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Introduction

A partition π of a set S ⊆ [n], n ≥ 1, is a collection of nonempty
disjoint subsets B1, . . . ,Bt of S , called blocks, whose union is S .

A block with only one element is said to be a singleton.

π = 13/245/6/7 is a partition of [7] with b(π) = 4 blocks

Πn set of all partitions of [n]

Π′n set of all singleton free set partitions of [n]

A partition σ ` [n] is layered if it is of the form
[1, i ]/[i + 1, j ]/[j + 1, k]/ · · · /[`+ i , n].

A partition σ is said to be a matching if #B ≤ 2, for all block B
of σ. When the cardinality of each block is exactly 2 the partition
is a perfect matching.
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If S ⊆ [m] with #S = n, then the standardization map
corresponding to S is the unique order-preserving bijection

stS : S → [n].

For example, if S = {2, 5, 7} then st(2) = 1, st(5) = 2 and
st(7) = 3. Thus, if π = 27/5 its standardization is st(π) = 13/2.

A subpartition of a partition π = B1/B2/ · · · /Bt of S is a
partition π′ of S ′ ⊆ S such that each block of π′ is contained in a
different block of π.

For example, 27/5 is a subpartition of 1356/27/4 but not of
1357/26/4.
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Let π ∈ Πk be a given set partition called the pattern. A partition
σ ∈ Πn contains the pattern π if there exists a subpartition σ′ of
σ such that st(σ′) = π. In this case, σ′ is called an occurrence of
the pattern π in σ.

If σ as no occurrences of π, then we say that σ avoids the pattern
π.

For example, σ = 16/23/45 avoids the pattern 123 but contains
the pattern 13/2 since the standardization of the subpartition
σ′ = 16/2 is 13/2.



R ⊆ Πk

Πn(R) = {σ ∈ Πn : σ avoids every pattern π ∈ R}.

Π′n(R) = {σ ∈ Π′n : σ avoids every pattern π ∈ R}
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Singleton free set partitions, #R = 1

Let π a pattern in Π3, namely 123, 1/23, 12/3, 1/2/3 and 13/2.

FI (x) =
∑
i∈I

x i

i !
,

for I a set of nonnegative integers. In particular, when I = [0,m],
we write

expm(x) =
m∑
i=0

x i

i !
.

Let aIn,` denote the number of partitions of [n] with ` blocks with
cardinalities in the set I ⊆ N. It follows that∑

n≥0

aIn,`
xn

n!
=

FI (x)`

`!

is the exponential generating function for the number of partitions
of [n] with ` blocks, each of them having sizes in the set I .



Finally, we write

Fπ(x) =
∑
n≥0

#Π′n(π)
xn

n!
.

For example, with I = N \ {1}, the exponential generating function
for the number of singleton free set partitions of [n] is

F (x) =
∑
n≥0

#Π′n
xn

n!
=
∑
n,`≥0

aIn,`
xn

n!

=
∑
`≥0

(ex − 1− x)`

`!
= exp(ex − 1− x).



π = 12/3, 1/23

Given positive integers i < m, let πim be the layered pattern

1/2/ · · · /i − 1/i(i + 1)/i + 2/ · · · /m

in Πm, where all blocks are singletons with the exception of
Bi = {i , i + 1}.
Theorem
For n ≥ 2,

Π′n(πim) = {σ ∈ Π′n : b(σ) ≤ m − 2},
Fπi

m
(x) = expm−2(exp(x)− 1− x).

Corollary

For n ≥ 2,

Π′n(12/3) = Π′n(1/23) = {12 · · · n},
F1/23(x) = F12/3(x) = ex − x .



π = 123

Theorem
For n ≥ 2,

Π′n(12 · · ·m) = {σ ∈ Πn : 2 ≤ #B ≤ m − 1, for all block B ∈ σ},
F12···m(x) = exp(expm−1(x)− 1− x).

The double factorial of an odd positive integer 2i − 1 is defined
as the product of all positive odd integers up to 2i − 1:

(2i − 1)!! = (2i − 1)(2i − 3) · · · 5 · 3 · 1.

