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Rooted forests:

1, q , q q , qq , q q q , qq q , q∨qq
, qqq , q q q q , qq q q , qq qq , q∨qq q , qqq q , q∨qq q

, q∨qqq
,

q∨qq q , qqqq . . .

Coproduct:

∆( q∨qqq
) = q∨qqq

⊗1+1⊗ q∨qqq
+ qq ⊗ qq + q⊗ q∨qq

+ q⊗ qqq + qq q⊗ q + q q⊗ qq .
Grafting operator:

B( qq q) = q∨qqq
.

Loïc Foissy Dyson-Schwinger equations on rooted trees II



Recalls
Results

Prelie algebras
More realistic Dyson-Schwinger equations

Hopf algebra of trees HR
Combinatorial Dyson-Schwinger equations

Definition
Let f (h) ∈ K [[h]].

The combinatorial Dyson-Schwinger equations associated
to f (h) is:

X = B(f (X )),

where X lives in the completion of HR.
This equation has a unique solution X =

∑
X (n), with:

X (1) = p0 q ,
X (n + 1) =

n∑
k=1

∑
a1+...+ak=n

pkB(X (a1) . . . X (ak )),

where f (h) = p0 + p1h + p2h2 + . . .
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X (1) = p0 q ,
X (2) = p0p1 qq ,
X (3) = p0p2

1 qqq + p2
0p2 q∨qq

,

X (4) = p0p3
1 qqqq + p2

0p1p2
q∨qq q + 2p2

0p1p2 q∨qqq
+ p3

0p3 q∨qq q
.
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Examples

If f (h) = 1 + h:

X = q + qq + qqq + qqqq + qqqqq + · · ·

If f (h) = (1− h)−1:

X = q + qq + q∨qq
+ qqq + q∨qq q

+ 2 q∨qqq
+

q∨qq q + qqqq
+ q∨qq

�Hq q
+ 3 q∨qq qq

+ q∨qq qq
+ 2 q∨qq∨qq

+ 2 q∨qqqq
+

q∨qq qq + 2 q∨qq qq + qqq∨
q q

+ qqqqq + · · ·
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Let f (h) ∈ K [[h]]. The homogeneous components of the unique
solution of the combinatorial Dyson-Schwinger equation
associated to f (h) generate a subalgebra of HR denoted by Hf .

Hf is not always a Hopf subalgebra

For example, for f (h) = 1 + h + h2 + 2h3 + · · · , then:

X = q + qq + q∨qq
+ qqq + 2 q∨qq q

+ 2 q∨qqq
+

q∨qq q + qqqq + · · ·

So:

∆(X (4)) = X (4)⊗ 1 + 1⊗ X (4) + (10X (1)2 + 3X (2))⊗ X (2)

+(X (1)3 + 2X (1)X (2) + X (3))⊗ X (1)

+X (1)⊗ (8 q∨qq
+ 5 qqq).
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When is Hf a Hopf subalgebra?

If f (0) = 0, the unique solution of X = B(f (X )) is 0. From now,
up to a normalization we shall assume that f (0) = 1.

Theorem
Let f (h) ∈ K [[h]], with f (0) = 1. The following assertions are
equivalent:

1 Hf is a Hopf subalgebra of HR.
2 There exists (α, β) ∈ K 2 such that (1− αβh)f ′(h) = αf (h).
3 There exists (α, β) ∈ K 2 such that f (h) = 1 if α = 0 or

f (h) = eαh if β = 0 or f (h) = (1− αβh)−
1
β if αβ 6= 0.
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When is Hf a Hopf subalgebra?

1 =⇒ 2. We put f (h) = 1 + p1h + p2h2 + · · · . Then X (1) = q .
Let us write:

∆(X (n + 1)) = X (n + 1)⊗ 1 + 1⊗X (n + 1) + X (1)⊗Y (n) + . . . .

1 By definition of the coproduct, Y (n) is obtained by cutting a
leaf in all possible ways in X (n + 1). So it is a linear span
of trees of degree n.

2 As Hf is a Hopf subalgebra, Y (n) belongs to Hf .
Hence, there exists a scalar λn such that Y (n) = λnXn.
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When is Hf a Hopf subalgebra?

lemma
Let us write:

X =
∑

t

at t .

