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In QFT, one studies the behaviour of particles in a quantum
fields.

Several types of particles: electrons, photons, bosons, etc.
Several types of interactions: an electron can capture/eject
a photon, etc.

One wants to predict certain physical constants: mass or
charge of the electron,etc.

Develop the constant in a formal series, indexed by certain
combinatorial objects: the Feynman graphs.
Attach to any Feynman graph a real/complex number:
Feynman rules and Renormalization.
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The expansion as a formal series gives formal sums of
Feynman graphs: the propagators (vertex functions,
two-points functions).
These formal sums are characterized by a set of
equations: the Dyson-Schwinger equations.
In order to be "physically meaningful", these functions
should be compatible with the extraction/contraction Hopf
algebra structure on Feynman graphs. This imposes
strong constraints on the Dyson-Schwinger equations.
Because of a 1-cocycle property, everything can be lifted
and studied to the level of decorated rooted trees.
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To a given QFT is attached a family of graphs.

Feynman graphs
1 A finite number of possible half-edges.
2 A finite number of possible vertices.
3 A finite number of possible external half-edges (external

structure).
4 The graph is connected and 1-PI.

To each external structure is associated a formal series in the
Feynman graphs.
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In QED

1 Half-edges:
�

(electron),
�

(photon).

2 Vertices:� .

3 External structures:� ,
�

,
�

.
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Examples in QED

�,�,�,�,�,

�,�,
�

,
�
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Other examples

Φ3.
Quantum Chromodynamics.
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Subgraphs and contraction
1 A subgraph of a Feynman graph Γ is a subset γ of the set

of half-edges Γ such that γ and the vertices of Γ with all
half edges in γ is itself a Feynman graph.

2 If Γ is a Feynman graph and γ1, . . . , γk are disjoint
subgraphs of Γ, Γ/γ1 . . . γk is the Feynman graph obtained
by replacing γ1, . . . , γk by vertices in Γ.
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Insertion
Let Γ1 and Γ2 be two Feynman graphs. According to the
external structure of Γ1, you can replace a vertex or an edge of
Γ2 by Γ1 in order to obtain a new Feynman graph.

Examples in QED

�
�� =�,�

��� =�,�,�.
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Let A and B be two vector spaces.
The tensor product of A and B is a space A⊗ B with a
bilinear product ⊗ : A× B −→ A⊗ B satisfying a universal
property: if f : A× B −→ C is bilinear, there exists a unique
linear map F : A⊗ B −→ C such that F (a⊗ b) = f (a, b) for
all (a, b) ∈ A× B.
If (ei)i∈I is a basis of A and (fj)j∈J is a basis of B, then
(ei ⊗ fj)i∈I,j∈J is a basis A⊗ B.
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The tensor product of vector spaces is associative:
(A⊗ B)⊗ C = A⊗ (B ⊗ C).
We shall identify K ⊗ A, A⊗ K and A via the identification
of 1⊗ a, a⊗ 1 and a.
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If A is an associative algebra, its (bilinear) product becomes a
linear map m : A⊗ A −→ A, sending a⊗ b on ab. The
associativity is given by the following commuting square:

A⊗ A⊗ A
m⊗Id //

Id⊗m
��

A⊗ A

m
��

A⊗ A m
// A
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If A is unitary, its unit 1A induces a linear map

η :

{
K −→ A
λ −→ λ1A.

The unit axiom becomes:

K ⊗ A
η⊗Id //

%%JJJJJJJJJJ A⊗ A

m
��

A⊗ K
Id⊗ηoo

yytttttttttt

A
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Dualizing these diagrams, we obtain the coalgebra axioms

Coalgebra

A coalgebra is a vector space C with a map ∆ : C −→ C ⊗ C
such that:

C
∆ //

∆
��

C ⊗ C

Id⊗∆
��

C ⊗ C
∆⊗Id

// C ⊗ C ⊗ C
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Coalgebra

There exists a map ε : C −→ K , called the counit, such
that:

K ⊗ C

%%KKKKKKKKKK C ⊗ C
ε⊗Idoo Id⊗ε // C ⊗ K

yyssssssssss

C

∆

OO
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If A is an algebra, then A⊗ A is an algebra, with:

(a1 ⊗ b1).(a2 ⊗ b2) = (a1.a2)⊗ (b1.b2).