Corollary

For n ≥ 2,

Π′n(123) = {σ ∈ Πn : σ is a perfect matching},

#Π′n(123) =

{
(2k − 1)!! if n = 2k

0 otherwise
.



π = 1/2/3

Theorem
For n ≥ 2,

Π′n(1/2/ · · · /m) = {σ ∈ Π′n : b(σ) ≤ m − 1},
F1/2/···/m(x) = expm−1(exp(x)− 1− x).

Corollary
We have

Π′n(1/2/3) = {σ ∈ Π′n : b(σ) ≤ 2},
#Π′n(1/2/3) = 2n−1 − n, for n ≥ 3,

with #Π′0(1/2/3) = #Π′2(1/2/3) = 1 and #Π′1(1/2/3) = 0.



The Eulerian number e(n,m) is the number of permutations
p1p2 · · · pn of [n] with exactly m descents, that is, m places in
which pj > pj+1, for 1 ≤ j ≤ n − 1. Let E (n,m) be the set of all
permutations of [n] with exactly m descents.

Theorem
There is a bijection between Π′n(1/2/3) and E (n− 1, 1), for n ≥ 1.



Proof:

ψ : E (n − 1, 1) −→ Π′n(1/2/3), n ≥ 3

S = {p1, . . . , pk} ⊆ [n − 1] such that S 6= [k] and p1 < · · · < pk .

If #S 6= n − 2 set ψ(S) = {1, p1 + 1, . . . , pk + 1}/B

If #S = n − 2 then S = {1, . . . , î , . . . , n − 1} for some i . Set

ψ(S) =

{
{1, . . . , i}/{i + 1, . . . , n}, if i 6= 1

{1, . . . , n}, if i = 1
.



π = 13/2

Denote by Fn the n-th Fibonacci number which is defined by the
recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2,

with the initial conditions F0 = 0 and F1 = 1

Theorem
For n ≥ 1,

Π′n(13/2) = {σ ∈ Π′n : σ is layered},
#Π′n(13/2) = Fn−1.

Corollary
The number of layered set partitions of [n] with at least one
singleton is given by 2n−1 − Fn−1.



π Π′n(π) #Π′n(π)

12/3 12 · · · n 1

1/23 12 · · · n 1

1/2/3 partitions with at most 2 blocks 2n−1 − n

13/2 layered partitions Fn−1

123
perfect matchings (2k − 1)!! if n = 2k

0 otherwise

Table: Singleton free partitions avoiding a 3-letter pattern



#R ≥ 2

R Π′n(R) #Π′n(R)

{12/3, π} ∅ if π = 123 0 if π = 123
{12 · · · n} if π 6= 123 1 if π 6= 123

{123,13/2} {12/34/ · · · /(n − 1)n} if n even 1 if n even
∅ if n odd 0 if n odd

{123,1/2/3} ∅ if n 6= 4 0 if n 6= 4
{12/34, 13/24, 14/23} if n = 4 3 if n = 4

{13/2,1/2/3} {1 · · · i/(i + 1) · · · n : i ∈ [2, n − 2]} ∪ {12 · · · n} n − 2

{12/3, 13/2, 1/2/3} {12 · · · n} 1

{12/3, 123, π} ∅ for π = 1/2/3 or π = 13/2 0

{13/2, 123, 1/2/3} {12/34} if n = 4 1 if n = 4
∅ if n 6= 4 0 if n 6= 4

Table: Singleton free partitions with more than one restriction



Even and Odd Singleton Free Set Partitions

A partition σ ` [n] with b(σ) = k has sign

sgn(σ) = (−1)n−k .

A partition σ of [n] is even if sgn(n) = 1, and is odd if
sgn(n) = −1.

Denote by E Π′n (resp. OΠ′n) the set of all singleton free even
(resp. odd) set partitions of [n]. Given R ⊂ Π3, let E Π′n(R) (resp.
OΠ′n(R)) be the set of all singleton free even (resp. odd) set
partitions of [n] that avoids the patterns in R.



