Recalls Results Prelie algebras More realistic Dyson-Schwinger equations

Dyson-Schwinger equations on rooted trees II

Loïc Foissy

Bertinoro September 2013

Loïc Foissy Dyson-Schwinger equations on rooted trees II

ヘロア 人間 アメヨア 人口 ア

ъ

Hopf algebra of trees *H_R* Combinatorial Dyson-Schwinger equations

.

٠

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Rooted forests:

1,...,
$$\mathfrak{r}$$
,..., \mathfrak{r} , \mathfrak{V} , \mathfrak{t} ,..., \mathfrak{r} , \mathfrak{r} , \mathfrak{V} , \mathfrak{t} , \mathfrak{V} , \mathfrak{V} , \mathfrak{V} , \mathfrak{V} , \mathfrak{t} , ...
Coproduct:

$$\Delta(\overset{\mathbf{I}}{\vee}) = \overset{\mathbf{I}}{\vee} \otimes \mathbf{1} + \mathbf{1} \otimes \overset{\mathbf{I}}{\vee} + \mathbf{1} \otimes \mathbf{1} + \mathbf{0} \otimes \mathbf{1} +$$

Grafting operator:

$$B(\mathbf{I}) = \mathbf{V}$$

Definition

Let $f(h) \in K[[h]]$.

• The combinatorial Dyson-Schwinger equations associated to *f*(*h*) is:

$$X=B(f(X)),$$

where X lives in the completion of H_R .

• This equation has a unique solution $X = \sum X(n)$, with:

$$\begin{cases} X(1) = p_{0}, \\ X(n+1) = \sum_{k=1}^{n} \sum_{a_1+\ldots+a_k=n} p_k B(X(a_1)\ldots X(a_k)), \end{cases}$$

where $f(h) = p_0 + p_1 h + p_2 h^2 + ...$

ヘロト ヘアト ヘビト ヘビト

ъ

Hopf algebra of trees H_R Combinatorial Dyson-Schwinger equations

$$\begin{aligned} X(1) &= p_0 \cdot, \\ X(2) &= p_0 p_1 \cdot, \\ X(3) &= p_0 p_1^2 \cdot \cdot \cdot + p_0^2 p_2 \cdot \vee, \\ X(4) &= p_0 p_1^3 \cdot \cdot \cdot + p_0^2 p_1 p_2 \cdot \vee \cdot + 2 p_0^2 p_1 p_2 \cdot \vee \cdot + p_0^3 p_3 \cdot \vee. \end{aligned}$$

Recalls Results Prelie algebras More realistic Dyson-Schwinger equations

Hopf algebra of trees *H_R* Combinatorial Dyson-Schwinger equations

Examples

• If f(h) = 1 + h: $X = . + 1 + 1 + 1 + 1 + 1 + 1 + \cdots$ • If $f(h) = (1 - h)^{-1}$: $X = .+1 + \vee + \frac{1}{2} + \vee + 2 \vee + \frac{1}{2} + \frac{1}{2}$ $+ \sqrt{2} + 3\sqrt{2} + \sqrt{2} + 2\sqrt{2} + 2\sqrt{2} + \sqrt{2} + \sqrt{$

ヘロト ヘアト ヘビト ヘビト

3

Let $f(h) \in K[[h]]$. The homogeneous components of the unique solution of the combinatorial Dyson-Schwinger equation associated to f(h) generate a subalgebra of H_R denoted by H_f .

H_f is not always a Hopf subalgebra

For example, for $f(h) = 1 + h + h^2 + 2h^3 + \cdots$, then:

So:

$$\begin{array}{lll} \Delta(X(4)) &=& X(4) \otimes 1 + 1 \otimes X(4) + (10X(1)^2 + 3X(2)) \otimes X(2) \\ && + (X(1)^3 + 2X(1)X(2) + X(3)) \otimes X(1) \\ && + X(1) \otimes (8 \ \vee \ + 5 \frac{1}{2}). \end{array}$$

ヘロト ヘアト ヘビト ヘビト

æ

If f(0) = 0, the unique solution of X = B(f(X)) is 0. From now, up to a normalization we shall assume that f(0) = 1.