For any rooted tree t :

λ|t |at =
∑

t ′
n(t , t ′)at ′ ,

where n(t , t ′) is the number of leaves of t ′ such that the cut of
this leaf gives t .
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When is Hf a Hopf subalgebra?

We here assume that f is not constant. We can prove that
p1 6= 0.

For t the ladder (B)n(1), we obtain:

pn−1
1 λn = 2(n − 1)pn−2

1 p2 + pn
1 .

Hence:
λn = 2

p2

p1
(n − 1) + p1.

We put α = p1 and β = 2
p2

p2
1
− 1, then:

λn = α(1 + (n − 1)(1 + β)).
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When is Hf a Hopf subalgebra?

For t the corolla B( qn−1), we obtain:

λnpn−1 = npn + (n − 1)pn−1p1.

Hence:
α(1 + (n − 1)β)pn−1 = npn.

Summing:
(1− αβh)f ′(h) = αf (h).
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When is Hf a Hopf subalgebra?

X (1) = q ,
X (2) = α qq ,
X (3) = α2

(
(1 + β)

2
q∨qq

+ qqq) ,

X (4) = α3

(
(1 + 2β)(1 + β)

6
q∨qq q

+ (1 + β) q∨qqq
+

(1 + β)

2
q∨qq q + qqqq ) ,

X (5) = α4



(1+3β)(1+2β)(1+β)
24 q∨qq

�Hq q
+ (1+2β)(1+β)

2 q∨qq qq
+ (1+β)2

2 q∨qq∨qq
+ (1 + β) q∨qqqq

+ (1+2β)(1+β)
6

q∨qq qq

+ (1+β)
2 q∨qq qq

+ (1 + β)
q∨qq qq + (1+β)

2 qqq∨
q q

+ qqqqq


.
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When is Hf a Hopf subalgebra?

Particular cases
If (α, β) = (1,−1), f = 1 + h and X (n) = (B)n(1) for all n.
If (α, β) = (1, 1), f = (1− h)−1 and:

X (n) =
∑
|t |=n

]{embeddings of t in the plane}t .

Si (α, β) = (1, 0), f = eh and:

X (n) =
∑
|t |=n

1
]{symmetries of t}

t .
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(Left) prelie algebra
A prelie algebra g is a vector space with a linear product ◦ such
that for all x , y , z ∈ g:

x ◦ (y ◦ z)− (x ◦ y) ◦ z = y ◦ (x ◦ z)− (y ◦ x) ◦ z.

Associated Lie bracket
If ◦ is a prelie product on g, its antisymmetrization is a Lie
bracket.
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Primitive elements of the dual of HR

For any rooted tree t let us define:

ft :

{
HR −→ K

F −→ stδF ,t .

The family (ft) is a basis of the primitive elements of H∗
R. The

Lie bracket is given by:

[ft1 , ft2 ] =
∑

t ′=t1�t2

ft ′ −
∑

t ′=t2�t1

ft ′ .

[ q , q∨qq
] = q∨qq q

+ q∨qqq
+ q∨qq q

− q∨qq q = q∨qq q
+ 2 q∨qqq

− q∨qq q .
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We define:
ft1 ◦ ft2 =

∑
t ′=t1�t2

ft ′ .

This product is prelie.

Theorem (Chapoton-Livernet)

As a prelie algebra, Prim(H∗
R) is freely generated by f q .
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By duality with HR, we obtain a description of the enveloping
algebra of the free prelie algebra on one generators.

Grossman-Larson Hopf algebra

Basis: the set of rooted forests.
Coproduct :

∆(t1 . . . tk ) =
∑

I⊆{1,...,k}

(∏
i∈I

ti

)
⊗

(∏
i /∈I

ti

)
.

Product: generalized graftings.

q q ∗ qq = q q qq + 2 q q∨qq
+ 2 q qqq + q∨qq q

+ 2 q∨qqq
+

q∨qq q .
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Let λ ∈ K .

Faà di Bruno prelie algebra

gFdB has a basis (ei)i≥1, and the prelie product is defined by:

ei ◦ ej = (j + λ)ei+j .

For all i , j , k ≥ 1:

ei ◦ (ej ◦ ek )− (ei ◦ ej) ◦ ek = k(k + λ)ei+j+k .
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Let g be prelie algebra.

