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A famous graph and its less famous cousin
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A famous graph and its less famous cousin
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Neighbourhoods of Petersen:
{2,5,6}
{1,3,7}
{2,4,8}
{3,5,9}
{1,4,10}
{1,8,9}
{2,9,10}
{3,6,10}
{4,6,7}
{5,7,8}
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A famous graph and its less famous cousin
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Neighbourhoods of Petersen:
{2,5,6}
{1,3,7}
{2,4,8}
{3,5,9}
{1,4,10}
{1,8,9}
{2,9,10}
{3,6,10}
{4,6,7}
{5,7,8}

Neighbourhoods of cousin:
{4,6,7}
{3,5,9}
{2,4,8}
{1,3,7}
{2,9,10}
{1,8,9}
{1,4,10}
{3,6,10}
{2,5,6}
{5,7,8}
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Orbitals

Let Γ be a permutation group acting (usually transitively) on V .
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Orbitals

Let Γ be a permutation group acting (usually transitively) on V .
Consider the action of Γ on V × V :

α : (u, v) 7→ (uα, vα).
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Orbitals

Let Γ be a permutation group acting (usually transitively) on V .
Consider the action of Γ on V × V :

α : (u, v) 7→ (uα, vα).

Rank, suborbits, primitivity, strongly regular graphs, coherent
configurations, etc.
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Orbitals

Let Γ be a permutation group acting (usually transitively) on V .
Consider the action of Γ on V × V :

α : (u, v) 7→ (uα, vα).

Rank, suborbits, primitivity, strongly regular graphs, coherent
configurations, etc.
An orbital (di)graph is an orbit of an arc (u, v) under this action.
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Orbital (di)graphs

Some very simple and well-known facts.
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Orbital (di)graphs

Some very simple and well-known facts.

Theorem

Let G be an orbital (di)graph. Then Γ ≤ Aut(G ). If Γ is
vertex-transitive on V then G is vertex-transitive and arc-transitive
and if G is disconnected then all components of G are isomorphic.
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Two-fold orbitals

Let Γ be a subgroup of SV × SV . Therefore the action now is

(α, β) : (u, v) 7→ (uα, vβ).
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Two-fold orbitals

Let Γ be a subgroup of SV × SV . Therefore the action now is

(α, β) : (u, v) 7→ (uα, vβ).

(OFTEN we do NOT require that the actions of the projections
π1, π2 : Γ→ Sn, defined by π1((α, β)) = α and π2((α, β)) = β, are
transitive on V .)
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Two-fold orbitals

Let Γ be a subgroup of SV × SV . Therefore the action now is

(α, β) : (u, v) 7→ (uα, vβ).

(OFTEN we do NOT require that the actions of the projections
π1, π2 : Γ→ Sn, defined by π1((α, β)) = α and π2((α, β)) = β, are
transitive on V .)

The orbit of a pair (u, v) under this action is called a two-fold
orbital or TF-orbital.
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Two-fold orbitals (2)

In general TF-orbitals are not so nice. For example:

They have loops.
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Two-fold orbitals (2)

In general TF-orbitals are not so nice. For example:

They have loops.

They are mixed: arcs and edges.
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Two-fold orbitals (2)

In general TF-orbitals are not so nice. For example:

They have loops.

They are mixed: arcs and edges.

If a TF-orbital is disconnected then its components are not
necessarily isomorphic, even if the projections of Γ are
transitive.
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Conventions

An mixed graph is considered to be a finite set of vertices and a
set of pairs of vertices which can be both ordered (arcs) and
unordered (edges): if the ordered pairs (arcs) (u, v) and (v , u)
both exist then we say that the arcs are self-paired and together
they form the edge {a, b}.

Multiple arcs (repetition of the arc (x , y)) are not allowed, but
loops (the arc (x , x)) are possible.
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Conventions (2)

We distinguish two special types of mixed graphs.
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Conventions (2)

We distinguish two special types of mixed graphs.

If there is no loop (x , x) and no set of arcs is self-paired then the
oriented graph is said to be a digraph.
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Conventions (2)

We distinguish two special types of mixed graphs.

If there is no loop (x , x) and no set of arcs is self-paired then the
oriented graph is said to be a digraph.