Theorem

Let $f(h) \in K[[h]]$, with f(0) = 1. The following assertions are equivalent:

- H_f is a Hopf subalgebra of H_R .
- 2 There exists $(\alpha, \beta) \in K^2$ such that $(1 \alpha\beta h)f'(h) = \alpha f(h)$.
- There exists $(\alpha, \beta) \in K^2$ such that f(h) = 1 if $\alpha = 0$ or $f(h) = e^{\alpha h}$ if $\beta = 0$ or $f(h) = (1 \alpha \beta h)^{-\frac{1}{\beta}}$ if $\alpha \beta \neq 0$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

1 \implies 2. We put $f(h) = 1 + p_1h + p_2h^2 + \cdots$. Then $X(1) = \cdot$. Let us write:

 $\Delta(X(n+1)) = X(n+1) \otimes 1 + 1 \otimes X(n+1) + X(1) \otimes Y(n) + \dots$

- Sy definition of the coproduct, Y(n) is obtained by cutting a leaf in all possible ways in X(n+1). So it is a linear span of trees of degree *n*.
- 2 As H_f is a Hopf subalgebra, Y(n) belongs to H_f .

Hence, there exists a scalar λ_n such that $Y(n) = \lambda_n X_n$.

イロト 不得 トイヨト イヨト 二日 二

lemma

Let us write:

$$X=\sum_t a_t t.$$

For any rooted tree *t*:

$$\lambda_{|t|}\boldsymbol{a}_t = \sum_{t'} \boldsymbol{n}(t,t')\boldsymbol{a}_{t'},$$

where n(t, t') is the number of leaves of t' such that the cut of this leaf gives t.

イロト 不得 とくほと くほとう

3

We here assume that *f* is not constant. We can prove that $p_1 \neq 0$.

For *t* the ladder $(B)^n(1)$, we obtain:

$$p_1^{n-1}\lambda_n = 2(n-1)p_1^{n-2}p_2 + p_1^n.$$

Hence:

$$\lambda_n = 2 \frac{p_2}{p_1}(n-1) + p_1.$$

We put $\alpha = p_1$ and $\beta = 2\frac{p_2}{p_1^2} - 1$, then:

$$\lambda_n = \alpha(1 + (n-1)(1+\beta)).$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

For *t* the corolla $B(\cdot^{n-1})$, we obtain:

$$\lambda_n p_{n-1} = n p_n + (n-1) p_{n-1} p_1.$$

Hence:

$$\alpha(1+(n-1)\beta)p_{n-1}=np_n.$$

Summing:

$$(1 - \alpha\beta h)f'(h) = \alpha f(h).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$X(1) = \cdot,$$

$$X(2) = \alpha i,$$

$$X(3) = \alpha^{2} \left(\frac{(1+\beta)}{2} \vee + i \right),$$

$$X(4) = \alpha^{3} \left(\frac{(1+2\beta)(1+\beta)}{6} \vee + (1+\beta) \vee + \frac{(1+\beta)}{2} \vee + i \right),$$

$$X(5) = \alpha^{4} \left(\begin{array}{c} \frac{(1+3\beta)(1+2\beta)(1+\beta)}{24} \vee + (1+\beta) \vee + \frac{(1+2\beta)(1+\beta)}{2} \vee \\ + \frac{(1+\beta)^{2}}{2} \vee + (1+\beta) \vee + \frac{(1+2\beta)(1+\beta)}{6} \vee \\ + \frac{(1+\beta)}{2} \vee + (1+\beta) \vee + \frac{(1+\beta)^{2}}{2} + i \end{array} \right).$$

Particular cases

If (α, β) = (1, -1), f = 1 + h and X(n) = (B)ⁿ(1) for all n.
If (α, β) = (1, 1), f = (1 − h)⁻¹ and:

$$X(n) = \sum_{|t|=n} \# \{ \text{embeddings of } t \text{ in the plane} \} t.$$

• Si $(\alpha, \beta) = (1, 0), f = e^h$ and:

$$X(n) = \sum_{|t|=n} \frac{1}{\#\{\text{symmetries of } t\}} t.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

(Left) prelie algebra

A prelie algebra \mathfrak{g} is a vector space with a linear product \circ such that for all $x, y, z \in \mathfrak{g}$:

$$x \circ (y \circ z) - (x \circ y) \circ z = y \circ (x \circ z) - (y \circ x) \circ z.$$

Associated Lie bracket

If \circ is a prelie product on $\mathfrak{g},$ its antisymmetrization is a Lie bracket.