Theorem (Guin-Oudom)

The product ◦ of g can be extended to S(g): if a, b, c ∈ S+(g),
x ∈ g, 

a ◦ 1 = ε(a),
1 ◦ b = b,

(xa) ◦ b = x ◦ (a ◦ b)− (x ◦ a) ◦ b,
a ◦ (bc) =

∑
(a′ ◦ b)(a′′ ◦ c).

One then defines a product on S+(g) by a ? b =
∑

a′(a′′ ◦ b),
with the Sweedler notation ∆(a) =

∑
a′ ⊗ a′′. Then (S(g), ∗,∆)

is a Hopf algebra, isomorphic to the enveloping algebra of g.
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In S(gFdB):

(ei1 . . . eim) ◦ ej = (j + λ)j(j − λ) . . . (j − (m− 2)λ)ei1+...+im+j .

There exists a unique prelie algebra morphism φλ from the
free prelie algebra on one generator to gFdB, sending q to
e1. It is extended as a Hopf algebra morphism from
S(gFdB) to H∗

R; then by transposition we obtain a Hopf
algebra morphism Φλ from S(gFdB)∗ to HR.
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Theorem
The image of Φλ is generated as an algebra by the elements
x(n) = Φλ(e∗n), n ≥ 1. Moreover,

∑
x(n) is the solution of the

Dyson-Schwinger equation:

X = B

((
1 +

λ

1 + λ
X
) λ

1+λ

)
.

Corollary
For all α, β ∈ K , the algebra generated by the components of
the solution of the Dyson-Schwinger equation

X = B
(
(1− αβX )−

1
β

)
is a Hopf subalgebra.
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Corollary
If β 6= −1 and α = 1,

∆(X ) = X ⊗ 1 +
∞∑

j=1

(1 + λX )1+ j
λ ⊗ X (j),

with λ =
−1

1 + β
.

If β = −1 and α = 1,

∆(X ) = 1⊗ X + X ⊗ 1 + X ⊗ X .
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Hence, we have a family of Hopf subalgebras H(α,β) of HR
indexed by (α, β).

Theorem
If α 6= 0 and β = −1, H(α,β) is isomorphic to the Hopf
algebra of symmetric functions.
If α 6= 0 and β 6= −1, H(α,β) is isomorphic to the Faà di
Bruno Hopf algebra. In other words, H(α,β) is the
coordinate ring of the group of formal diffeomorphisms of
the line that are tangent to the identity:

G =
(
{f (h) = h + a1h2 + . . . | a1, a2, . . . ∈ K}, ◦

)
.
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In QFT, generally Dyson-Schwinger equations involve several
1-cocycles, for example [Bergbauer-Kreimer]:

X =
∞∑

n=1

Bn((1 + X )n+1),

where Bn is the insertion operator into a primitive Feynman
graph with n loops.
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Let I be a set. Set of rooted trees decorated by I:

qa , a ∈ I; qqa
b , (a, b) ∈ I2; q∨qq

a
cb

= q∨qq
a

bc
, qqqa

b
c

, (a, b, c) ∈ I3;

q∨qq q
a

d
c

b
= q∨qq q

a
c

d
b

= . . . = q∨qq q
a

b
c

d
, q∨qqq

a
db

c

= q∨qq q
a

bd
c

,
q∨qq qa
b
dc

=
q∨qq qa
b
cd

, qqqqa
b
c
d

, (a, b, c, d) ∈ I4.

The Connes-Kreimer construction is extended to obtain the
Hopf algebra H I

R.

∆( q∨qqq
d

cb
a

) = q∨qqq
d

cb
a

⊗ 1 + 1⊗ q∨qqq
d

cb
a

+ qqb
a ⊗ qqd

c + qa ⊗ q∨qq
d

cb

+ q c ⊗ qqqd
b
a

+ qqb
a q c ⊗ qd + qa q c ⊗ qqd

b .
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1 We assume that I is graded, that is to say there is map
deg : I −→ N∗. Then H I

C is a graded Hopf algebra, the
degree of a forest being the sum of the degree of its
decorations.

2 For all d ∈ I, there is a grafting operator Bd : H I
R −→ H I

R.
For example, if a, b, c, d ∈ I:

Ba( qqb
c qd ) = q∨qqq

a
db

c

.

