TF-ISOMORPHISMS

Josef Lauri (UoM), Russell Mizzi (UoM), Raffaele Scapellato (Politecnico di Milano)

September 21, 2013

A famous graph and its less famous cousin

A famous graph and its less famous cousin

A famous graph and its less famous cousin

Neighbourhoods of Petersen:
\{2,5,6\}
$\{1,3,7\}$
$\{2,4,8\}$
$\{3,5,9\}$
$\{1,4,10\}$
$\{1,8,9\}$
\{2,9,10\}
$\{3,6,10\}$
$\{4,6,7\}$
$\{5,7,8\}$

A famous graph and its less famous cousin

Neighbourhoods of Petersen:
$\{2,5,6\}$
$\{1,3,7\}$
Neighbourhoods of cousin:
$\{2,4,8\}$
$\{4,6,7\}$
$\{3,5,9\}$
$\{2,4,8\}$
$\{3,5,9\}$
\{1,3,7\}
$\{1,4,10\}$
$\{2,9,10\}$
$\{1,8,9\}$
$\{1,8,9\}$
\{2,9,10\}
$\{1,4,10\}$
$\{3,6,10\}$
$\{3,6,10\}$
$\{4,6,7\}$
$\{5,7,8\}$
$\{2,5,6\}$
$\{5,7,8\}$

Orbitals

Let Γ be a permutation group acting (usually transitively) on V.

Orbitals

Let Γ be a permutation group acting (usually transitively) on V.
Consider the action of Γ on $V \times V$:

$$
\alpha:(u, v) \mapsto\left(u^{\alpha}, v^{\alpha}\right)
$$

Orbitals

Let Γ be a permutation group acting (usually transitively) on V.
Consider the action of Γ on $V \times V$:

$$
\alpha:(u, v) \mapsto\left(u^{\alpha}, v^{\alpha}\right)
$$

Rank, suborbits, primitivity, strongly regular graphs, coherent configurations, etc.

Orbitals

Let Γ be a permutation group acting (usually transitively) on V. Consider the action of Γ on $V \times V$:

$$
\alpha:(u, v) \mapsto\left(u^{\alpha}, v^{\alpha}\right)
$$

Rank, suborbits, primitivity, strongly regular graphs, coherent configurations, etc.
An orbital (di)graph is an orbit of an arc (u, v) under this action.

Orbital (di)graphs

Some very simple and well-known facts.

Orbital (di)graphs

Some very simple and well-known facts.

Theorem

Let G be an orbital (di)graph. Then $\Gamma \leq \operatorname{Aut}(G)$. If Γ is vertex-transitive on V then G is vertex-transitive and arc-transitive and if G is disconnected then all components of G are isomorphic.

Two-fold orbitals

Let $\boldsymbol{\Gamma}$ be a subgroup of $S_{V} \times S_{V}$. Therefore the action now is

$$
(\alpha, \beta):(u, v) \mapsto\left(u^{\alpha}, v^{\beta}\right) .
$$

Two-fold orbitals

Let $\boldsymbol{\Gamma}$ be a subgroup of $S_{V} \times S_{V}$. Therefore the action now is

$$
(\alpha, \beta):(u, v) \mapsto\left(u^{\alpha}, v^{\beta}\right)
$$

(OFTEN we do NOT require that the actions of the projections $\pi_{1}, \pi_{2}: \boldsymbol{\Gamma} \rightarrow S_{n}$, defined by $\pi_{1}((\alpha, \beta))=\alpha$ and $\pi_{2}((\alpha, \beta))=\beta$, are transitive on V.)

Two-fold orbitals

Let $\boldsymbol{\Gamma}$ be a subgroup of $S_{V} \times S_{V}$. Therefore the action now is

$$
(\alpha, \beta):(u, v) \mapsto\left(u^{\alpha}, v^{\beta}\right)
$$

(OFTEN we do NOT require that the actions of the projections $\pi_{1}, \pi_{2}: \boldsymbol{\Gamma} \rightarrow S_{n}$, defined by $\pi_{1}((\alpha, \beta))=\alpha$ and $\pi_{2}((\alpha, \beta))=\beta$, are transitive on V.)
The orbit of a pair (u, v) under this action is called a two-fold orbital or TF-orbital.

Two-fold orbitals (2)

In general TF-orbitals are not so nice. For example:

- They have loops.

Two-fold orbitals (2)

In general TF-orbitals are not so nice. For example:

- They have loops.

■ They are mixed: arcs and edges.