ヘロン ヘアン ヘビン ヘビン

ъ

Primitive elements of the dual of H_R

For any rooted tree *t* let us define:

$$f_t: \left\{ \begin{array}{ccc} H_R & \longrightarrow & K \\ F & \longrightarrow & s_t \delta_{F,t}. \end{array} \right.$$

The family (f_t) is a basis of the primitive elements of H_R^* . The Lie bracket is given by:

$$[f_{t_1}, f_{t_2}] = \sum_{t'=t_1 \mapsto t_2} f_{t'} - \sum_{t'=t_2 \mapsto t_1} f_{t'}.$$

$$[\textbf{.}, \, \textbf{V}\,] = \, \textbf{W} \,+\, \overset{l}{\textbf{V}} \,+\, \overset{l}{\textbf{V}} \,-\, \overset{l}{\textbf{Y}} \,=\, \textbf{W} \,+\, \textbf{2} \,\overset{l}{\textbf{V}} \,-\, \overset{l}{\textbf{Y}}$$

ヘロト ヘアト ヘビト ヘビト

We define:

$$f_{t_1} \circ f_{t_2} = \sum_{t'=t_1 \rightarrowtail t_2} f_{t'}.$$

This product is prelie.

Theorem (Chapoton-Livernet)

As a prelie algebra, $Prim(H_R^*)$ is freely generated by f_{\bullet} .

ヘロン ヘアン ヘビン ヘビン

ъ

By duality with H_R , we obtain a description of the enveloping algebra of the free prelie algebra on one generators.

Grossman-Larson Hopf algebra

- Basis: the set of rooted forests.
- Coproduct :

$$\Delta(t_1\ldots t_k) = \sum_{I\subseteq\{1,\ldots,k\}} \left(\prod_{i\in I} t_i\right) \otimes \left(\prod_{i\notin I} t_i\right)$$

• Product: generalized graftings.

$$..*! = ..! + 2. \vee + 2.! + \vee + 2 \vee + ?$$

イロト イポト イヨト イヨト

Let $\lambda \in K$.

Faà di Bruno prelie algebra

 \mathfrak{g}_{FdB} has a basis $(e_i)_{i\geq 1}$, and the prelie product is defined by:

$$\boldsymbol{e}_i \circ \boldsymbol{e}_j = (j + \lambda) \boldsymbol{e}_{i+j}.$$

For all $i, j, k \ge 1$:

$$e_i \circ (e_j \circ e_k) - (e_i \circ e_j) \circ e_k = k(k + \lambda)e_{i+j+k}.$$

イロト 不得 とくほと くほとう

3

Let \mathfrak{g} be prelie algebra.

Theorem (Guin-Oudom)

The product \circ of \mathfrak{g} can be extended to $S(\mathfrak{g})$: if $a, b, c \in S_+(\mathfrak{g})$, $x \in \mathfrak{g}$,

$$\begin{cases} a \circ 1 = \varepsilon(a), \\ 1 \circ b = b, \\ (xa) \circ b = x \circ (a \circ b) - (x \circ a) \circ b, \\ a \circ (bc) = \sum (a' \circ b)(a'' \circ c). \end{cases}$$

One then defines a product on $S_+(\mathfrak{g})$ by $a \star b = \sum a'(a'' \circ b)$, with the Sweedler notation $\Delta(a) = \sum a' \otimes a''$. Then $(S(\mathfrak{g}), *, \Delta)$ is a Hopf algebra, isomorphic to the enveloping algebra of \mathfrak{g} .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• In *S*(*g*_{*FdB*}):

 $(e_{i_1} \ldots e_{i_m}) \circ e_j = (j+\lambda)j(j-\lambda) \ldots (j-(m-2)\lambda)e_{i_1+\ldots+i_m+j}.$

There exists a unique prelie algebra morphism φ_λ from the free prelie algebra on one generator to g_{FdB}, sending. to e₁. It is extended as a Hopf algebra morphism from S(g_{FdB}) to H^{*}_R; then by transposition we obtain a Hopf algebra morphism Φ_λ from S(g_{FdB})* to H^{*}_R.

ヘロン 人間 とくほ とくほ とう

э.

