Directed graphs related to association schemes

Leif K. Jørgensen
Aalborg University
Denmark

Joint work with G. A. Jones, M. H. Klin and S. Y. Song.

A d-class association scheme consists of (relations with adjacency) $\{0,1\}$ matrices $A_{0}=I, A_{1}, \ldots, A_{d}$ satisfying

- $A_{0}+A_{1}+\ldots+A_{d}=J$
- for each i there exists i^{\prime} so that $A_{i}^{\mathrm{t}}=A_{i^{\prime}}$
- there exist intersection numbers $p_{i j}^{h}$ so that

$$
A_{i} A_{j}=\sum_{h=0}^{d} p_{i j}^{h} A_{h}
$$

Each $A_{i}, i>0$ is adjacency matrix of a directed or undirected graph.

The association scheme is said to primitive if all these graphs are connected.
Otherwise it is imprimitive.

In a symmetric 2-class association scheme
A_{1} is adjacency matrix of a strongly regular graph satisfying

$$
A_{1}^{2}=p_{11}^{0} A_{0}+p_{11}^{1} A_{1}+p_{11}^{2} A_{2}=k I+\lambda A_{1}+\mu\left(J-I-A_{1}\right),
$$

and A_{2} is adjacency matrix of complementary graph (also strongly regular).

Strongly regular graph means:

- every vertex has degree k
- two adjacent vertices have λ common neighbours
- two non-adjacent vertices have μ common neighbours

In a non-symmetric 2-class association scheme A_{1} is the adjacency matrix of doubly regular tournament:

A tournament (orientation of complete graph) of order n is called doubly regular if every vertex has in-degree and out-degree k, and The number of directed paths of length 2 from x to y is

$$
\begin{cases}\lambda & \text { if } x \rightarrow y \\ \lambda+1 & \text { if } x \leftarrow y\end{cases}
$$

$n=2 k+1=4 \lambda+3$.

Paley (1933). If $n=4 \lambda+3$ is a prime power then there is a doubly regular tournament on vertices.

An Hadamard matrix of order n is an $n \times n$ $\{1,-1\}$ matrix H such that $H H^{\mathrm{t}}=n I$.

An Hadamard matrix is called skew if $H+H^{\mathrm{t}}=2 I$.

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
- & 1 & - & 1 \\
- & 1 & 1 & - \\
- & - & 1 & 1
\end{array}\right)
$$

Reid and Brown (1972)
There exists a doubly regular tournament of order n
if and only if
there exists a skew Hadamard matrix of order $n+1$.

Duval 1988 considered what he called directed strongly regular graphs.

These graphs have adjacency matrix A satisfying

$$
A^{2}=k I+\lambda A+\mu(J-I-A) .
$$

But other directed graph variations of strongly regular graphs could be natural.
In particular we equations involving A^{t}.

Non-symmetric 3-class association schemes.

Matrices:
$A_{0}=I$
$A_{1}=A$
$A_{2}=A^{\mathrm{t}}$
$A_{3}=J-I-A-A^{\mathrm{t}}$
A_{3} is adjacency matrix of a strongly regular graph.
A_{1} and A_{2} are adjacency matrices of opposite orientations of the complementary strongly regular graph.

$$
\begin{array}{r}
A J=J A=\kappa J \\
A A^{\mathrm{t}}=\kappa I+\lambda\left(A+A^{\mathrm{t}}\right)+\mu\left(J-I-A-A^{\mathrm{t}}\right) \\
A^{\mathrm{t}} A=\kappa I+\lambda\left(A+A^{\mathrm{t}}\right)+\mu\left(J-I-A-A^{\mathrm{t}}\right) \\
A^{2}=\alpha A+\beta A^{\mathrm{t}}+\gamma\left(J-I-A-A^{\mathrm{t}}\right), \tag{4}
\end{array}
$$

where $\kappa=p_{12}^{0}, \lambda=p_{12}^{1}=p_{21}^{1}, \mu=p_{12}^{3}=p_{21}^{3}, \alpha=p_{11}^{1}, \beta=p_{11}^{2}$, $\gamma=p_{11}^{3}$.
(1): every vertex has in-degree and out-degree κ.
(2/3): the number of common out-/in- neighbours of x and y is exactly

$$
\begin{cases}\lambda & \text { if } x \rightarrow y \text { or } x \leftarrow y \\ \mu & \text { otherwise } .\end{cases}
$$