Two-fold orbitals (2)

In general TF-orbitals are not so nice. For example:

- They have loops.

■ They are mixed: arcs and edges.
■ If a TF-orbital is disconnected then its components are not necessarily isomorphic, even if the projections of $\boldsymbol{\Gamma}$ are transitive.

Conventions

An mixed graph is considered to be a finite set of vertices and a set of pairs of vertices which can be both ordered (arcs) and unordered (edges): if the ordered pairs (arcs) (u, v) and (v, u) both exist then we say that the arcs are self-paired and together they form the edge $\{a, b\}$.

Multiple arcs (repetition of the arc $(x, y))$ are not allowed, but loops (the arc (x, x)) are possible.

Conventions (2)

We distinguish two special types of mixed graphs.

Conventions (2)

We distinguish two special types of mixed graphs.
If there is no loop (x, x) and no set of arcs is self-paired then the oriented graph is said to be a digraph.

Conventions (2)

We distinguish two special types of mixed graphs.
If there is no loop (x, x) and no set of arcs is self-paired then the oriented graph is said to be a digraph.

If there is no loop and the set of arcs is self-paired then we get a graph.

Main concept: TF-isomorphism

Main concept: TF-isomorphism

Let G and H be two (mixed) graphs. Suppose there are two bijections α, β from $V(G)$ to $V(H)$ such that

$$
(u, v) \text { is an arc of } G \text { iff }\left(u^{\alpha}, v^{\beta}\right) \text { is an arc of } H .
$$

Then G and H are said to be TF-isomorphic and (α, β) is a TF-isomorphism from G to H.

Main concept: TF-isomorphism

Let G and H be two (mixed) graphs. Suppose there are two bijections α, β from $V(G)$ to $V(H)$ such that

$$
(u, v) \text { is an arc of } G \text { iff }\left(u^{\alpha}, v^{\beta}\right) \text { is an arc of } H .
$$

Then G and H are said to be TF-isomorphic and (α, β) is a TF-isomorphism from G to H.

If G and H are isomorphic under an isomorphism α then they are also TF-isomorphic via (α, α).
When $\alpha \neq \beta$ we say that the TF-isomorphism is non-trivial.

Main concept: TF-automorphism

Main concept: TF-automorphism

If $G=H$ then we say that (α, β) is a $T F$-automorphism of G. The set of TF-automorphisms of G forms a group denoted by Aut ${ }^{\mathrm{TF}}(G)$. If we identify an automorphism α with (α, α) then we can consider $\operatorname{Aut}(G)$ to be a subgroup of Aut $^{\mathrm{TF}}(G)$.

Main concept: TF-automorphism

If $G=H$ then we say that (α, β) is a $T F$-automorphism of G. The set of TF-automorphisms of G forms a group denoted by Aut ${ }^{\mathrm{TF}}(G)$. If we identify an automorphism α with (α, α) then we can consider $\operatorname{Aut}(G)$ to be a subgroup of Aut $^{\mathrm{TF}}(G)$.

If $\alpha \neq \beta$ we say that the TF-automorphism is non-trivial.

TF-isomorphic (mixed) graphs need not be isomorphic

TF-isomorphic (mixed) graphs need not be isomorphic

So, what does TF-isomorphism tell us about the two TF-isomorphic graphs?

TF-isomorphic (mixed) graphs need not be isomorphic

So, what does TF-isomorphism tell us about the two
TF-isomorphic graphs?
The Petersen graph and its cousin are TF-isomorphic!

TF-isomorphic (mixed) graphs need not be isomorphic

So, what does TF-isomorphism tell us about the two TF-isomorphic graphs?

The Petersen graph and its cousin are TF-isomorphic!

If $\alpha=$ id and $\beta=\left(\begin{array}{ll}1 & 9\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)\left(\begin{array}{ll}5 & 7\end{array}\right)$ then (α, β) is a
TF-isomorphism from the Petersen graph to the second graph.

What is preserved by a TF-isomorphism?

What is preserved by a TF-isomorphism?

A simple observation:

What is preserved by a TF-isomorphism?

A simple observation:
Suppose (α, β) is a TF-isomorphism from G to H . Then α must preserve out-degrees while β must preserve in-degrees.

What is preserved by a TF-isomorphism?

A simple observation:
Suppose (α, β) is a TF-isomorphism from G to H . Then α must preserve out-degrees while β must preserve in-degrees.

So, for example, if $u \in V(G)$ is a source, then $\alpha(u)$ need not be a source but it is certainly not a sink.