If there is no loop and the set of arcs is self-paired then we get a
graph.
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Main concept: TF-isomorphism
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Main concept: TF-isomorphism

Let G and H be two (mixed) graphs. Suppose there are two
bijections α, β from V (G ) to V (H) such that

(u, v) is an arc of G iff (uα, vβ) is an arc of H.

Then G and H are said to be TF-isomorphic and (α, β) is a
TF-isomorphism from G to H.
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Main concept: TF-isomorphism

Let G and H be two (mixed) graphs. Suppose there are two
bijections α, β from V (G ) to V (H) such that

(u, v) is an arc of G iff (uα, vβ) is an arc of H.

Then G and H are said to be TF-isomorphic and (α, β) is a
TF-isomorphism from G to H.

If G and H are isomorphic under an isomorphism α then they are
also TF-isomorphic via (α,α).
When α 6= β we say that the TF-isomorphism is non-trivial.
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Main concept: TF-automorphism
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Main concept: TF-automorphism

If G = H then we say that (α, β) is a TF-automorphism of G . The
set of TF-automorphisms of G forms a group denoted by

AutTF(G ). If we identify an automorphism α with (α,α) then we

can consider Aut(G ) to be a subgroup of AutTF(G ).
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Main concept: TF-automorphism

If G = H then we say that (α, β) is a TF-automorphism of G . The
set of TF-automorphisms of G forms a group denoted by

AutTF(G ). If we identify an automorphism α with (α,α) then we

can consider Aut(G ) to be a subgroup of AutTF(G ).

If α 6= β we say that the TF-automorphism is non-trivial.
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TF-isomorphic (mixed) graphs need not be isomorphic
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TF-isomorphic (mixed) graphs need not be isomorphic

So, what does TF-isomorphism tell us about the two
TF-isomorphic graphs?
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TF-isomorphic (mixed) graphs need not be isomorphic

So, what does TF-isomorphism tell us about the two
TF-isomorphic graphs?

The Petersen graph and its cousin are TF-isomorphic!
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TF-isomorphic (mixed) graphs need not be isomorphic

So, what does TF-isomorphism tell us about the two
TF-isomorphic graphs?

The Petersen graph and its cousin are TF-isomorphic!
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If α = id and β = (1 9)(2 4)(5 7) then (α, β) is a
TF-isomorphism from the Petersen graph to the second graph.
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What is preserved by a TF-isomorphism?
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What is preserved by a TF-isomorphism?

A simple observation:
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What is preserved by a TF-isomorphism?

A simple observation:
Suppose (α, β) is a TF-isomorphism from G to H. Then α must
preserve out-degrees while β must preserve in-degrees.
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What is preserved by a TF-isomorphism?

A simple observation:
Suppose (α, β) is a TF-isomorphism from G to H. Then α must
preserve out-degrees while β must preserve in-degrees.

So, for example, if u ∈ V (G ) is a source, then α(u) need not be a
source but it is certainly not a sink.
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What is preserved by a TF-isomorphism? (2)
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What is preserved by a TF-isomorphism? (2)

The canonical double cover!

Let G be a graph. Its canonical double cover B(G ) is the graph
whose vertex-set is

V (G )× Z2 = {vi : v ∈ V (G ), i ∈ {0, 1}}

such that
{u0, v1} and {u1, v0}

are edges of B(G ) iff {u, v} is an edge of G .
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What is preserved by a TF-isomorphism? (2)

The canonical double cover!

Let G be a graph. Its canonical double cover B(G ) is the graph
whose vertex-set is

V (G )× Z2 = {vi : v ∈ V (G ), i ∈ {0, 1}}

such that
{u0, v1} and {u1, v0}

are edges of B(G ) iff {u, v} is an edge of G .

That is, an edge {u, v} is lifted to the two edges {u0, v1} and
{u1, v0}.
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What is preserved by a TF-isomorphism? (2)

The canonical double cover!

Let G be a graph. Its canonical double cover B(G ) is the graph
whose vertex-set is

V (G )× Z2 = {vi : v ∈ V (G ), i ∈ {0, 1}}

such that
{u0, v1} and {u1, v0}

are edges of B(G ) iff {u, v} is an edge of G .