Recalls Results **Prelie algebras** More realistic Dyson-Schwinger equations

Definitions and examples Enveloping algebra of a prelie algebra Application to Dyson-Schwinger equations

Theorem

The image of Φ_{λ} is generated as an algebra by the elements $x(n) = \Phi_{\lambda}(e_n^*), n \ge 1$. Moreover, $\sum x(n)$ is the solution of the Dyson-Schwinger equation:

$$X = B\left(\left(1 + \frac{\lambda}{1+\lambda}X\right)^{\frac{\lambda}{1+\lambda}}\right)$$

Corollary

For all $\alpha, \beta \in K$, the algebra generated by the components of the solution of the Dyson-Schwinger equation

$$X = B\left((1 - lpha eta X)^{-rac{1}{eta}}
ight)$$

is a Hopf subalgebra.

Corollary

• If
$$\beta \neq -1$$
 and $\alpha = 1$,

$$\Delta(X) = X \otimes 1 + \sum_{j=1}^{\infty} (1 + \lambda X)^{1 + \frac{j}{\lambda}} \otimes X(j)$$

with
$$\lambda = \frac{-1}{1+\beta}$$
.
• If $\beta = -1$ and $\alpha = 1$,
 $\Delta(X) = 1 \otimes X + X \otimes 1 + X \otimes X$.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Hence, we have a family of Hopf subalgebras $H_{(\alpha,\beta)}$ of H_R indexed by (α,β) .

Theorem

- If α ≠ 0 and β = −1, H_(α,β) is isomorphic to the Hopf algebra of symmetric functions.
- If α ≠ 0 and β ≠ −1, H_(α,β) is isomorphic to the Faà di Bruno Hopf algebra. In other words, H_(α,β) is the coordinate ring of the group of formal diffeomorphisms of the line that are tangent to the identity:

$$G = \left(\{f(h) = h + a_1 h^2 + \dots \mid a_1, a_2, \dots \in K\}, \circ \right).$$

・ロト ・ 理 ト ・ ヨ ト ・

In QFT, generally Dyson-Schwinger equations involve several 1-cocycles, for example [Bergbauer-Kreimer]:

$$X = \sum_{n=1}^{\infty} B_n((1+X)^{n+1}),$$

where B_n is the insertion operator into a primitive Feynman graph with *n* loops.

ヘロト ヘアト ヘビト ヘビト

æ

Let / be a set. Set of rooted trees decorated by /:

 ${}^{b}\mathbb{V}_{a}^{c} = {}^{b}\mathbb{V}_{a}^{c} = \ldots = {}^{d}\mathbb{V}_{a}^{b}, {}^{c}\mathbb{V}_{a}^{d} = {}^{d}\mathbb{V}_{a}^{c}, {}^{c}\mathbb{V}_{a}^{d} = {}^{d}\mathbb{V}_{a}^{c}, {}^{c}\mathbb{V}_{a}^{d} = {}^{d}\mathbb{V}_{a}^{c}, {}^{d}\mathbb{V}_{a}^{d}, {}^{d}\mathbb{V}_{a}^{c}, {}^{d}\mathbb{V}_{a}^{d} = {}^{d}\mathbb{V}_{a}^{c}, {}^{d}\mathbb{V}_{a}^{d}, {}^{d}\mathbb{V}_{a}$

The Connes-Kreimer construction is extended to obtain the Hopf algebra H_R^l .

$$\Delta(\overset{a}{\overset{b}{V}}_{d}^{c}) = \overset{a}{\overset{b}{V}}_{d}^{c} \otimes 1 + 1 \otimes \overset{a}{\overset{b}{V}}_{d}^{c} + 1_{b}^{a} \otimes 1_{d}^{c} + ._{a} \otimes \overset{b}{V}_{d}^{c} + ._{a} \otimes \overset{b}{\overset{b}{V}}_{d}^{c}$$
$$+ ._{c} \otimes \overset{b}{\overset{b}{}}_{d}^{a} + 1_{b}^{a} ._{c} \otimes ._{d} + ._{a} ._{c} \otimes 1_{d}^{b}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Recalls	Decorated rooted trees
Results	Dyson-Schwinger equations with several 1-cocycles
Prelie algebras	Constant formal series
More realistic Dyson-Schwinger equations	Associated prelie algebras