What is preserved by a TF-isomorphism? (2)

What is preserved by a TF-isomorphism? (2)

The canonical double cover!
Let G be a graph. Its canonical double cover $\mathbf{B}(G)$ is the graph whose vertex-set is

$$
V(G) \times \mathbb{Z}_{2}=\left\{v_{i}: v \in V(G), i \in\{0,1\}\right\}
$$

such that

$$
\left\{u_{0}, v_{1}\right\} \text { and }\left\{u_{1}, v_{0}\right\}
$$

are edges of $\mathbf{B}(G)$ iff $\{u, v\}$ is an edge of G.

What is preserved by a TF-isomorphism? (2)

The canonical double cover!
Let G be a graph. Its canonical double cover $\mathbf{B}(G)$ is the graph whose vertex-set is

$$
V(G) \times \mathbb{Z}_{2}=\left\{v_{i}: v \in V(G), i \in\{0,1\}\right\}
$$

such that

$$
\left\{u_{0}, v_{1}\right\} \text { and }\left\{u_{1}, v_{0}\right\}
$$

are edges of $\mathbf{B}(G)$ iff $\{u, v\}$ is an edge of G.
That is, an edge $\{u, v\}$ is lifted to the two edges $\left\{u_{0}, v_{1}\right\}$ and $\left\{u_{1}, v_{0}\right\}$.

What is preserved by a TF-isomorphism? (2)

The canonical double cover!
Let G be a graph. Its canonical double cover $\mathbf{B}(G)$ is the graph whose vertex-set is

$$
V(G) \times \mathbb{Z}_{2}=\left\{v_{i}: v \in V(G), i \in\{0,1\}\right\}
$$

such that

$$
\left\{u_{0}, v_{1}\right\} \text { and }\left\{u_{1}, v_{0}\right\}
$$

are edges of $\mathbf{B}(G)$ iff $\{u, v\}$ is an edge of G.
That is, an edge $\{u, v\}$ is lifted to the two edges $\left\{u_{0}, v_{1}\right\}$ and $\left\{u_{1}, v_{0}\right\}$.
$B(G)$ is bipartite.

What is preserved by a TF-isomorphism? (2)

The canonical double cover!
Let G be a graph. Its canonical double cover $\mathbf{B}(G)$ is the graph whose vertex-set is

$$
V(G) \times \mathbb{Z}_{2}=\left\{v_{i}: v \in V(G), i \in\{0,1\}\right\}
$$

such that

$$
\left\{u_{0}, v_{1}\right\} \text { and }\left\{u_{1}, v_{0}\right\}
$$

are edges of $\mathbf{B}(G)$ iff $\{u, v\}$ is an edge of G.
That is, an edge $\{u, v\}$ is lifted to the two edges $\left\{u_{0}, v_{1}\right\}$ and $\left\{u_{1}, v_{0}\right\}$.
$\mathbf{B}(G)$ is bipartite.
If G is bipartite then $\mathbf{B}(G)$ is disconnected: two components isomorphic to G.

What is preserved by a TF-isomorphism? (3)

What is preserved by a TF-isomorphism? (3)

Theorem
Two graphs are TF-isomorphic iff they have isomorphic canonical double cover.

Petersen and cousin again

Petersen and cousin again

The common canonical double cover of these two graphs is the Desargues graph!

Petersen and cousin again

The common canonical double cover of these two graphs is the Desargues graph!

A result of Scapellato and Pacco counts, for a given bipartite graph B, the number of graphs G such that $B=\mathbf{B}(G)$. For the Desargues graph this number is 2. Therefore Petersen's cousin is the only graph, not isomorphic to the Petersen Graph, which is TF-isomorphic to it.

Petersen and cousin again

The common canonical double cover of these two graphs is the Desargues graph!

A result of Scapellato and Pacco counts, for a given bipartite graph B, the number of graphs G such that $B=\mathbf{B}(G)$. For the Desargues graph this number is 2. Therefore Petersen's cousin is the only graph, not isomorphic to the Petersen Graph, which is TF-isomorphic to it.

But what about their having the same neighbourhoods?

Petersen and cousin again

The common canonical double cover of these two graphs is the Desargues graph!

A result of Scapellato and Pacco counts, for a given bipartite graph B, the number of graphs G such that $B=\mathbf{B}(G)$. For the Desargues graph this number is 2. Therefore Petersen's cousin is the only graph, not isomorphic to the Petersen Graph, which is TF-isomorphic to it.

