\{a_T\}_{\{T \in \{0,1\}^*, Tsparse\}} \subseteq \mathbb{C}$ be such that $\sum_{\{T \in \{0,1\}^*, Tsparse\}} a_T \ b_T(u, v) = 0$

for all Coxeter systems (W, S) and all $u, v \in W$. Then $a_T = 0$ for all $T \in \{0, 1\}^*$, T sparse.