Bialgebra and Hopf algebra
A bialgebra is both an algebra and a coalgebra, such that
the coproduct and the counit are algebra morphisms.
A Hopf algebra is a bialgebra with a technical condition of
existence of an antipode.
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Examples

If G is a group, KG is a Hopf algebra, with ∆(x) = x ⊗ x for
all x ∈ G.
If g is a Lie algebra, its enveloping algebra is a Hopf
algebra, with ∆(x) = x ⊗ 1 + 1⊗ x for all x ∈ g.
If H is a finite-dimensional Hopf algebra, then its dual is
also a Hopf algebra.
If H is a graded Hopf algebra, then its graded dual is also a
Hopf algebra.
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Construction
Let HFG be a free commutative algebra generated by the set of
Feynman graphs. It is given a coproduct: for all Feynman graph
Γ,

∆(Γ) =
∑

γ1...γk⊆Γ

γ1 . . . γk ⊗ Γ/γ1 . . . γk .

∆(�) =�⊗1+1⊗�+
�

⊗�.
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The Hopf algebra HFG is graded by the number of loops:

|Γ| = ]E(Γ)− ]V (Γ) + 1.

Because of the 1-PI condition, it is connected, that is to say
(HFG)0 = K 1HFG . What is its dual?

Cartier-Quillen-Milnor-Moore theorem
Let H be a cocommutative, graded, connected Hopf algebra
over a field of characteristic zero. Then it is the enveloping
algebra of its primitive elements.
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This theorem can be applied to the graded dual of HFG.

Primitive elements of H∗
FG

Basis of primitive elements: for any Feynman graph Γ,

fΓ(γ1 . . . γk ) = ]Aut(Γ)δγ1...γk ,Γ.

The Lie bracket is given by:

[fΓ1 , fΓ2 ] =
∑

Γ=Γ1�Γ2

fΓ −
∑

Γ=Γ2�Γ1

fΓ.
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We define:
fΓ1 ◦ fΓ2 =

∑
Γ=Γ1�Γ2

fΓ.

The product ◦ is not associative, but satisfies:

f1 ◦ (f2 ◦ f3)− (f1 ◦ f2) ◦ f3 = f2 ◦ (f1 ◦ f3)− (f2 ◦ f1) ◦ f3.

It is (left) prelie.
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In the context of QFT, we shall consider some special infinite
sums of Feynman graphs:

Propagators in QED

� =
∑
n≥1

xn

 ∑
γ∈� (n)

sγγ

 .

�
= −

∑
n≥1

xn

 ∑
γ∈
�

(n)

sγγ

 .
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Propagators in QED

�
= −

∑
n≥1

xn

 ∑
γ∈
�

(n)

sγγ

 .

They live in the completion of HFG.

Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I



Introduction
Feynman graphs

Algebraic background
Dyson-Schwinger equations

Reformulation with trees
Results

Insertion operators
Examples of Dyson-Schwinger equations

How to describe the propagators?
For any primitive Feynman graph γ, one defines the
insertion operator Bγ over HFG. This operator associates to
a graph G the sum (with symmetry coefficients) of the
insertions of G into γ.
The propagators then satisfy a system of equations
involving the insertion operators, called systems of
Dyson-Schwinger equations.
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Example
In QED :

B

�
(
�

) =
1
2�+

1
2�

B

�
(�) =

1
3�+

1
3�+

1
3�
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In QED:

� =
∑

γ

x |γ|Bγ


(

1 +�
)1+2|γ|

(
1 +
�

)|γ| (
1 +
�

)2|γ|



�
= −xB

�


(

1 +�
)2

(
1 +
�

)2



�
= −xB

�


(

1 +�
)2

(
1 +
�

)(
1 +
�

)

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Other example (Bergbauer, Kreimer)

X =
∑

γ primitive
Bγ

(
(1 + X )|γ|+1

)
.
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Question
For a given system of Dyson-Schwinger equations (S), is the
subalgebra generated by the homogeneous components of (S)
a Hopf subalgebra?
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Proposition
The operators Bγ satisfy: for all x ∈ HFG,

∆ ◦ Bγ(x) = Bγ(x)⊗ 1 + (Id ⊗ Bγ) ◦∆(x).

This relation allows to lift any system of Dyson-Schwinger
equation to the Hopf algebra of decorated rooted trees.
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Cartier-Quillen cohomology

let C be a coalgebra and let (B, δG, δD) be a C-bicomodule.
Dn = L(B, C⊗n).
For all l ∈ Dn:

bn(L) =
n∑

i=1

(−1)i(Id⊗(i−1) ⊗∆⊗ Id⊗(n−i)) ◦ L

+(Id ⊗ L) ◦ δG + (−1)n+1(L⊗ Id) ◦ δD.
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A particular case

We take B = C, δG(b) = ∆(b) and δD(b) = b ⊗ 1. A 1-cocycle
of C is a linear map L : C −→ C, such that for all b ∈ C:

(Id ⊗ L) ◦∆(b)−∆ ◦ L(b) + b ⊗ 1 = 0.