But what about their having the same neighbourhoods? Later!

Disconnected TF-orbital graphs (TOGs)

Disconnected TF-orbital graphs (TOGs)

Theorem

Let G be a disconnected TOG with no isolated vertices and let its connected components be $G_{1}, \ldots . ., G_{k}$ and suppose

$$
\left|V\left(G_{1}\right)\right| \geq\left|V\left(G_{2}\right)\right| \geq, \ldots \geq\left|V\left(G_{k}\right)\right|
$$

Then each $G_{i}(i=1, \ldots ., k)$ is still a TOG. Moreover:
(i) if $\left|V\left(G_{1}\right)=\left|V\left(G_{k}\right)\right|\right.$, then $G_{1}, G_{2}, \ldots, G_{k}$ are pairwise TF-isomorphic (which could include "isomoprhic")
(ii) otherwise, there exists a unique index $r \in\{1, \ldots . . k-1\}$ such that G_{1}, \ldots, G_{r} are isomorphic, G_{r+1}, \ldots, G_{k} are mutually TF-isomorphic / isomorphic, and $G=G_{1}$ is the CDC of each of G_{r+1}, \ldots, G_{k}.

What is presereved by a TF-isomorphism? (4)

What is presereved by a TF-isomorphism? (4)

Paths? NO.

What is presereved by a TF-isomorphism? (4)

Paths? NO.Cycles? NO.

$$
\begin{aligned}
& \alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1^{\prime} & * & 3^{\prime} & 4^{\prime} & * & 6^{\prime} & *
\end{array}\right) \\
& \beta=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4^{\prime} & 2^{\prime} & * & 1^{\prime} & 5^{\prime} & * & 7^{\prime}
\end{array}\right)
\end{aligned}
$$

What is presereved by a TF-isomorphism? (4)

Paths? NO.Cycles? NO.

$$
\begin{aligned}
& \alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1^{\prime} & * & 3^{\prime} & 4^{\prime} & * & 6^{\prime} & *
\end{array}\right) \\
& \beta=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4^{\prime} & 2^{\prime} & * & 1^{\prime} & 5^{\prime} & * & 7^{\prime}
\end{array}\right)
\end{aligned}
$$

For example, path $1 \rightarrow 2 \rightarrow 3$ is transformed into $1^{\prime} \rightarrow 2^{\prime} \cup * \rightarrow *$.

Alternating trails are preserved

Alternating trails are preserved

$$
\begin{aligned}
& \alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1^{\prime} & * & 3^{\prime} & 4^{\prime} & * & 6^{\prime} & *
\end{array}\right) \\
& \beta=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4^{\prime} & 2^{\prime} & * & 1^{\prime} & 5^{\prime} & * & 7^{\prime}
\end{array}\right)
\end{aligned}
$$

Alternating trails are preserved

$$
\begin{aligned}
& \alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1^{\prime} & * & 3^{\prime} & 4^{\prime} & * & 6^{\prime} & *
\end{array}\right) \\
& \beta=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4^{\prime} & 2^{\prime} & * & 1^{\prime} & 5^{\prime} & * & 7^{\prime}
\end{array}\right)
\end{aligned}
$$

For example, alternating path $1 \rightarrow 2 \leftarrow 3$ is mapped into $1^{\prime} \rightarrow 2^{\prime} \leftarrow 3^{\prime}$.

Alternating trails are preserved

$$
\begin{aligned}
& \alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1^{\prime} & * & 3^{\prime} & 4^{\prime} & * & 6^{\prime} & *
\end{array}\right) \\
& \beta=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4^{\prime} & 2^{\prime} & * & 1^{\prime} & 5^{\prime} & * & 7^{\prime}
\end{array}\right)
\end{aligned}
$$

For example, alternating path $1 \rightarrow 2 \leftarrow 3$ is mapped into $1^{\prime} \rightarrow 2^{\prime} \leftarrow 3^{\prime}$.
Note that open alternating trails can be mapped into "closed" alternating trails: $1 \rightarrow 2 \leftarrow 3 \rightarrow 4$ is mapped onto $1^{\prime} \rightarrow 2^{\prime} \leftarrow 3^{\prime} \rightarrow 1^{\prime}$

Various types of Z-trails

Various types of Z-trails

Various types of Z-trails

Illustrating the difference between (a) open Z-trail, (b) semi-closed Z-trail and (c) closed Z-trail.