That is, an edge {u, v} is lifted to the two edges {u0, v1} and
{u1, v0}.

B(G ) is bipartite.
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What is preserved by a TF-isomorphism? (2)

The canonical double cover!

Let G be a graph. Its canonical double cover B(G ) is the graph
whose vertex-set is

V (G )× Z2 = {vi : v ∈ V (G ), i ∈ {0, 1}}

such that
{u0, v1} and {u1, v0}

are edges of B(G ) iff {u, v} is an edge of G .

That is, an edge {u, v} is lifted to the two edges {u0, v1} and
{u1, v0}.

B(G ) is bipartite.

If G is bipartite then B(G ) is disconnected: two components
isomorphic to G .
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What is preserved by a TF-isomorphism? (3)
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What is preserved by a TF-isomorphism? (3)

Theorem

Two graphs are TF-isomorphic iff they have isomorphic canonical
double cover.
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Petersen and cousin again
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Petersen and cousin again

The common canonical double cover of these two graphs is the
Desargues graph!
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Petersen and cousin again

The common canonical double cover of these two graphs is the
Desargues graph!

A result of Scapellato and Pacco counts, for a given bipartite
graph B , the number of graphs G such that B = B(G ). For the
Desargues graph this number is 2. Therefore Petersen’s cousin is
the only graph, not isomorphic to the Petersen Graph, which is
TF-isomorphic to it.
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Petersen and cousin again

The common canonical double cover of these two graphs is the
Desargues graph!

A result of Scapellato and Pacco counts, for a given bipartite
graph B , the number of graphs G such that B = B(G ). For the
Desargues graph this number is 2. Therefore Petersen’s cousin is
the only graph, not isomorphic to the Petersen Graph, which is
TF-isomorphic to it.

But what about their having the same neighbourhoods?
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Petersen and cousin again

The common canonical double cover of these two graphs is the
Desargues graph!

A result of Scapellato and Pacco counts, for a given bipartite
graph B , the number of graphs G such that B = B(G ). For the
Desargues graph this number is 2. Therefore Petersen’s cousin is
the only graph, not isomorphic to the Petersen Graph, which is
TF-isomorphic to it.

But what about their having the same neighbourhoods? Later!
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Disconnected TF-orbital graphs (TOGs)
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Disconnected TF-orbital graphs (TOGs)

Theorem

Let G be a disconnected TOG with no isolated vertices and let its
connected components be G1, ......,Gk and suppose

|V (G1)| ≥ |V (G2)| ≥, .... ≥ |V (Gk)|.

Then each Gi(i = 1, ...., k) is still a TOG. Moreover:

(i) if |V (G1) = |V (Gk)|, then G1,G2, ...,Gk are pairwise
TF-isomorphic (which could include ”isomoprhic”)

(ii) otherwise, there exists a unique index r ∈ {1, .....k − 1} such
that G1, . . . ,Gr are isomorphic, Gr+1, . . . ,Gk are mutually
TF-isomorphic / isomorphic, and G = G1 is the CDC of each
of Gr+1, . . . ,Gk .
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What is presereved by a TF-isomorphism? (4)
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What is presereved by a TF-isomorphism? (4)

Paths? NO.
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What is presereved by a TF-isomorphism? (4)

Paths? NO.Cycles? NO.
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7’

α =

(

1 2 3 4 5 6 7
1′ ∗ 3′ 4′ ∗ 6′ ∗

)

β =

(

1 2 3 4 5 6 7
4′ 2′ ∗ 1′ 5′ ∗ 7′

)
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What is presereved by a TF-isomorphism? (4)

Paths? NO.Cycles? NO.

1
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1’

2’

3’

4’

5’

6

7’

α =

(

1 2 3 4 5 6 7
1′ ∗ 3′ 4′ ∗ 6′ ∗

)

β =

(

1 2 3 4 5 6 7
4′ 2′ ∗ 1′ 5′ ∗ 7′

)

For example, path 1→ 2→ 3 is transformed into 1′ → 2′ ∪ ∗ → ∗.
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Alternating trails are preserved
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Alternating trails are preserved
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)

β =

(

1 2 3 4 5 6 7
4′ 2′ ∗ 1′ 5′ ∗ 7′

)

