A combinatorial non-commutative Hopf algebra of graphs

Nguyen Hoang-Nghia

Laboratoire d'Informatique de Paris Nord Université Paris 13

71th Séminaire Lotharingien de Combinatoire Bertinoro, July 10 2013

OUTLINE

Introduction

Why discrete scales?

Non-commutative graph algebra structure

Hopf algebra structure

Nguyen Hoang-Nghia A combinatorial non-commutative Hopf algebra of graphs

- The Hopf algebra of rooted forests first appeared in the work of A. Dür [2]
- It has been rediscovered by D. Kreimer in the context of quantum field theory [10].
- A noncommutative version, using ordered forests of planar trees, has been discovered independently by L. Foissy [6] and R. Holtkamp [8]. This Hopf algebra is self-dual.
- Commutative Hopf algebras of graphs have been introduced and studied by A. Connes and D. Kreimer [3, 4, 5], as a powerful algebraic tool unveiling the combinatorial structure of renormalization.

- The Hopf algebra of rooted forests first appeared in the work of A. Dür [2]
- It has been rediscovered by D. Kreimer in the context of quantum field theory [10].
- A noncommutative version, using ordered forests of planar trees, has been discovered independently by L. Foissy [6] and R. Holtkamp [8]. This Hopf algebra is self-dual.
- Commutative Hopf algebras of graphs have been introduced and studied by A. Connes and D. Kreimer [3, 4, 5], as a powerful algebraic tool unveiling the combinatorial structure of renormalization.

- The Hopf algebra of rooted forests first appeared in the work of A. Dür [2]
- It has been rediscovered by D. Kreimer in the context of quantum field theory [10].
- A noncommutative version, using ordered forests of planar trees, has been discovered independently by L. Foissy [6] and R. Holtkamp [8]. This Hopf algebra is self-dual.
- Commutative Hopf algebras of graphs have been introduced and studied by A. Connes and D. Kreimer [3, 4, 5], as a powerful algebraic tool unveiling the combinatorial structure of renormalization.

- The Hopf algebra of rooted forests first appeared in the work of A. Dür [2]
- It has been rediscovered by D. Kreimer in the context of quantum field theory [10].
- A noncommutative version, using ordered forests of planar trees, has been discovered independently by L. Foissy [6] and R. Holtkamp [8]. This Hopf algebra is self-dual.
- Commutative Hopf algebras of graphs have been introduced and studied by A. Connes and D. Kreimer [3, 4, 5], as a powerful algebraic tool unveiling the combinatorial structure of renormalization.

- The Hopf algebra of rooted forests first appeared in the work of A. Dür [2]
- It has been rediscovered by D. Kreimer in the context of quantum field theory [10].
- A noncommutative version, using ordered forests of planar trees, has been discovered independently by L. Foissy [6] and R. Holtkamp [8]. This Hopf algebra is self-dual.
- Commutative Hopf algebras of graphs have been introduced and studied by A. Connes and D. Kreimer [3, 4, 5], as a powerful algebraic tool unveiling the combinatorial structure of renormalization.

- The Hopf algebra of rooted forests first appeared in the work of A. Dür [2]
- It has been rediscovered by D. Kreimer in the context of quantum field theory [10].
- A noncommutative version, using ordered forests of planar trees, has been discovered independently by L. Foissy [6] and R. Holtkamp [8]. This Hopf algebra is self-dual.
- Commutative Hopf algebras of graphs have been introduced and studied by A. Connes and D. Kreimer [3, 4, 5], as a powerful algebraic tool unveiling the combinatorial structure of renormalization.

Introduction	Why discrete scales?
--------------	----------------------

Why discrete scales?

The idea of decorating the edges of a graph with discrete scales comes from quantum field theory

- This versatile technique of multi-scale analysis was successfully applied for scalar quantum field theory renormalization (see [11, V. Rivasseau]), renormalization of scalar quantum field theory on the non-commutative Moyal space (see, for example, [7, R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa]) and recently to the renormalization of quantum gravity tensor models [1, J. Ben Geloun and V. Rivasseau].
- ▶ The combinatorics of the multi-scale renormalization was encoded in a Hopf algebraic framework in [9, T. Krajewski, V. Rivasseau and A. Tanasa]

Introduction	Why discrete scales?	Non-commutative graph algebra structure	Hopf algebra structure