Proposition

For all a ∈ I, x ∈ H I
R:

∆ ◦ Ba(x) = Ba(x)⊗ 1 + (Id ⊗ Ba) ◦∆(x).

If I is graded, then for all a ∈ I, Ba is homogeneous of degree
deg(a).
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Universal property
Let A be a commutative Hopf algebra and for all a ∈ I, let
La : A −→ A such that for all x ∈ A:

∆ ◦ La(x) = La(x)⊗ 1 + (Id ⊗ La) ◦∆(x).

Then there exists a unique Hopf algebra morphism
φ : H I

R −→ A with φ ◦ Ba = La ◦ φ for all a ∈ A.

Moreover, if A is graded and if for all a ∈ I, La is homogeneous
of degree deg(a), then φ is homogeneous of degree 0. This
allows to lift Dyson-Schwinger equations on Feynman graphs
as combinatorial Dyson-Schwinger equations on decorated
rooted trees.
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Definitions
Let I be a graded set and let fi(h) ∈ K [[h]] for all i ∈ I.

The combinatorial Dyson-Schwinger equations associated
to (fi(h))i∈I is:

X =
∑
i∈I

Bi(fi(X )),

where X lives in the completion of H I
R.

This equation has a unique solution X =
∑

X (n).
The subalgebra of H I

R generated by the X (n)’s is denoted
by H(f ).
We shall say that the equation is Hopf if H(f ) is a Hopf
subalgebra.
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Lemma
Let us assume that the equation associated to (f ) is Hopf. If
fi(0) = 0, then fi = 0.

If fi(0) = 0, then q i does not appear in X , so does not appear in
any element of H(f ). Moreover:

∆(X ) = X ⊗ 1 + 1⊗ X + fi(X )⊗ q i + . . . ∈ H(f ) ⊗ H(f ).

So necessarily, fi(X )⊗ q i = 0, and fi = 0.
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We now assume that fi(0) = 1 for all i ∈ I.

Lemma
Let us assume that the equation associated to (f ) is Hopf. If
i , j ∈ I have the same degree, then fi = fj .

Let n = deg(i) = deg(j). Then X (n) = q i + q j + . . ..
Consequently, in any element of H(f ), q i and q j have the same
coefficient. Moreover:

∆(X ) = X ⊗1+1⊗X + fi(X )⊗ q i + fj(X )⊗ q j + . . . ∈ H(f )⊗H(f ).

Hence, fi(X ) = fj(X ), so fi = fj .

Grouping 1-cocycles by degrees, we now assume that I ⊆ N∗.
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Let us choose i ∈ I. We restrict our solution to i , that is to say
we delete any tree with a decoration which is not equal to i .
The obtained element X ′ is solution of:

X ′ = Bi(fi(X ′)),

and this equation is Hopf. By the study of equations with only
one 1-cocycle:

Lemma
For all i ∈ I, there exists αi , βi ∈ K such that :

fi =

{
eαi h if βi = 0,

(1− αiβih)−1/βi if βi 6= 0.
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Lemma
Let us write:

X =
∑

t

at t .

For all i ∈ I, there exists coefficients λ
(i)
n such that for any

rooted tree t :
λ

(i)
|t | at =

∑
t ′

ni(t , t ′)at ′ ,

where ni(t , t ′) is the number of leaves of t ′ decorated by i such
that the cut of this leaf gives t .

Loïc Foissy Dyson-Schwinger equations on rooted trees II



Recalls
Results

Prelie algebras
More realistic Dyson-Schwinger equations

Decorated rooted trees
Dyson-Schwinger equations with several 1-cocycles
Constant formal series
Associated prelie algebras

By the study of equations with a single 1-cocycle:

Lemma
If fi is not constant, then for all n ≥ 1, for all j ∈ I:

λ
(j)
ni = αi(1 + (n − 1)βi).

If fi and fj are not constant, computing λ
(j)
nij in two different ways:

njαi(1 + βi)− αiβi = niαj(1 + βj)− αjβj .