Josef Lauri (UoM), Russell Mizzi (UoM),Raffaele Scapellato (Politecnico di Milano)TF-ISOMORPHISMS



Alternating trails are preserved
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1’
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4’
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7’

α =

(

1 2 3 4 5 6 7
1′ ∗ 3′ 4′ ∗ 6′ ∗

)

β =

(

1 2 3 4 5 6 7
4′ 2′ ∗ 1′ 5′ ∗ 7′

)

For example, alternating path 1→ 2← 3 is mapped into
1′ → 2′ ← 3′.
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Alternating trails are preserved

1
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7

1’

2’

3’

4’

5’

6

7’

α =

(

1 2 3 4 5 6 7
1′ ∗ 3′ 4′ ∗ 6′ ∗

)

β =

(

1 2 3 4 5 6 7
4′ 2′ ∗ 1′ 5′ ∗ 7′

)

For example, alternating path 1→ 2← 3 is mapped into
1′ → 2′ ← 3′.
Note that open alternating trails can be mapped into “closed”
alternating trails: 1→ 2← 3→ 4 is mapped onto
1′ → 2′ ← 3′ → 1′
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Various types of Z-trails

Josef Lauri (UoM), Russell Mizzi (UoM),Raffaele Scapellato (Politecnico di Milano)TF-ISOMORPHISMS



Various types of Z-trails
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(a) (b)

(c)
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Various types of Z-trails

u
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w
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v w
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(a) (b)

(c)

Illustrating the difference between (a) open Z-trail, (b) semi-closed
Z-trail and (c) closed Z-trail.
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Various types of Z-trails

u

v

u

v

w

u

v w
1

1

1

2
2

3

2
3 3

4

(a) (b)

(c)

Illustrating the difference between (a) open Z-trail, (b) semi-closed
Z-trail and (c) closed Z-trail.
An open Z-trail can be mapped into a semi-closed Z-trail.
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Typical results on Z-trails

Theorem

Let G and G ′ be mixed graphs and suppose that P is a Z-trail in
the graph G. Let (α, β) be a TF-isomorphism from G to G ′. Then
there exists a Z-trail P ′ in G ′ such that (α, β) restricted to P maps
P to P ′.
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Typical results on Z-trails (2)

G and G ′ are TF-isomorphic digraphs.

α =

(

1 2 3 4 5 6 7
* * 7′ * 5′ * 3′

)

β =

(

1 2 3 4 5 6
1′ 5′ * 6′ 2′ 4′

P of G is mapped into the semi-closed P ′ of G ′. The trails P and
P ′ are not TF-isomorphic.
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Typical results on Z-trails (3)

Theorem

A TF-isomorphism takes closed Z-trails into closed Z-trails.
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Asymmetric graphs admitting non-trivial TF-automorphism
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Asymmetric graphs admitting non-trivial TF-automorphism
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Asymmetric graphs admitting non-trivial TF-automorphism

α = (1 ∗ ∗)(2 b h)(3 ∗ ∗)(4 d j)(5 ∗ ∗)(6 f l)

β = (1 a g)(2 ∗ ∗)(3 c i)(4 ∗ ∗)(5 e k)(6 ∗ ∗)
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Stability

Let G be a graph. Then it is clear that Aut(B(G )) contains
Aut(G )× Z2. But Aut(B(G ) can be larger.
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Stability

Let G be a graph. Then it is clear that Aut(B(G )) contains
Aut(G )× Z2. But Aut(B(G ) can be larger.

Definition

A graph is said to be unstable if Aut(G )× Z2 is a proper subgroup
of Aut(B(G )). In other words, a graph G is unstable if at least one
element of Aut(B(G )) is not a lifting of some element of Aut(G ).
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Stability (2)
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Stability (2)

Theorem

Let G be a graph. Then Aut(B(G )) = AutTF(G )⋊ Z2. Therefore
G is unstable if and only if it has a non-trivial TF-automorphism.
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graphs.

We are looking at this problem from the point of view of
TF-automorphisms.