Lemma
For n ≥ 1, #E Π′n(12/3) = #E Π′n(1/23).

Theorem

For n ≥ 1, E Π′n(12/3) =

{
∅, if n is even

{12 · · · n}, if n is odd
.

Theorem
For n ≥ 1,

E Π′n(1/2/3) =

{
{σ ∈ Π′n : b(σ) = 2}, if n is even

{12 · · · n}, if n is odd
,

#E Π′n(1/2/3) =

{
2n−1 − n − 1, if n is even

1, if n is odd
;



Theorem
If n is an odd integer then E Π′n(123) = OΠ′n(123) = ∅.
If n = 2k ≥ 1, then

E Π′n(123) = Π′n(123) and OΠ′n(123) = ∅, if k is even.

and

OΠ′n(123) = Π′n(123) and E Π′n(123) = ∅, if k is odd.



Theorem
For n ≥ 1,

E Π′n(13/2) = {σ ∈ Π′n : σ is layered and b(σ) has the parity of n},

#E Π′n(13/2) =
1

2

(
αn − βn

α− β

)
− 1

2

(
γn − δn

γ − δ

)
,

where

α =
1 +
√

5

2
, β =

1−
√

5

2
, γ = −1

2
+

√
3

2
i , δ = −1

2
−
√

3

2
i

are the roots of the equation x4 + 2x3 + x2 − 1 = 0.



Proof: We have
#E Π′n(13/2) = #OΠ′n−2(13/2) + #OΠ′n−1(13/2) since any
partition σ ∈ E Π′n(13/2) is uniquely obtained from a partition in
Π′n−2(13/2), with parity different from n, by adding the block
{n − 1, n}, or from a partition in Π′n−1(13/2), with parity different
from n, by adding n to the block having the letter n − 1. Thus,

#E Π′n(13/2) = #OΠ′n−2(13/2) + #OΠ′n−1(13/2)

= Fn−3 + Fn−2 −#E Π′n−2(13/2)−#E Π′n−1(13/2).

Solving this linear recursion we find that the generating function
for #E Π′n(13/2) is

G (x) =
x2(x + 1)

(1− x − x2)(1 + x + x2)
.



P-recursion

A sequence (an)n≥0 is said to be P-recursive (short for polynomial
recursive) if there exist polynomials p0(x), p1(x) . . . , pd(x) with
pd(x) 6= 0, such that

p0(n)an + p1(n)an+1 + · · ·+ pd(n)an+d = 0,

for all n ≥ 0.

A power series f (x) is D-finite (short for differentiably finite) if
there exist finitely many polynomials p0(x), p1(x), . . . , pm(x) with
pm(x) 6= 0 such that

p0(x)f (x) + p1(x)f (1)(x) + · · ·+ pm(x)f (m)(x) = 0,

where f (i)(x) = d i f /dx i .
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Theorem (Stanley)
A sequence (an)n≥0 is P-recursive if and only if its ordinary
generating function f (x) =

∑
n≥0 anxn is D-finite.

Corollary
A sequence (an)n≥0 is P-recursive if and only if its exponential
generating function f (x) =

∑
n≥0 anxn/n! is D-finite.



A power series is said to be algebraic if there exist polynomials
p0(x), . . . , pd(x), not all zero, such that

p0(x) + p1(x)f (x)1 + · · ·+ pd(x)f (x)d = 0.

Theorem (Stanley)
If f (x) is an algebraic power series then f (x) is D-finite

The converse of this result is false, since, for instance, the power
series f (x) = ex is D-finite but not algebraic.

Theorem
If f (x) and g(x) are D-finite, then any linear combination
af (x) + bg(x) is also D-finite.
If f (x) is D-finite and g(x) is algebraic with g(0) = 0, then the
composition f (g(x)) is D-finite.



Proposition
The sequence #Π′n, n ≥ 1, is not P-recursive.