Various types of Z-trails

Illustrating the difference between (a) open Z-trail, (b) semi-closed Z-trail and (c) closed Z-trail.
An open Z-trail can be mapped into a semi-closed Z-trail.

Typical results on Z-trails

Theorem
Let G and G^{\prime} be mixed graphs and suppose that P is a Z-trail in the graph G. Let (α, β) be a TF-isomorphism from G to G^{\prime}. Then there exists a Z-trail P^{\prime} in G^{\prime} such that (α, β) restricted to P maps P to P^{\prime}.

Typical results on Z-trails (2)

G

G and G^{\prime} are TF-isomorphic digraphs.
$\alpha=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ * & * & 7^{\prime} & * & 5^{\prime} & * & 3^{\prime}\end{array}\right) \quad \beta=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 1^{\prime} & 5^{\prime} & * & 6^{\prime} & 2^{\prime}\end{array}\right.$
P of G is mapped into the semi-closed P^{\prime} of G^{\prime}. The trails P and P^{\prime} are not TF-isomorphic.

Typical results on Z-trails (3)

Theorem
A TF-isomorphism takes closed Z-trails into closed Z-trails.

Asymmetric graphs admitting non-trivial TF-automorphism

Asymmetric graphs admitting non-trivial TF-automorphism

Asymmetric graphs admitting non-trivial TF-automorphism

$$
\begin{aligned}
& \alpha=(1 * *)(2 b h)(3 * *)(4 d j)(5 * *)(6 f l) \\
& \beta=(1 a g)(2 * *)(3 c i)(4 * *)(5 e k)(6 * *)
\end{aligned}
$$

Stability

Let G be a graph. Then it is clear that $\operatorname{Aut}(\mathbf{B}(G))$ contains $\operatorname{Aut}(G) \times \mathbb{Z}_{2}$. But $\operatorname{Aut}(\mathbf{B}(G)$ can be larger.

Stability

Let G be a graph. Then it is clear that $\operatorname{Aut}(\mathbf{B}(G))$ contains $\operatorname{Aut}(G) \times \mathbb{Z}_{2}$. But $\operatorname{Aut}(\mathbf{B}(G)$ can be larger.

Definition

A graph is said to be unstable if $\operatorname{Aut}(G) \times \mathbb{Z}_{2}$ is a proper subgroup of $\operatorname{Aut}(\mathbf{B}(G))$. In other words, a graph G is unstable if at least one element of $\operatorname{Aut}(\mathbf{B}(G))$ is not a lifting of some element of $\operatorname{Aut}(G)$.

Stability (2)

Stability (2)

Theorem
Let G be a graph. Then $\operatorname{Aut}(\mathbf{B}(G))=\operatorname{Aut}^{T F}(G) \rtimes \mathbb{Z}_{2}$. Therefore G is unstable if and only if it has a non-trivial TF-automorphism.

Stability of strongly regular graphs

Stability of strongly regular graphs

Wilson and Surowski have studied the stability of strongly regular graphs.

Stability of strongly regular graphs

Wilson and Surowski have studied the stability of strongly regular graphs.

We are looking at this problem from the point of view of TF-automorphisms.

Stability of strongly regular graphs

Wilson and Surowski have studied the stability of strongly regular graphs.

We are looking at this problem from the point of view of TF-automorphisms.

This new outlook presents some advantages, for example:

Stability of strongly regular graphs

Wilson and Surowski have studied the stability of strongly regular graphs.

We are looking at this problem from the point of view of TF-automorphisms.

This new outlook presents some advantages, for example:
1 Can work within a more concrete framework;

Stability of strongly regular graphs

Wilson and Surowski have studied the stability of strongly regular graphs.

We are looking at this problem from the point of view of TF-automorphisms.

This new outlook presents some advantages, for example:
1 Can work within a more concrete framework;
2 Can investigate the structure of the given graph without actually requiring to lift the graph to its canonical double cover, but only having to reason within the original graph;

Stability of strongly regular graphs

Wilson and Surowski have studied the stability of strongly regular graphs.

We are looking at this problem from the point of view of TF-automorphisms.

This new outlook presents some advantages, for example:
1 Can work within a more concrete framework;
2 Can investigate the structure of the given graph without actually requiring to lift the graph to its canonical double cover, but only having to reason within the original graph;
3 Can use the technique of graph invariants under the action of TF-isomorphisms, such as Z-trails;

Stability of strongly regular graphs

Wilson and Surowski have studied the stability of strongly regular graphs.