- We assume that *I* is graded, that is to say there is map deg : *I* → N*. Then H^I_C is a graded Hopf algebra, the degree of a forest being the sum of the degree of its decorations.
- ② For all *d* ∈ *I*, there is a grafting operator $B_d : H_R^I \longrightarrow H_R^I$. For example, if *a*, *b*, *c*, *d* ∈ *I*:

$$B_a(\mathfrak{l}_{b \cdot d}^c) = \bigvee_{a \cdot d}^{c \cdot d}$$

Proposition

For all $a \in I$, $x \in H_R^l$:

 $\Delta \circ B_a(x) = B_a(x) \otimes 1 + (Id \otimes B_a) \circ \Delta(x).$

If *I* is graded, then for all $a \in I$, B_a is homogeneous of degree deg(a).

Universal property

Let *A* be a commutative Hopf algebra and for all $a \in I$, let $L_a : A \longrightarrow A$ such that for all $x \in A$:

$$\Delta \circ L_a(x) = L_a(x) \otimes 1 + (Id \otimes L_a) \circ \Delta(x).$$

Then there exists a unique Hopf algebra morphism $\phi: H_B^I \longrightarrow A$ with $\phi \circ B_a = L_a \circ \phi$ for all $a \in A$.

Moreover, if *A* is graded and if for all $a \in I$, L_a is homogeneous of degree deg(a), then ϕ is homogeneous of degree 0. This allows to lift Dyson-Schwinger equations on Feynman graphs as combinatorial Dyson-Schwinger equations on decorated rooted trees.

イロト 不得 とくほ とくほ とうほ

Definitions

Let *I* be a graded set and let $f_i(h) \in K[[h]]$ for all $i \in I$.

 The combinatorial Dyson-Schwinger equations associated to (f_i(h))_{i∈1} is:

$$X=\sum_{i\in I}B_i(f_i(X)),$$

where X lives in the completion of H_{R}^{l} .

- This equation has a unique solution $X = \sum X(n)$.
- The subalgebra of H_R^l generated by the X(n)'s is denoted by $H_{(f)}$.
- We shall say that the equation is Hopf if *H*_(*f*) is a Hopf subalgebra.

イロト 不得 トイヨト イヨト

1

Lemma

Let us assume that the equation associated to (*f*) is Hopf. If $f_i(0) = 0$, then $f_i = 0$.

If $f_i(0) = 0$, then \cdot_i does not appear in *X*, so does not appear in any element of $H_{(f)}$. Moreover:

$$\Delta(X) = X \otimes 1 + 1 \otimes X + f_i(X) \otimes \cdot_i + \ldots \in H_{(f)} \otimes H_{(f)}.$$

So necessarily, $f_i(X) \otimes \cdot_i = 0$, and $f_i = 0$.

イロト 不得 トイヨト イヨト 二日 二

We now assume that $f_i(0) = 1$ for all $i \in I$.

Lemma

Let us assume that the equation associated to (*f*) is Hopf. If $i, j \in I$ have the same degree, then $f_i = f_j$.

Let n = deg(i) = deg(j). Then $X(n) = \cdot_i + \cdot_j + \dots$ Consequently, in any element of $H_{(f)}$, \cdot_i and \cdot_j have the same coefficient. Moreover:

$$\Delta(X) = X \otimes 1 + 1 \otimes X + f_i(X) \otimes \cdot_i + f_j(X) \otimes \cdot_j + \ldots \in H_{(f)} \otimes H_{(f)}.$$

Hence, $f_i(X) = f_j(X)$, so $f_i = f_j$.

Grouping 1-cocycles by degrees, we now assume that $I \subseteq \mathbb{N}^*$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let us choose $i \in I$. We restrict our solution to *i*, that is to say we delete any tree with a decoration which is not equal to *i*. The obtained element X' is solution of:

$$X'=B_i(f_i(X')),$$

and this equation is Hopf. By the study of equations with only one 1-cocycle:

Lemma

For all $i \in I$, there exists $\alpha_i, \beta_i \in K$ such that :

$$f_i = \begin{cases} e^{\alpha_i h} \text{ if } \beta_i = 0, \\ (1 - \alpha_i \beta_i h)^{-1/\beta_i} \text{ if } \beta_i \neq 0. \end{cases}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Lemma

Let us write:

$$X=\sum_t a_t t.$$

For all $i \in I$, there exists coefficients $\lambda_n^{(i)}$ such that for any rooted tree *t*:

$$\lambda_{|t|}^{(i)}a_t=\sum_{t'}n_i(t,t')a_{t'},$$

where $n_i(t, t')$ is the number of leaves of t' decorated by *i* such that the cut of this leaf gives *t*.