This new outlook presents some advantages, for example:

1 Can work within a more concrete framework;

2 Can investigate the structure of the given graph without
actually requiring to lift the graph to its canonical double
cover, but only having to reason within the original graph;
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1 Can work within a more concrete framework;

2 Can investigate the structure of the given graph without
actually requiring to lift the graph to its canonical double
cover, but only having to reason within the original graph;

3 Can use the technique of graph invariants under the action of
TF-isomorphisms, such as Z-trails;
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Stability of strongly regular graphs

Wilson and Surowski have studied the stability of strongly regular
graphs.

We are looking at this problem from the point of view of
TF-automorphisms.

This new outlook presents some advantages, for example:

1 Can work within a more concrete framework;

2 Can investigate the structure of the given graph without
actually requiring to lift the graph to its canonical double
cover, but only having to reason within the original graph;

3 Can use the technique of graph invariants under the action of
TF-isomorphisms, such as Z-trails;

4 In the same vein, can use knowledge of how TF-isomorphisms
act on special types of subgraphs such as triangles.
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A different point of view: Incidence structures /
hypergraphs
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A different point of view: Incidence structures /
hypergraphs

Hypergraph: A finite set V and a family of subsets (blocks /
hyperedges)of V .
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A different point of view: Incidence structures /
hypergraphs

Hypergraph: A finite set V and a family of subsets (blocks /
hyperedges)of V .
A hypergraph has an incidence matrix B , defined in the usual way.
Two hypergraphs on vertex-sets V1,V2 respectively are said to be
isomorphic if there is a bijection from V1 to V2 such that blocks
are taken to blocks. (This is an automorphism in the case when
the two hypergraphs are the same hypergraph.)

Josef Lauri (UoM), Russell Mizzi (UoM),Raffaele Scapellato (Politecnico di Milano)TF-ISOMORPHISMS



A different point of view: Incidence structures /
hypergraphs

Hypergraph: A finite set V and a family of subsets (blocks /
hyperedges)of V .
A hypergraph has an incidence matrix B , defined in the usual way.
Two hypergraphs on vertex-sets V1,V2 respectively are said to be
isomorphic if there is a bijection from V1 to V2 such that blocks
are taken to blocks. (This is an automorphism in the case when
the two hypergraphs are the same hypergraph.)
That is, the rows (vertices) of the matrix B1 can be permuted such
that the columns become a permutation of the columns of B2.
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A different point of view: Incidence structures /
hypergraphs

Hypergraph: A finite set V and a family of subsets (blocks /
hyperedges)of V .
A hypergraph has an incidence matrix B , defined in the usual way.
Two hypergraphs on vertex-sets V1,V2 respectively are said to be
isomorphic if there is a bijection from V1 to V2 such that blocks
are taken to blocks. (This is an automorphism in the case when
the two hypergraphs are the same hypergraph.)
That is, the rows (vertices) of the matrix B1 can be permuted such
that the columns become a permutation of the columns of B2. In
the case of automorphisms, we say that a permutation of the
vertices of V is an automorphism if the permutation applied to the
rows of B gives B with columns permuted.
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A different point of view: Incidence structures /
hypergraphs (2)
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A different point of view: Incidence structures /
hypergraphs (2)

A pair of permutations is an automorphism of a hypergraph if,
applying the two (possibly different) permutations to the rows and
columns, respectively, leaves B unchanged.
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A different point of view: Incidence structures /
hypergraphs (2)

A pair of permutations is an automorphism of a hypergraph if,
applying the two (possibly different) permutations to the rows and
columns, respectively, leaves B unchanged.
A pair of permutations is an isomorphism between two
hypergraphs if, applying the two permutations to the rows and
columns, respectively, of B1 gives B2.
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A different point of view: Incidence structures /
hypergraphs (3)

Applying independent row and column permutations on a matrix B
can be represented by the product PBQ where P and Q are
permutation matrices.
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A different point of view: Incidence structures /
hypergraphs (3)

Applying independent row and column permutations on a matrix B
can be represented by the product PBQ where P and Q are
permutation matrices.
In the case of graphs with an adjacency matrix A, an isomorphism
applies the same permutation to the rows and the columns,
therefore P = Q−1.
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A different point of view: Incidence structures /
hypergraphs (4)

But consider the adjacency matrix A of a graph as an incidence
matrix of a hypergraph with equal number of vertices and blocks.
Then, TF-automorphisms (TF-isomorphisms) become
automorphisms on (isomorphisms between) hypergraphs.
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Petersen & cousin again