Lemma
There exists λ, µ ∈ K such that if fi is not constant, then
αi = λi − µ 6= 0 and βi = µ

λi−µ .
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Proposition

Let (E) be a Hopf Dyson-Schwinger equation. Then I can be
written as I = I′ t I′′, and there exists λ, µ ∈ K , λ 6= 0, such that
if we put:

Q(h) =

{
(1− µh)−

λ
µ if µ 6= 0,

eλh if µ = 0,

then:

(E) : X =
∑
j∈I′

Bj

(
(1− µX )Q(X )i

)
+
∑
j∈I′′

Bj(1).
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Lemma
Let us consider a Dyson-Schwinger equation of the form:

X = Bi(1) + Bj(f (X )),

with f non constant. If it is Hopf, then there exists a non-zero

α ∈ K , such that f (h) = 1 + αh or f (h) =
(

1− α i
j−i h

) i−j
i .

We define inductively a family of trees by t1 = qq j
i and

tn+1 = Bj( q i tn) for all n ≥ 1.

λ
(i)
n(i+j)(1 + β)n−1 = (n − 1)(1 + 2β)(1 + β)n−1 + (1 + β)n.
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Let us assume that β 6= −1. Then:

λ
(i)
n(i+j) = (n − 1)(1 + 2β) + 1 + β = n(1 + 2β)− β.

Compute λ
(i)
j(i+j) in two different ways:

λ
(i)
j(i+j) = λ

(i)
(i+j)j

= α(1 + β)(i + j)− αβ,

= λ
(i)
j(i+j)

= αj(1 + 2β)− αβ.

Hence, (1 + β)(i + j) = j(1 + 2β), so β = i
j−i . As a conclusion,

β = −1 or i
j−i , therefore f (h) = 1 + αh or

(
1− α i

j−i h
) i−j

i .
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Lemma
1 Let us consider a Dyson-Schwinger equation of the form:

X = Bi(1) + Bj(f (X )) + Bk (g(X )),

with f , g non constant. If it is Hopf, then there exists a
non-zero α ∈ K , such that (f = (1− αih)−

j
i +1 and

g = (1− αih)−
k
i +1) or (f = g = 1 + αh).

2 Let us consider a Dyson-Schwinger equation of the form:

X = Bi(1) + Bj(1) + Bk (f (X )),

where f is non constant. Then there exists a non-zero
α ∈ K , such that f = 1 + αh.
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Theorem
One of the following assertions holds:

1 there exists λ, µ ∈ K such that, if we put:

Q(h) =

{
(1− µh)−

λ
µ if µ 6= 0,

eλh if µ = 0,

then:
(E) : x =

∑
i∈I

Bj

(
(1− µx)Q(x)i

)
.

2 There exists m ≥ 0 and α ∈ K − {0} such that:

(E) : x =
∑
i∈I
m|i

Bi(1 + αx) +
∑
i∈I

m/| i

Bi(1).
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1 Let I be a set. The primitive elements of (H I
R)∗ inherits a

prelie structure. Moreover, it is the free prelie algebra
generated by q i , i ∈ I.

2 If I ⊆ N∗, there exists a prelie algebra morphism
φλ : Prim((H I

R)∗) −→ gFdB, sending q i to ei for all i .
3 By duality, we obtain a Hopf algebra morphism from

S(gFdB)∗ to H I
R. Its image is generated by the components

of the solutions of the Dyson-Schwinger equations of the
first type, with parameters −1

λ and −1−λ
λ .
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Corollary
For all λ, µ ∈ K , the algebra generated by the components of
the solution of the Dyson-Schwinger equation of the first type is
a Hopf subalgebra.

Corollary
If mu 6= −1 and λ = 1 + µ,

∆(X ) = X ⊗ 1 +
∞∑

j=1

(1 + λ′X )1+ j
λ′ ⊗ X (j),

with λ′ =
−1

1 + µ
.
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Description of the prelie algebra in the second case: to simplify,
we assume that 1 ∈ I.

Theorem

X =
∑
i∈I
m|j

Bi(1 + αX ) +
∑
i∈I

m/| i

Bi(1),

with α ∈ K − {0}. The dual of H(f ) is the enveloping algebra of
a pre-Lie algebra g, such that:

g has a basis (fi)i≥1.
For all i , j ≥ 1:

fi ◦ fj =

{
0 if m/| j ,
fi+j if m | j .

The product ◦ is associative.
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