ヘロト ヘアト ヘビト ヘビト

æ

By the study of equations with a single 1-cocycle:

Lemma

If f_i is not constant, then for all $n \ge 1$, for all $j \in I$:

$$\lambda_{ni}^{(j)} = \alpha_i (1 + (n-1)\beta_i).$$

If f_i and f_j are not constant, computing $\lambda_{nii}^{(j)}$ in two different ways:

$$njlpha_i(1+eta_i)-lpha_ieta_i=nilpha_j(1+eta_j)-lpha_jeta_j.$$

Lemma

There exists $\lambda, \mu \in K$ such that if f_i is not constant, then $\alpha_i = \lambda i - \mu \neq 0$ and $\beta_i = \frac{\mu}{\lambda i - \mu}$.

ヘロア 人間 アメヨア 人口 ア

Proposition

Let (*E*) be a Hopf Dyson-Schwinger equation. Then *I* can be written as $I = I' \sqcup I''$, and there exists $\lambda, \mu \in K, \lambda \neq 0$, such that if we put:

$$egin{aligned} \mathcal{Q}(h) = \left\{ egin{aligned} (1-\mu h)^{-rac{\lambda}{\mu}} ext{ if } \mu
eq 0, \ e^{\lambda h} ext{ if } \mu = 0, \end{aligned}
ight. \end{aligned}$$

then:

$$(E): X = \sum_{j \in I'} B_j \left((1 - \mu X) Q(X)^i \right) + \sum_{j \in I''} B_j(1).$$

ヘロト ヘアト ヘビト ヘビト

ъ

Lemma

Let us consider a Dyson-Schwinger equation of the form:

$$X=B_i(1)+B_j(f(X)),$$

with *f* non constant. If it is Hopf, then there exists a non-zero $\alpha \in K$, such that $f(h) = 1 + \alpha h$ or $f(h) = \left(1 - \alpha \frac{i}{j-i}h\right)^{\frac{i-j}{i}}$.

We define inductively a family of trees by $t_1 = I_j^i$ and $t_{n+1} = B_j(\cdot, t_n)$ for all $n \ge 1$.

$$\lambda_{n(i+j)}^{(i)}(1+\beta)^{n-1} = (n-1)(1+2\beta)(1+\beta)^{n-1} + (1+\beta)^n.$$

・ロト ・ 理 ト ・ ヨ ト ・

1

Let us assume that $\beta \neq -1$. Then:

$$\lambda_{n(i+j)}^{(i)} = (n-1)(1+2\beta) + 1 + \beta = n(1+2\beta) - \beta.$$

Compute $\lambda_{j(i+j)}^{(i)}$ in two different ways:

$$\begin{aligned} \lambda_{j(i+j)}^{(i)} &= \lambda_{(i+j)j}^{(i)} \\ &= \alpha(1+\beta)(i+j) - \alpha\beta, \\ &= \lambda_{j(i+j)}^{(i)} \\ &= \alpha j(1+2\beta) - \alpha\beta. \end{aligned}$$

Hence, $(1 + \beta)(i + j) = j(1 + 2\beta)$, so $\beta = \frac{i}{j-i}$. As a conclusion, $\beta = -1$ or $\frac{i}{j-i}$, therefore $f(h) = 1 + \alpha h$ or $\left(1 - \alpha \frac{i}{j-i}h\right)^{\frac{i-j}{i}}$.

Lemma

Let us consider a Dyson-Schwinger equation of the form:

$$X = B_i(1) + B_j(f(X)) + B_k(g(X)),$$

with *f*, *g* non constant. If it is Hopf, then there exists a non-zero $\alpha \in K$, such that $(f = (1 - \alpha ih)^{-\frac{l}{i}+1}$ and $g = (1 - \alpha ih)^{-\frac{k}{i}+1}$) or $(f = g = 1 + \alpha h)$.