- The idea of decorating the edges of a graph with discrete scales comes from quantum field theory
- This versatile technique of multi-scale analysis was successfully applied for scalar quantum field theory renormalization (see [11, V. Rivasseau]), renormalization of scalar quantum field theory on the non-commutative Moyal space (see, for example, [7, R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa]) and recently to the renormalization of quantum gravity tensor models [1, J. Ben Geloun and V. Rivasseau].
- ▶ The combinatorics of the multi-scale renormalization was encoded in a Hopf algebraic framework in [9, T. Krajewski, V. Rivasseau and A. Tanasa]

Introduction	Why discrete scales?	Non-commutative graph algebra structure	Hopf algebra structure

- The idea of decorating the edges of a graph with discrete scales comes from quantum field theory
- This versatile technique of multi-scale analysis was successfully applied for scalar quantum field theory renormalization (see [11, V. Rivasseau]), renormalization of scalar quantum field theory on the non-commutative Moyal space (see, for example, [7, R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa]) and recently to the renormalization of quantum gravity tensor models [1, J. Ben Geloun and V. Rivasseau].
- The combinatorics of the multi-scale renormalization was encoded in a Hopf algebraic framework in [9, T. Krajewski, V. Rivasseau and A. Tanasa]

Non-commutative graph algebra structure

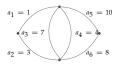
TOTALLY ASSIGNMENT

Definition 3.1.

A **total assignment** μ for a connected graph Γ is a list of distinct integers i_l , l = 1, ..., E associated to the edges of the graph Γ , where *E* is the number of edges of the respective graph.

Definition 3.2.

A **connected total assigned graph** (connected TAG) is a pair (Γ, μ) formed by a connected graph Γ together with a totally ordered scale assignment μ .



One can associate to a given graph an infinite number of totally ordered scale assignments.

THE VECTOR SPACE OF TAGS

Let \mathbbm{K} be a field of characteristic 0. Let CTAG be a set of connected TAGs. One sets

$$\mathcal{H} = \mathbb{K} \left\langle CTAG \right\rangle. \tag{1}$$

The **product** m on H is given by the operation of **non-commutative** disjoint union of TAGs, i.e. the resulting graph is given by the ordered concatenation of graphs and each disjoint component keeps its scale assignment.

$$m((G_1,\mu_1),(G_2,\mu_2)) = (G_1 \sqcup G_2,\mu_1 \sqcup \mu_2).$$
(2)

The empty TAG is the empty graph and the empty list assignment, denoted by $1_{\mathcal{H}}$.

Figure: The TAG (Γ_1 , μ_1).

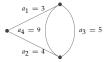


Figure: The TAG (Γ_2 , μ_2).

One has

Figure: The TAG (Γ_1 , μ_1).

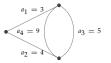
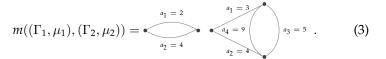


Figure: The TAG (Γ_2 , μ_2).

One has



ALGEBRA STRUCTURE

One has:

Proposition 3.3.

 $(\mathcal{H}, m, 1_{\mathcal{H}})$ is an associative unitary algebra.

Hopf algebra structure

TOTALLY ASSIGNED SUBGRAPH

Definition 4.1.

A subgraph γ of a graph Γ is the graph formed by a given subset of edges *e* of the set of edges of the graph Γ together with the vertices that the edges of *e* hook to in Γ .

TOTALLY ASSIGNED SUBGRAPH

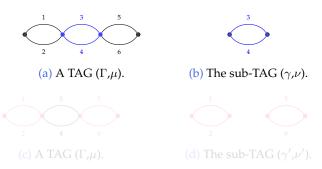
Definition 4.2.

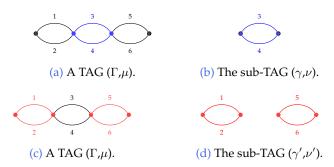
A totally assigned subgraph (γ, ν) of a given TAG (Γ, μ) is constructed in the following way.

- A graph γ is a subgraph of the graph Γ , in the usual way in 4.1.
- The totally ordered scale assignment ν of γ is given by the restriction of the totally ordered scale assignment μ to the edges of γ.

Remark 4.3.

- If Γ is connected, then the order between various (possible) connected components of subgraph γ : the first connected component contains the edge with the smallest scale in the list of scales of the subgraph γ , the second connected component of the subgraph contains the edge with the smallest scale in the list of scales of γ after deleting from this list the scales corresponding to the edges of the first connected component.
- If Γ is not connected, we follow the algorithm for the first component of Γ, then for the second, etc., up to the last one.