We are looking at this problem from the point of view of TF-automorphisms.

This new outlook presents some advantages, for example:
1 Can work within a more concrete framework;
2 Can investigate the structure of the given graph without actually requiring to lift the graph to its canonical double cover, but only having to reason within the original graph;
3 Can use the technique of graph invariants under the action of TF-isomorphisms, such as Z-trails;
4 In the same vein, can use knowledge of how TF-isomorphisms act on special types of subgraphs such as triangles.

A different point of view: Incidence structures / hypergraphs

A different point of view: Incidence structures / hypergraphs

Hypergraph: A finite set V and a family of subsets (blocks / hyperedges)of V.

A different point of view: Incidence structures / hypergraphs

Hypergraph: A finite set V and a family of subsets (blocks / hyperedges)of V.
A hypergraph has an incidence matrix B, defined in the usual way.

A different point of view: Incidence structures / hypergraphs

Hypergraph: A finite set V and a family of subsets (blocks / hyperedges)of V.
A hypergraph has an incidence matrix B, defined in the usual way. Two hypergraphs on vertex-sets V_{1}, V_{2} respectively are said to be isomorphic if there is a bijection from V_{1} to V_{2} such that blocks are taken to blocks. (This is an automorphism in the case when the two hypergraphs are the same hypergraph.)

A different point of view: Incidence structures / hypergraphs

Hypergraph: A finite set V and a family of subsets (blocks / hyperedges)of V.
A hypergraph has an incidence matrix B, defined in the usual way. Two hypergraphs on vertex-sets V_{1}, V_{2} respectively are said to be isomorphic if there is a bijection from V_{1} to V_{2} such that blocks are taken to blocks. (This is an automorphism in the case when the two hypergraphs are the same hypergraph.)
That is, the rows (vertices) of the matrix B_{1} can be permuted such that the columns become a permutation of the columns of B_{2}.

A different point of view: Incidence structures / hypergraphs

Hypergraph: A finite set V and a family of subsets (blocks / hyperedges)of V.
A hypergraph has an incidence matrix B, defined in the usual way. Two hypergraphs on vertex-sets V_{1}, V_{2} respectively are said to be isomorphic if there is a bijection from V_{1} to V_{2} such that blocks are taken to blocks. (This is an automorphism in the case when the two hypergraphs are the same hypergraph.)
That is, the rows (vertices) of the matrix B_{1} can be permuted such that the columns become a permutation of the columns of B_{2}. In the case of automorphisms, we say that a permutation of the vertices of V is an automorphism if the permutation applied to the rows of B gives B with columns permuted.

A different point of view: Incidence structures / hypergraphs (2)

A different point of view: Incidence structures / hypergraphs (2)

A pair of permutations is an automorphism of a hypergraph if, applying the two (possibly different) permutations to the rows and columns, respectively, leaves B unchanged.

A different point of view: Incidence structures / hypergraphs (2)

A pair of permutations is an automorphism of a hypergraph if, applying the two (possibly different) permutations to the rows and columns, respectively, leaves B unchanged.
A pair of permutations is an isomorphism between two hypergraphs if, applying the two permutations to the rows and columns, respectively, of B_{1} gives B_{2}.

A different point of view: Incidence structures / hypergraphs (3)

Applying independent row and column permutations on a matrix B can be represented by the product $P B Q$ where P and Q are permutation matrices.

A different point of view: Incidence structures / hypergraphs (3)

Applying independent row and column permutations on a matrix B can be represented by the product $P B Q$ where P and Q are permutation matrices.
In the case of graphs with an adjacency matrix A, an isomorphism applies the same permutation to the rows and the columns, therefore $P=Q^{-1}$.

A different point of view: Incidence structures / hypergraphs (4)

But consider the adjacency matrix A of a graph as an incidence matrix of a hypergraph with equal number of vertices and blocks. Then, TF-automorphisms (TF-isomorphisms) become automorphisms on (isomorphisms between) hypergraphs.