1

2

3

45

6

7

8

910

1

234

5

6

7

8

9

10

Neighbourhoods of Petersen:
1: {2,5,6}
2: {1,3,7}
3: {2,4,8}
4: {3,5,9}
5: {1,4,10}
6: {1,8,9}
7: {2,9,10}
8: {3,6,10}
9: {4,6,7}
10: {5,7,8}
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Petersen & cousin again

1

2

3

45

6

7

8

910

1

234

5

6

7

8

9

10

Neighbourhoods of Petersen:
1: {2,5,6}
2: {1,3,7}
3: {2,4,8}
4: {3,5,9}
5: {1,4,10}
6: {1,8,9}
7: {2,9,10}
8: {3,6,10}
9: {4,6,7}
10: {5,7,8}

Neighbourhoods of cousin:
1: {4,6,7}
2: {3,5,9}
3: {2,4,8}
4: {1,3,7}
5: {2,9,10}
6: {1,8,9}
7: {1,4,10}
8: {3,6,10}
9: {2,5,6}
10: {5,7,8}
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Petersen & cousin again

1

2

3

45

6

7

8

910

1

234

5

6

7

8

9

10

Neighbourhoods of Petersen:
1: {2,5,6}
2: {1,3,7}
3: {2,4,8}
4: {3,5,9}
5: {1,4,10}
6: {1,8,9}
7: {2,9,10}
8: {3,6,10}
9: {4,6,7}
10: {5,7,8}

Neighbourhoods of cousin:
1: {4,6,7}
2: {3,5,9}
3: {2,4,8}
4: {1,3,7}
5: {2,9,10}
6: {1,8,9}
7: {1,4,10}
8: {3,6,10}
9: {2,5,6}
10: {5,7,8}

In the adjacency matrix of the Petersen graph:
Keep the rows fixed (giving α = id).
Interchange columns 1 and 9, columns 2 and 4, and columns 5 and 7, giving

β = (1 9)(2 4)(5 7).
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Can TF-isomorphisms throw light on other problems?
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Can TF-isomorphisms throw light on other problems?

Stability;
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Can TF-isomorphisms throw light on other problems?

Stability;

Neighbourhood reconstruction of G : is G TF-isomorphic to H 6≃ G?;
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Stability;

Neighbourhood reconstruction of G : is G TF-isomorphic to H 6≃ G?;

Realisability Problem: when is a given family of subsets of V the family of
neighbourhoods of some graph with vertex-set V ? What is the computational
complexity of determining whether the family of subsets is the family of
neighbourhoods of a graph?;
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Can TF-isomorphisms throw light on other problems?

Stability;

Neighbourhood reconstruction of G : is G TF-isomorphic to H 6≃ G?;

Realisability Problem: when is a given family of subsets of V the family of
neighbourhoods of some graph with vertex-set V ? What is the computational
complexity of determining whether the family of subsets is the family of
neighbourhoods of a graph?;

The Matrix Symmetrization Problem: given a (0, 1)-matrix A, is it possible to
change it into a symmetric matrix using (independent) row and column
permutations? This means: given a digraph D, is there an (undirected) graph G

to which D is TF-isomorphic?
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Can TF-isomorphisms throw light on other problems?

Stability;

Neighbourhood reconstruction of G : is G TF-isomorphic to H 6≃ G?;

Realisability Problem: when is a given family of subsets of V the family of
neighbourhoods of some graph with vertex-set V ? What is the computational
complexity of determining whether the family of subsets is the family of
neighbourhoods of a graph?;

The Matrix Symmetrization Problem: given a (0, 1)-matrix A, is it possible to
change it into a symmetric matrix using (independent) row and column
permutations? This means: given a digraph D, is there an (undirected) graph G

to which D is TF-isomorphic?

MSZ specialised this problem starting with a matrix A which is already
symmetric, therefore posing the following question: can a given graph G be
TF-isomorphic to another graph (which may be isomorphic to G itself) via a
non-trivial TF-isomorphism? This question leads to the notion of graph stability!
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Does the notion of TF-isomorphism add anything new to
these questions?
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Does the notion of TF-isomorphism add anything new to
these questions?