2 Let us consider a Dyson-Schwinger equation of the form:

$$X = B_i(1) + B_j(1) + B_k(f(X)),$$

where *f* is non constant. Then there exists a non-zero $\alpha \in K$, such that $f = 1 + \alpha h$.

ヘロト ヘアト ヘビト ヘビト

 Recalls
 Decorated rooted trees

 Results
 Dyson-Schwinger equations with several 1-cocycles

 Prelie algebras
 Constant formal series

 More realistic Dyson-Schwinger equations
 Associated prelie algebras

Theorem

One of the following assertions holds:

• there exists $\lambda, \mu \in K$ such that, if we put:

$$egin{aligned} \mathcal{Q}(h) = \left\{ egin{aligned} (1-\mu h)^{-rac{\lambda}{\mu}} & ext{if } \mu
eq 0, \ e^{\lambda h} & ext{if } \mu = 0, \end{aligned}
ight. \end{aligned}$$

then:

$$(E): \mathbf{x} = \sum_{i \in I} B_j \left((1 - \mu \mathbf{x}) Q(\mathbf{x})^i \right).$$

2 There exists $m \ge 0$ and $\alpha \in K - \{0\}$ such that:

$$(E): x = \sum_{\substack{i \in I \\ m \mid i}} B_i(1 + \alpha x) + \sum_{\substack{i \in I \\ m \mid i}} B_i(1).$$

ヘロン 人間 とくほ とくほ とう

Recalls Results	Decorated rooted trees Dyson-Schwinger equations with several 1-cocycles
Prelie algebras	Constant formal series
More realistic Dyson-Schwinger equations	Associated prelie algebras

- Let *I* be a set. The primitive elements of (*H_R^I*)* inherits a prelie structure. Moreover, it is the free prelie algebra generated by *i*, *i* ∈ *I*.
- If *I* ⊆ ℕ*, there exists a prelie algebra morphism $\phi_{\lambda} : Prim((H_R^I)^*) \longrightarrow \mathfrak{g}_{FdB}, \text{ sending } \iota_i \text{ to } e_i \text{ for all } i.$
- Substitution By duality, we obtain a Hopf algebra morphism from $S(g_{FdB})^*$ to H_R^I . Its image is generated by the components of the solutions of the Dyson-Schwinger equations of the first type, with parameters $\frac{-1}{\lambda}$ and $\frac{-1-\lambda}{\lambda}$.

イロト 不得 とくほ とくほ とうほ

Recalls	Decorated rooted trees
Results	Dyson-Schwinger equations with several 1-cocycles
Prelie algebras	Constant formal series
More realistic Dyson-Schwinger equations	Associated prelie algebras

Corollary

For all $\lambda, \mu \in K$, the algebra generated by the components of the solution of the Dyson-Schwinger equation of the first type is a Hopf subalgebra.

Corollary

If
$$mu \neq -1$$
 and $\lambda = 1 + \mu$,

$$\Delta(X) = X \otimes 1 + \sum_{j=1}^{\infty} (1 + \lambda'X)^{1 + \frac{j}{\lambda'}} \otimes X(j),$$

with
$$\lambda' = \frac{-1}{1+\mu}$$
.

ヘロト ヘアト ヘビト ヘビト

ъ

 Recalls
 Decorated rooted trees

 Results
 Dyson-Schwinger equations with several 1-cocycles

 Prelie algebras
 Constant formal series

 More realistic Dyson-Schwinger equations
 Associated prelie algebras

Description of the prelie algebra in the second case: to simplify, we assume that $1 \in I$.

Theorem

$$X = \sum_{\substack{i \in I \\ m \mid j}} B_i(1 + \alpha X) + \sum_{\substack{i \in I \\ m \not\mid i}} B_i(1),$$

with $\alpha \in K - \{0\}$. The dual of $H_{(f)}$ is the enveloping algebra of a pre-Lie algebra \mathfrak{g} , such that:

- \mathfrak{g} has a basis $(f_i)_{i\geq 1}$.
- For all $i, j \ge 1$:

$$f_i \circ f_j = \begin{cases} 0 \text{ if } m \not| j, \\ f_{i+j} \text{ if } m \mid j. \end{cases}$$

The product \circ is associative.

ヘロト ヘアト ヘビト ヘビト

æ