Petersen \& cousin again

Neighbourhoods of Petersen:
1: $\{2,5,6\}$
2: $\{1,3,7\}$
3: $\{2,4,8\}$
4: $\{3,5,9\}$
5: $\{1,4,10\}$
6: $\{1,8,9\}$
7: $\{2,9,10\}$
8: $\{3,6,10\}$
9: $\{4,6,7\}$
10: $\{5,7,8\}$

Petersen \& cousin again

Neighbourhoods of Petersen:
1: $\{2,5,6\}$
2: $\{1,3,7\}$
3: $\{2,4,8\}$
4: $\{3,5,9\}$
5: $\{1,4,10\}$
6: $\{1,8,9\}$
7: $\{2,9,10\}$
8: $\{3,6,10\}$
9: $\{4,6,7\}$
10: $\{5,7,8\}$

Neighbourhoods of cousin:
1: $\{4,6,7\}$
2: $\{3,5,9\}$
3: $\{2,4,8\}$
4: $\{1,3,7\}$
5: $\{2,9,10\}$
6: $\{1,8,9\}$
7: $\{1,4,10\}$
8: $\{3,6,10\}$
9: $\{2,5,6\}$
10: $\{5,7,8\}$

Petersen \& cousin again

Neighbourhoods of Petersen:
1: $\{2,5,6\}$
2: $\{1,3,7\}$
3: $\{2,4,8\}$
4: $\{3,5,9\}$
5: $\{1,4,10\}$
6: $\{1,8,9\}$
7: $\{2,9,10\}$
8: $\{3,6,10\}$
9: $\{4,6,7\}$
10: $\{5,7,8\}$

Neighbourhoods of cousin:
1: $\{4,6,7\}$
2: $\{3,5,9\}$
3: $\{2,4,8\}$
4: $\{1,3,7\}$
5: $\{2,9,10\}$
6: $\{1,8,9\}$
7: $\{1,4,10\}$
8: $\{3,6,10\}$
9: $\{2,5,6\}$
10: $\{5,7,8\}$

In the adjacency matrix of the Petersen graph:
Keep the rows fixed (giving $\alpha=$ id).
Interchange columns 1 and 9, columns 2 and 4, and columns 5 and 7, giving

$$
\beta=(1 \quad 9)(2 \quad 4)(5 \quad 7) .
$$

Can TF-isomorphisms throw light on other problems?

Can TF-isomorphisms throw light on other problems?

Can TF-isomorphisms throw light on other problems?

- Stability;

Can TF-isomorphisms throw light on other problems?

- Stability;
- Neighbourhood reconstruction of G : is G TF-isomorphic to $H \not \not G$?;

Can TF-isomorphisms throw light on other problems?

- Stability;
- Neighbourhood reconstruction of G : is G TF-isomorphic to $H \nsim G$?;
- Realisability Problem: when is a given family of subsets of V the family of neighbourhoods of some graph with vertex-set V ? What is the computational complexity of determining whether the family of subsets is the family of neighbourhoods of a graph?;

Can TF-isomorphisms throw light on other problems?

- Stability;

■ Neighbourhood reconstruction of G : is G TF-isomorphic to $H \nsim G$?;

- Realisability Problem: when is a given family of subsets of V the family of neighbourhoods of some graph with vertex-set V ? What is the computational complexity of determining whether the family of subsets is the family of neighbourhoods of a graph?;
- The Matrix Symmetrization Problem: given a $(0,1)$-matrix A, is it possible to change it into a symmetric matrix using (independent) row and column permutations? This means: given a digraph D, is there an (undirected) graph G to which D is TF-isomorphic?

Can TF-isomorphisms throw light on other problems?

- Stability;
- Neighbourhood reconstruction of G : is G TF-isomorphic to $H \not \approx G$?;

■ Realisability Problem: when is a given family of subsets of V the family of neighbourhoods of some graph with vertex-set V ? What is the computational complexity of determining whether the family of subsets is the family of neighbourhoods of a graph?;

- The Matrix Symmetrization Problem: given a $(0,1)$-matrix A, is it possible to change it into a symmetric matrix using (independent) row and column permutations? This means: given a digraph D, is there an (undirected) graph G to which D is TF-isomorphic?

MSZ specialised this problem starting with a matrix A which is already symmetric, therefore posing the following question: can a given graph G be TF-isomorphic to another graph (which may be isomorphic to G itself) via a non-trivial TF-isomorphism? This question leads to the notion of graph stability!

Does the notion of TF-isomorphism add anything new to these questions?

Does the notion of TF-isomorphism add anything new to these questions?

Theorem (Aigner)
If G is connected bipartite, then any nonisomorphic graph H with the same neighbourhood hypergraph must be a union of two connected graphs which themselves have identical neighbourhood hypergraphs.

Does the notion of TF-isomorphism add anything new to these questions?

Theorem (Aigner)
If G is connected bipartite, then any nonisomorphic graph H with the same neighbourhood hypergraph must be a union of two connected graphs which themselves have identical neighbourhood hypergraphs.