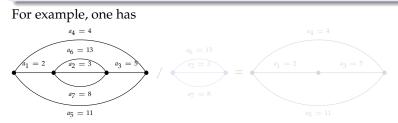




SHRINKING

Definition 4.4.

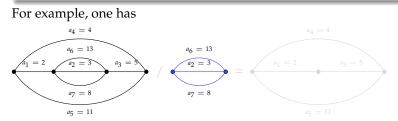
The **shrinking** of a totally assigned subgraph (γ, ν) of a given TAG (Γ, μ) is defined in the following way: the subgraph γ is defined in the usual way (deleting the internal structure of γ), leading to the cograph Γ/γ . The totally ordered scale assignment μ/ν of the cograph Γ/γ is given by deleting the totally assignment ν from the initial totally assignment μ . The TAG $(\Gamma/\gamma, \mu/\nu)$ is called a totally assigned cograph.



SHRINKING

Definition 4.4.

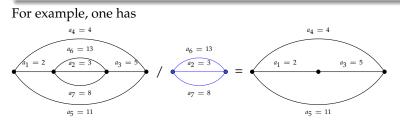
The **shrinking** of a totally assigned subgraph (γ, ν) of a given TAG (Γ, μ) is defined in the following way: the subgraph γ is defined in the usual way (deleting the internal structure of γ), leading to the cograph Γ/γ . The totally ordered scale assignment μ/ν of the cograph Γ/γ is given by deleting the totally assignment ν from the initial totally assignment μ . The TAG $(\Gamma/\gamma, \mu/\nu)$ is called a totally assigned cograph.



SHRINKING

Definition 4.4.

The **shrinking** of a totally assigned subgraph (γ, ν) of a given TAG (Γ, μ) is defined in the following way: the subgraph γ is defined in the usual way (deleting the internal structure of γ), leading to the cograph Γ/γ . The totally ordered scale assignment μ/ν of the cograph Γ/γ is given by deleting the totally assignment ν from the initial totally assignment μ . The TAG $(\Gamma/\gamma, \mu/\nu)$ is called a totally assigned cograph.

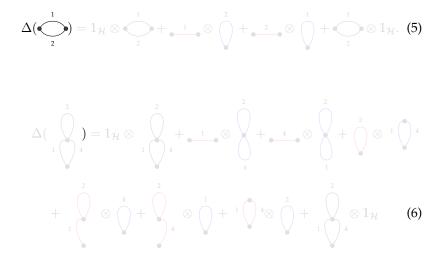


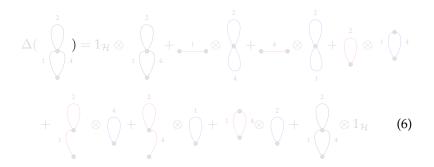
THE COPRODUCT

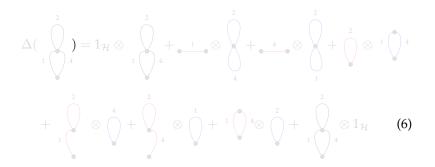
Let us now define the coproduct on the space $\mathcal{H}, \Delta : \mathcal{H} \longrightarrow \mathcal{H} \otimes \mathcal{H}$ as

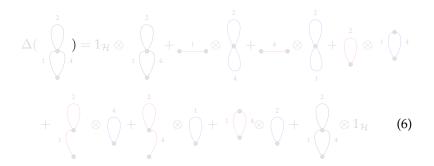
$$\Delta((\Gamma,\mu)) = (\Gamma,\mu) \otimes 1_{\mathcal{H}} + 1_{\mathcal{H}} \otimes (\Gamma,\mu) + \sum_{(\gamma,\nu) \subsetneq (\Gamma,\mu)} (\gamma,\nu) \otimes (\Gamma/\gamma,\mu/\nu).$$
(4)

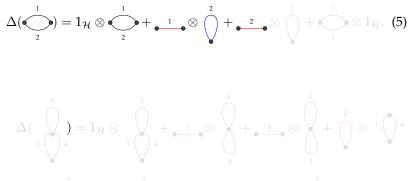
for any TAG (Γ, μ) .