Theorem (Aigner)

If G is connected bipartite, then any nonisomorphic graph H with the same

neighbourhood hypergraph must be a union of two connected graphs which

themselves have identical neighbourhood hypergraphs.
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Does the notion of TF-isomorphism add anything new to
these questions?

Theorem (Aigner)

If G is connected bipartite, then any nonisomorphic graph H with the same

neighbourhood hypergraph must be a union of two connected graphs which

themselves have identical neighbourhood hypergraphs.

Proof.
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Does the notion of TF-isomorphism add anything new to
these questions?

Theorem (Aigner)

If G is connected bipartite, then any nonisomorphic graph H with the same

neighbourhood hypergraph must be a union of two connected graphs which

themselves have identical neighbourhood hypergraphs.

Proof.

1 Two graphs have the same neighbourhood family (that is, are TF-isomorphic) if
and only if they have the same canonical double cover;
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themselves have identical neighbourhood hypergraphs.
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and only if they have the same canonical double cover;

2 The canonical double cover of a graph G is disconnected if and only if G is
bipartite;
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If G is connected bipartite, then any nonisomorphic graph H with the same

neighbourhood hypergraph must be a union of two connected graphs which

themselves have identical neighbourhood hypergraphs.

Proof.

1 Two graphs have the same neighbourhood family (that is, are TF-isomorphic) if
and only if they have the same canonical double cover;

2 The canonical double cover of a graph G is disconnected if and only if G is
bipartite;

3 When G is bipartite, the canonical double cover of G is simply two disjoint
copies of G ;
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Does the notion of TF-isomorphism add anything new to
these questions?

Theorem (Aigner)

If G is connected bipartite, then any nonisomorphic graph H with the same

neighbourhood hypergraph must be a union of two connected graphs which

themselves have identical neighbourhood hypergraphs.

Proof.

1 Two graphs have the same neighbourhood family (that is, are TF-isomorphic) if
and only if they have the same canonical double cover;

2 The canonical double cover of a graph G is disconnected if and only if G is
bipartite;

3 When G is bipartite, the canonical double cover of G is simply two disjoint
copies of G ;

4 Therefore, for H to have the same canonical double cover as G , it must consist
of two components isomorphic to K , where G is the canonical double cover of
K .
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Does the notion of TF-isomorphism add anything new to
these questions?

Theorem (Aigner)

If G is connected bipartite, then any nonisomorphic graph H with the same

neighbourhood hypergraph must be a union of two connected graphs which

themselves have identical neighbourhood hypergraphs.

Proof.

1 Two graphs have the same neighbourhood family (that is, are TF-isomorphic) if
and only if they have the same canonical double cover;

2 The canonical double cover of a graph G is disconnected if and only if G is
bipartite;

3 When G is bipartite, the canonical double cover of G is simply two disjoint
copies of G ;

4 Therefore, for H to have the same canonical double cover as G , it must consist
of two components isomorphic to K , where G is the canonical double cover of
K .

Also: the only bipartite graphs for which there are nonisomorphic graphs with the
same neighbourhood family are those which are canonical double covers.
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Does the notion of TF-isomorphism add anything new to
these questions?

Theorem (Aigner)

If G is connected bipartite, then any nonisomorphic graph H with the same

neighbourhood hypergraph must be a union of two connected graphs which

themselves have identical neighbourhood hypergraphs.

Proof.

1 Two graphs have the same neighbourhood family (that is, are TF-isomorphic) if
and only if they have the same canonical double cover;

2 The canonical double cover of a graph G is disconnected if and only if G is
bipartite;

3 When G is bipartite, the canonical double cover of G is simply two disjoint
copies of G ;

4 Therefore, for H to have the same canonical double cover as G , it must consist
of two components isomorphic to K , where G is the canonical double cover of
K .

Also: the only bipartite graphs for which there are nonisomorphic graphs with the
same neighbourhood family are those which are canonical double covers.

The realisability problem restricted to bipartite graphs therefore becomes: given a
bipartite graph G , is there a graph K such that G is the canonical double cover of K?
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Finally: the right context to study TF-orbitals?
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THANK YOU!

Josef Lauri (UoM), Russell Mizzi (UoM),Raffaele Scapellato (Politecnico di Milano)TF-ISOMORPHISMS