(4): the number of directed paths of length 2 from x to y is exactly

$$
\begin{cases}\alpha & \text { if } x \rightarrow y \\ \beta & \text { if } x \leftarrow y \\ \gamma & \text { otherwise } .\end{cases}
$$

Imprimitive case

Assume:
(Directed) graph with matrix A_{1} is connected, Graph with matrix A_{3} disconnected.

Vertices partitioned in m blocks of size r. Directed graph with matrix A_{1} is an orientation the complete m-partite graph $K_{r, \ldots, r}$.

Conjecture. Every orientation of the complete m-partite graph $K_{r, \ldots, r}$ with adjacency matrix A satisfying

$$
A J=J A=\kappa J
$$

and

$$
A A^{\mathrm{t}}=A^{\mathrm{t}} A=\kappa I+\lambda\left(A+A^{\mathrm{t}}\right)+\mu\left(J-I-A-A^{\mathrm{t}}\right)
$$

is a relation of a non-symmetric 3-class association scheme.

Such a matrix has 4 or 5 distinct eigenvalues.
Conjecture is true for 4 eigenvalues.

Definition (JJKS)

A directed graph Γ with adjacency matrix A is said to be a doubly regular (m, r)-team tournament if

- Γ is an orientation of the complete m-partite graph $K_{r, \ldots, r}$.
- $A J=J A=\kappa J$
- $A^{2}=\alpha A+\beta A^{\mathrm{t}}+\gamma\left(J-I-A-A^{\mathrm{t}}\right)$.

Theorem (JJKS)

Every doubly regular (m, r)-team tournament is of one of the following three types.

Type 1 A cocliqueextension of a doubly regular tournament. Association scheme.

Type 2 For every vertex $x \in V_{i}$, exactly half of the vertices in V_{j} ($j \neq i$) are out-neighbours of x, and $\alpha=\beta=\frac{(m-2) r}{4}$, and $\gamma=\frac{(m-1) r^{2}}{4(r-1)}$.
These graphs are association schemes. Necessary condition:
$r-1$ divides $m-1 . m$ and r are even.

Type 3 For every pair $\{i, j\}$ either V_{i} is partitioned in two sets V_{i}^{\prime} and $V_{i}^{\prime \prime}$ of size $\frac{r}{2}$ so that all edges between V_{i} and V_{j} are directed from V_{i}^{\prime} to V_{j} and from V_{j} to $V_{i}^{\prime \prime}$, or similarly with i and j interchanged.
The parameters are
$\alpha=\frac{(m-1) r}{4}-\frac{3 r}{8}, \beta=\frac{(m-1) r}{4}+\frac{r}{8}, \gamma=\frac{(m-1) r^{2}}{8(r-1)}$.
Not association scheme.
No examples are known.
8 divides r and 4($r-1$) divides $m-1$.
Smallest possible case: $r=8, m=29$.

The results for association schemes was first proved by Goldbach and Claasen (1996).

Type 2

Three cases:

Type 2a: $r=m$ even

Type 2b: $r=2, m \equiv 0 \quad \bmod 4$

Type 2c: $4 \leq r<m, r-1$ divides $m-1, m$ and r are even. There exist examples with $r=4, m=16$.