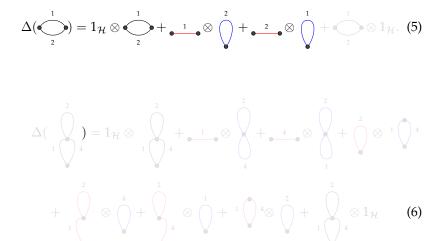


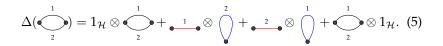


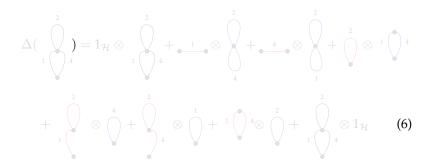


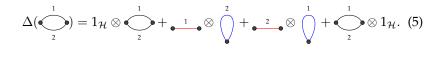


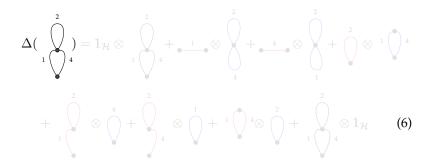


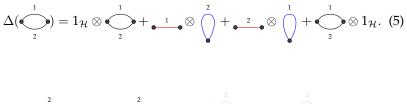


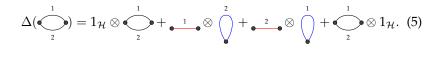


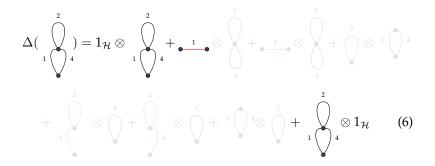


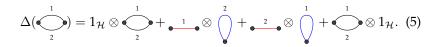


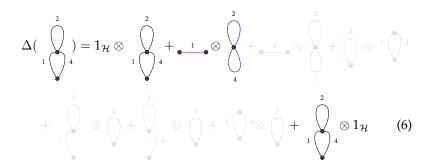


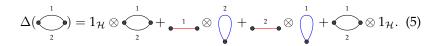


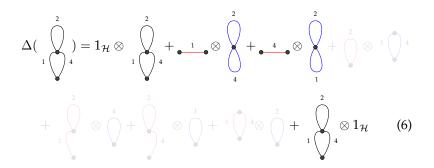


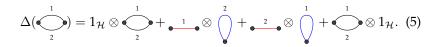


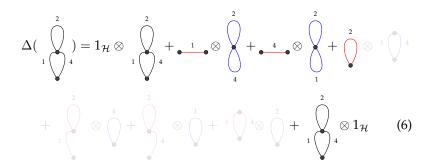


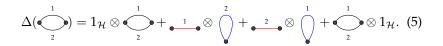


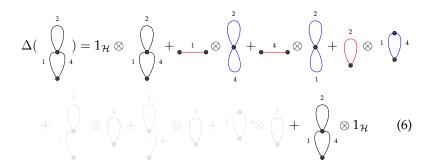


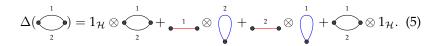


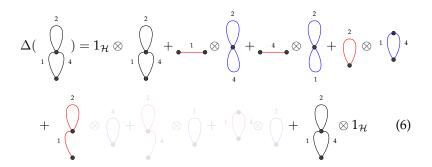


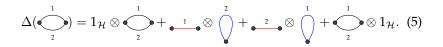


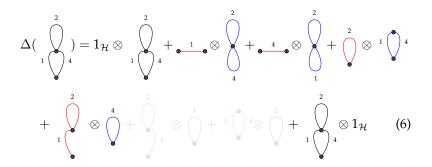


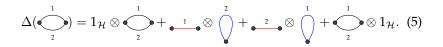


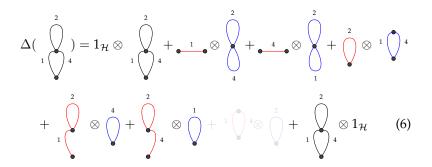




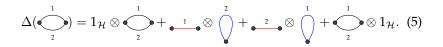


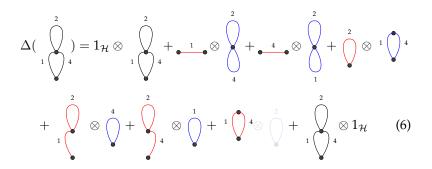




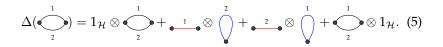


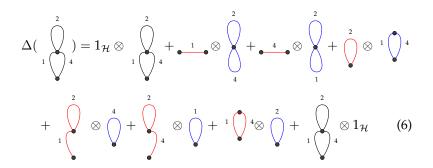
Nguyen Hoang-Nghia A combinatorial non-commutative Hopf algebra of graphs





Nguyen Hoang-Nghia A combinatorial non-commutative Hopf algebra of graphs





BIALGEBRA STRUCTURE

Proposition 4.5.