So Bγ is a 1-cocycle of HFG for all primitive Feynman graph.
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The Hopf algebra of rooted trees HR (or Connes-Kreimer Hopf
algebra) is the free commutative algebra generated by the set
of rooted trees.

q , qq , q∨qq
, qqq , q∨qq q

, q∨qqq
,

q∨qq q , qqqq , q∨qq
�Hq q

, q∨qq qq
, q∨qq qq

, q∨qq∨q q
, q∨qqqq

,
q∨qq qq ,

q∨qq qq , qqq∨
q q
, qqqqq , . . .

The set of rooted forests is a linear basis of HR:

1, q , q q , qq , q q q , qq q , q∨qq
, qqq , q q q , qq q q , qq qq , q∨qq q , qqq q , q∨qq q

, q∨qqq
,

q∨qq q , qqqq . . .
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The coproduct is given by admissible cuts:

∆(t) =
∑

c admissible cut
Pc(t)⊗ Rc(t).

cutc q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq
total

Admissible ? yes yes yes yes no yes yes no yes

W c(t) q∨qqq qq qq q q∨qq qqq q q q qq qq q q qq q q q q q q q∨qqq
Rc(t) q∨qqq qq q∨qq qqq × q qq × 1

Pc(t) 1 qq q q × qq q q q × q∨qqq
∆( q∨qqq

) = q∨qqq
⊗1+1⊗ q∨qqq

+ qq ⊗ qq + q⊗ q∨qq
+ q⊗ qqq + qq q⊗ q + q q⊗ qq .

Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I



Introduction
Feynman graphs

Algebraic background
Dyson-Schwinger equations

Reformulation with trees
Results

Introduction
Hopf algebra of rooted trees
Combinatorial Dyson-Schwinger equations

The grafting operator of HR is the map B : HR −→ HR,
associating to a forest t1 . . . tn the tree obtained by grafting
t1, . . . , tn on a common root. For example:

B( qq q) = q∨qqq
.

Proposition
For all x ∈ HR:

∆ ◦ B(x) = B(x)⊗ 1 + (Id ⊗ B) ◦∆(x).

So B is a 1-cocycle of HR.
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Universal property
Let A be a commutative Hopf algebra and let L : A −→ A be a
1-cocycle of A. Then there exists a unique Hopf algebra
morphism φ : HR −→ A with φ ◦ B = L ◦ φ.

This will be generalized to the case of several 1-cocycles with
the help of decorated rooted trees.
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HR is graded by the number of vertices and B is
homogeneous of degree 1.
Let Y = Bγ(f (Y )) be a Dyson-Schwinger equation in a
suitable Hopf algebra of Feynman graphs HFG, such that
|γ| = 1.
There exists a Hopf algebra morphism φ : HR −→ HFG,
such that φ ◦ B = Bγ ◦ φ. This morphism is homogeneous
of degree 0.
Let X be the solution of X = B(f (X )). Then φ(X ) = Y and
for all n ≥ 1, φ(X (n)) = Y (n).
Consequently, if the subalgebra generated by the X (n)’s is
Hopf, so is the subalgebra generated by the Y (n)’s.
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Definition
Let f (h) ∈ K [[h]].

The combinatorial Dyson-Schwinger equations associated
to f (h) is:

X = B(f (X )),

where X lives in the completion of HR.
This equation has a unique solution X =

∑
X (n), with:

X (1) = p0 q ,
X (n + 1) =

n∑
k=1

∑
a1+...+ak=n

pkB(X (a1) . . . X (ak )),

where f (h) = p0 + p1h + p2h2 + . . .
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X (1) = p0 q ,
X (2) = p0p1 qq ,
X (3) = p0p2

1 qqq + p2
0p2 q∨qq

,

X (4) = p0p3
1 qqqq + p2

0p1p2
q∨qq q + 2p2

0p1p2 q∨qqq
+ p3

0p3 q∨qq q
.
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Examples

If f (h) = 1 + h:

X = q + qq + qqq + qqqq + qqqqq + · · ·

If f (h) = (1− h)−1:

X = q + qq + q∨qq
+ qqq + q∨qq q

+ 2 q∨qqq
+

q∨qq q + qqqq
+ q∨qq

�H
q q

+ 3 q∨qq qq
+ q∨qq qq

+ 2 q∨qq∨qq
+ 2 q∨qqqq

+
q∨qq qq + 2 q∨qq qq + qqq∨

q q
+ qqqqq + · · ·
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Let f (h) ∈ K [[h]]. The homogeneous components of the unique
solution of the combinatorial Dyson-Schwinger equation
associated to f (h) generate a subalgebra of HR denoted by Hf .