Type 2a: $r=m$
An Hadamard matrix H of order m^{2} (m even) is said to be Bushtype if H is block matrix with $m \times m$ blocks $H_{i j}$ of size $m \times m$ such that

$$
H_{i i}=J_{m}
$$

and

$$
H_{i j} J_{m}=J_{m} H_{i j}=0, \quad \text { for } i \neq j
$$

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & - \\
1 & 1 & - & 1 \\
- & 1 & 1 & 1 \\
1 & - & 1 & 1
\end{array}\right)
$$

Theorem

A doubly regular (m, m)-team tournament of type 2
is equivalent to
a Bush-type Hadamard matrix of order m^{2} with the property that $H_{i j}=-H_{j i}^{\mathrm{t}}$ for all pairs i, j with $i \neq j$.
$m \equiv 0 \quad \bmod 4:$

Kharaghani (2000)

If there exists a Hadamard matrix of order m
then there exists
a Bush-type Hadamard matrix of order m^{2}.

Ionin and Kharaghani (2003) This construction can be modified so that the Bush-type Hadamard matrix is "skew".
$m \equiv 2 \bmod 4:$

Janko (2001) constructed a Bush-type Hadamard matrix of order 36.

Theorem (J 2009) There exists "skew" Bush-type Hadamard matrices of order 36.

In an incomplete computer search I found 4 association schemes with $r=m=6$. These four schemes all have trivial automorphism groups.

Doubly regular (m, m)-team tournament of type 2 are also known to be DRAD (doubly regular asymmetric digraphs) as

$$
A A^{\mathrm{t}}=a I+b J
$$

N. Ito 1987 claimed that imprimitive DRAD's can not have rank 4 automorphism group, except for $m=4$.
J. 2010 found a counterexample with $m=8$

Davis and Polhill 2010 There exist such DRAD's (doubly regular (m, m)-team tournament of type 2) with a rank 4 automorphism group when m is power of 2 .

Type 2b

$r=2$: The condition $r-1$ divides $m-1$ is satisfied for every (even) m.
It can be proved that m is multiple of 4 .

Let T be a tournament with adjacency matrix A. Then graph with adjacency matrix

$$
\left(\begin{array}{cccccccc}
0 & 1 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
0 & & & 1 & & & \\
\vdots & A & \vdots & & A^{\mathrm{t}} & \\
0 & & & 1 & & & \\
0 & 0 & \ldots & 0 & 0 & 1 & \ldots & 1 \\
1 & & & 0 & & & \\
\vdots & A^{\mathrm{t}} & \vdots & & A & \\
1 & & & 0 & &
\end{array}\right)
$$

is denoted by $\mathcal{D}(T)$.

Theorem

Let 「 be a doubly regular ($m, 2$)-team tournament of type 2 . Then Γ is isomorphic to $\mathcal{D}(T)$ for some doubly regular tournament T.
$\mathcal{D}(T)$ has a unique automorphism of order 2. It interchanges pairs of non-adjacent vertices.

Theorem

Suppose that for some doubly regular tournament T, the graph $\Gamma=\mathcal{D}(T)$ is vertex transitive and has automorphism group G. Then the Sylow 2 -subgroup S of G is the generalized quarternion group of order 2^{n}, where 2^{n} is the highest power of 2 that divides the order of Γ.

Theorem

Suppose that for some doubly regular tournament T, the graph $\Gamma=\mathcal{D}(T)$ is vertex transitive and has order 2^{n}. Then Γ is a Cayley graph of the generalized quarternion group of order 2^{n}.

Theorem

Let $q \equiv 3 \bmod 4$ be a prime power and P_{q} be the Paley tournament of order q. Let $\Gamma=\mathcal{D}\left(P_{q}\right)$.

Then $S L(2, q)$ acts as a group of automorphisms on Γ and this group contains a dicyclic subgroup acting regularly on $V(\Gamma)$.

The dicyclic group of order $4 n$:

$$
\left\langle x, y \mid x^{n}=y^{2}, y^{4}=1, y x y^{-1}=x^{-1}\right\rangle
$$