Proof.

Does the notion of TF-isomorphism add anything new to these questions?

Theorem (Aigner)
If G is connected bipartite, then any nonisomorphic graph H with the same neighbourhood hypergraph must be a union of two connected graphs which themselves have identical neighbourhood hypergraphs.

Proof.
1 Two graphs have the same neighbourhood family (that is, are TF-isomorphic) if and only if they have the same canonical double cover;

Does the notion of TF-isomorphism add anything new to these questions?

Theorem (Aigner)

If G is connected bipartite, then any nonisomorphic graph H with the same neighbourhood hypergraph must be a union of two connected graphs which themselves have identical neighbourhood hypergraphs.

Proof.

1 Two graphs have the same neighbourhood family (that is, are TF-isomorphic) if and only if they have the same canonical double cover;
2 The canonical double cover of a graph G is disconnected if and only if G is bipartite;

Does the notion of TF-isomorphism add anything new to these questions?

Theorem (Aigner)

If G is connected bipartite, then any nonisomorphic graph H with the same neighbourhood hypergraph must be a union of two connected graphs which themselves have identical neighbourhood hypergraphs.

Proof.

1 Two graphs have the same neighbourhood family (that is, are TF-isomorphic) if and only if they have the same canonical double cover;
2 The canonical double cover of a graph G is disconnected if and only if G is bipartite;
3 When G is bipartite, the canonical double cover of G is simply two disjoint copies of G;

Does the notion of TF-isomorphism add anything new to these questions?

Theorem (Aigner)

If G is connected bipartite, then any nonisomorphic graph H with the same neighbourhood hypergraph must be a union of two connected graphs which themselves have identical neighbourhood hypergraphs.

Proof.

1 Two graphs have the same neighbourhood family (that is, are TF-isomorphic) if and only if they have the same canonical double cover;
2 The canonical double cover of a graph G is disconnected if and only if G is bipartite;
3 When G is bipartite, the canonical double cover of G is simply two disjoint copies of G;
4 Therefore, for H to have the same canonical double cover as G, it must consist of two components isomorphic to K, where G is the canonical double cover of K.

Does the notion of TF-isomorphism add anything new to these questions?

Theorem (Aigner)

If G is connected bipartite, then any nonisomorphic graph H with the same neighbourhood hypergraph must be a union of two connected graphs which themselves have identical neighbourhood hypergraphs.

Proof.

1 Two graphs have the same neighbourhood family (that is, are TF-isomorphic) if and only if they have the same canonical double cover;
2 The canonical double cover of a graph G is disconnected if and only if G is bipartite;
3 When G is bipartite, the canonical double cover of G is simply two disjoint copies of G;
4 Therefore, for H to have the same canonical double cover as G, it must consist of two components isomorphic to K, where G is the canonical double cover of K.

Also: the only bipartite graphs for which there are nonisomorphic graphs with the same neighbourhood family are those which are canonical double covers.

Does the notion of TF-isomorphism add anything new to these questions?

Theorem (Aigner)

If G is connected bipartite, then any nonisomorphic graph H with the same neighbourhood hypergraph must be a union of two connected graphs which themselves have identical neighbourhood hypergraphs.

Proof.

1 Two graphs have the same neighbourhood family (that is, are TF-isomorphic) if and only if they have the same canonical double cover;
2 The canonical double cover of a graph G is disconnected if and only if G is bipartite;
3 When G is bipartite, the canonical double cover of G is simply two disjoint copies of G;
4 Therefore, for H to have the same canonical double cover as G, it must consist of two components isomorphic to K, where G is the canonical double cover of K.

Also: the only bipartite graphs for which there are nonisomorphic graphs with the same neighbourhood family are those which are canonical double covers.
The realisability problem restricted to bipartite graphs therefore becomes: given a bipartite graph G, is there a graph K such that G is the canonical double cover of K ?

Finally: the right context to study TF-orbitals?

Finally: the right context to study TF-orbitals?

$$
\begin{aligned}
& \quad(a, b)=((12.34),(12)(34)) \\
& G=\langle(a, b)\rangle=\left\{(a, b),\left(a^{2}, b^{2}\right),\left(a^{3}, b^{3}\right),\left(a^{4}, b^{4}\right)=(i a 1, i d)\right\} \\
& X=\{1,2,3,4\}
\end{aligned}
$$

Diagram shows Twr-Fold orbitals of G acting on $X_{x} X$.

THANK YOU!