Hf is not always a Hopf subalgebra

For example, for f (h) = 1 + h + h2 + 2h3 + · · · , then:

X = q + qq + q∨qq
+ qqq + 2 q∨qq q

+ 2 q∨qqq
+

q∨qq q + qqqq + · · ·

So:

∆(X (4)) = X (4)⊗ 1 + 1⊗ X (4) + (10X (1)2 + 3X (2))⊗ X (2)

+(X (1)3 + 2X (1)X (2) + X (3))⊗ X (1)

+X (1)⊗ (8 q∨qq
+ 5 qqq).
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When is Hf a Hopf subalgebra?

If f (0) = 0, the unique solution of X = B(f (X )) is 0. From now,
up to a normalization we shall assume that f (0) = 1.

Theorem
Let f (h) ∈ K [[h]], with f (0) = 1. The following assertions are
equivalent:

1 Hf is a Hopf subalgebra of HR.
2 There exists (α, β) ∈ K 2 such that (1− αβh)f ′(h) = αf (h).
3 There exists (α, β) ∈ K 2 such that f (h) = 1 if α = 0 or

f (h) = eαh if β = 0 or f (h) = (1− αβh)−
1
β if αβ 6= 0.
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When is Hf a Hopf subalgebra?

1 =⇒ 2. We put f (h) = 1 + p1h + p2h2 + · · · . Then X (1) = q .
Let us write:

∆(X (n + 1)) = X (n + 1)⊗ 1 + 1⊗X (n + 1) + X (1)⊗Y (n) + . . . .

1 By definition of the coproduct, Y (n) is obtained by cutting a
leaf in all possible ways in X (n + 1). So it is a linear span
of trees of degree n.

2 As Hf is a Hopf subalgebra, Y (n) belongs to Hf .
Hence, there exists a scalar λn such that Y (n) = λnXn.
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When is Hf a Hopf subalgebra?

lemma
Let us write:

X =
∑

t

at t .

For any rooted tree t :

λ|t |at =
∑

t ′
n(t , t ′)at ′ ,

where n(t , t ′) is the number of leaves of t ′ such that the cut of
this leaf gives t .
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We here assume that f is not constant. We can prove that
p1 6= 0.

For t the ladder (B)n(1), we obtain:

pn−1
1 λn = 2(n − 1)pn−2

1 p2 + pn
1 .

Hence:
λn = 2

p2

p1
(n − 1) + p1.

We put α = p1 and β = 2
p2

p2
1
− 1, then:

λn = α(1 + (n − 1)(1 + β)).
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For t the corolla B( qn−1), we obtain:

λnpn−1 = npn + (n − 1)pn−1p1.

Hence:
α(1 + (n − 1)β)pn−1 = npn.

Summing:
(1− αβh)f ′(h) = αf (h).

Loïc Foissy Combinatorial Dyson-Schwinger equations and systems I



Introduction
Feynman graphs

Algebraic background
Dyson-Schwinger equations

Reformulation with trees
Results

When is Hf a Hopf subalgebra?

X (1) = q ,
X (2) = α qq ,
X (3) = α2

(
(1 + β)

2
q∨qq

+ qqq) ,

X (4) = α3

(
(1 + 2β)(1 + β)

6
q∨qq q

+ (1 + β) q∨qqq
+

(1 + β)

2
q∨qq q + qqqq ) ,

X (5) = α4



(1+3β)(1+2β)(1+β)
24 q∨qq

�H
q q

+ (1+2β)(1+β)
2 q∨qq qq

+ (1+β)2

2 q∨qq∨qq
+ (1 + β) q∨qqqq

+ (1+2β)(1+β)
6

q∨qq qq

+ (1+β)
2 q∨qq qq

+ (1 + β)
q∨qq qq + (1+β)

2 qqq∨
q q

+ qqqqq


.
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Particular cases
If (α, β) = (1,−1), f = 1 + h and X (n) = (B)n(1) for all n.
If (α, β) = (1, 1), f = (1− h)−1 and:

X (n) =
∑
|t |=n

]{embeddings of t in the plane}t .

Si (α, β) = (1, 0), f = eh and:

X (n) =
∑
|t |=n

1
]{symmetries of t}

t .
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