The coproduct defined in (4) is coassociative.

 \hookrightarrow One has

Theorem 4.6.

The triple $(\mathcal{H}, \Delta, \epsilon)$ *is a coassociative coalgebra with counit.*

HOPF ALGEBRA STRUCTURE

Proposition 4.7.

Let (G_1, μ_1) and (G_2, μ_2) be two TAGs in \mathcal{H} . One has

$$\Delta(m((G_1,\mu_1),(G_2,\mu_2))) = m^{\otimes 2} \circ \tau_{23}(\Delta(G_1,\mu_1),\Delta(G_2,\mu_2))$$
(7)

where τ_{23} is the flip of the two middle factors in $\mathcal{H}^{\otimes 4}$.

Theorem 4.8.

 $(\mathcal{H}, m, 1_{\mathcal{H}}, \Delta, \epsilon)$ is a bialgebra.

HOPF ALGEBRA

For all $n \in \mathbb{N}$, one calls $\mathcal{H}(n)$ the vector space generated by the TAGs with *n* edges. Then one has $\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \mathcal{H}(n)$. Moreover, one has:

- 1. For all $m, n \in \mathbb{N}$, $\mathcal{H}(m)\mathcal{H}(n) \subseteq \mathcal{H}(m+n)$.
- 2. For all $n \in \mathbb{N}$, $\Delta(\mathcal{H}(n)) \subseteq \sum_{i+j=n} \mathcal{H}(i) \otimes \mathcal{H}(j)$.

One thus concludes that \mathcal{H} is a *graded bialgebra*. Note that \mathcal{H} is *connected*, i.e. $\mathcal{H}(0) = \mathbb{K}1_{\mathcal{H}}$. Then, the antipode $S : \mathcal{H} \longrightarrow \mathcal{H}$ is given by the recursive formula:

$$S(1_{\mathcal{H}}) = -1_{\mathcal{H}};$$

$$S((\Gamma, \mu)) = -(\Gamma, \mu) - \sum_{(\gamma, \nu) \subsetneq (\Gamma, \mu)} (\gamma, \nu) \otimes (\Gamma/\gamma, \mu/\nu), \text{ if } (\Gamma, \mu) \neq 1_{\mathcal{H}}.$$
(8)

We can now state the main result:

Theorem 4.9.

The bialgebra $(\mathcal{H}, m, 1_{\mathcal{H}}, \Delta, \epsilon, S)$ *is a Hopf algebra.*

CONCLUSION

We propose a noncommutative version of a Hopf algebra of graphs, by putting decorations on each edges. This work is based on arXiv:1307.3928 [math.CO]

BIBLIOGRAPHY

J. Ben Geloun and V. Rivasseau, A Renormalizable 4-Dimensional Tensor Field Theory, Comm. Math. Phys. 318 (2013), 69-109.

A. D ür, Möbius functions, incidence algebras and power series representations, Lecture Notes in Mathematics 1202, Springer-Verlag, Berlin (1986).

A. Connes, D. Kreimer, Renormalization in Quantum Field Theory and the Riemann-Hilbert problem I: the Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys. 210 (2000), 249-273.

A. Connes, D. Kreimer, Renormalization in Quantum Field Theory and the Riemann-Hilbert problem II: the β -function, diffeomorphisms and the renormalization group, Comm. Math. Phys. **216** (2001), 215-241.

L. Foissy, Les algèbres de Hopf des arbres enracinés décorés, I, Bull. Sci. math. 126 (2002) 193-239.

R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa, A Translation-invariant renormalizable non-commutative scalar model, Commun. Math. Phys. 287 (2009) 275 [arXiv:0802.0791 [math-ph]].

R. Holtkamp, Comparison of Hopf algebras on trees, Archiv der Mathematik 80 (2003), 368-383.

D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2 (1998).

V. Rivasseau, From perturbative to constructive renormalization, Princeton University Press (1991).

Thank you for your attention!