Proof.
By contradiction, assume that the sequence #Π′n is P-recursive.
Then, its generating function F (x) = ee

x−1−x , must be D-finite,
and so it must satisfy equation

p0(x)F (x) + p1(x)F (1)(x) + · · ·+ pm(x)F (m)(x) = 0.

A simple induction shows that

d i

dx i
F (x) = F (x)

(
ai0 + ai1ex + ai2e2x + · · ·+ aii−1e(i−1)x + e ix

)
,

for constants aij , j = 0, 1, . . . , i − 1. Thus, we get

q0(x) + q1(x)ex + · · ·+ qd(x)edx = 0, where
qi (x) = pi (x) +

∑d
k=i+1 aki pk(x). Moreover, since the pi (x) are

not all zero, the same is true for the qi (x). But this imply that ex

is algebraic, a contradiction.



Theorem
For any m ≥ 1, the following sequences are P-recursive, for n ≥ 1:

#Π′n(12 · · ·m), #Π′n(πim), #Π′n(1/2/ · · · /m).

Furthermore, for any π ` [3], the sequences #Π′n(π), #E Π′n(π)
and #OΠ′n(π), n ≥ 1, are P-recursive.

Proof.
The egf for #Π′n(12 · · ·m), n ≥ 1, is given by
F12···m(x) = exp(expm−1(x)− 1− x). Since f (x) = ex is D-finite,
and g(x) = expm−1(x)− 1− x is algebraic, the composition
f (g(x)) = F12···m(x) is D-finite.
The egf expm−2(ex − 1− x) and expm−1(ex − 1− x) for #Π′n(πim)
and #Π′n(1/2/ · · · /m), n ≥ 1, are D-finite since this functions are
linear combinations of series of the form xmeax , with m ∈ N and
a ∈ R, and thus satisfy a linear homogeneous differential equation
with constant coefficients.



Gray codes

A Gray code for a class of combinatorial objects is a list of these
objects so that the transition from one object in the list to its
successor takes only a “small change”. The definition of “small
change” depends on the particular class of objects.

In our case, we define the distance between two partitions π, ω of
[n] as the minimum number of letters that must be moved between
blocks of π, possibly creating a new block, so that the resulting
partition is ω.



Π′n(13/2)

Definition
Let σ = B1/ · · · /Bt−1/Bt and π be layered singleton free
partitions of [n]. We say that σ and π forms a good pair if
whenever #Bt−1 ≥ 3 and Bt = {n − 1, n}, then Bt−1 ∪ {n − 1, n}
is not a block of π.

Theorem
For each n ≥ 4 there is a Gray code sequence with distance 2,

π1, π2 . . . , πs ,

for Π′n(13/2) such that any two consecutive elements are good
pairs, π1 = 12 · · · n and πs = 12 · · · (n − 2)/(n − 1)n.



Π′n(1/2/3) and Π′2k(123)

Theorem
For each n ≥ 4 there is a Gray code sequence with distance 2 for
Π′n(1/2/3) which starts with 12 · · · n and is followed by
1n/2 · · · (n − 1).

Theorem
For each integer k ≥ 1, there is a Gray code sequence for Π′2k(123)
with distance 2.



Π′2(13/2) 12

Π′3(13/2) 123

Π′4(13/2) 1234, 12/34

Π′5(13/2) 12345, 12/345, 123/45

Π′6(13/2) 123456, 12/3456, 123/456, 12/34/56, 1234/56

Π′7(13/2) 1234567, 12/34567, 123/4567, 12/34/567, 1234/567,
123/45/67, 12/345/67, 12345/67

Π′8(13/2) 12345678, 12/345678, 123/45678, 12/34/5678, 1234/5678,
123/45/678, 12/345/678, 12345/678, 1234/56/78,
12/34/56/78, 123/456/78, 12/3456/78, 123456/78

Table: Gray codes for Π′
n(13/2), n = 2, . . . , 8



Π′2(1/2/3) 12

Π′3(1/2/3) 123

Π′4(1/2/3) 1234, 14/23, 24/13, 12/34

Π′5(1/2/3) 12345, 15/234, 25/134, 35/124, 45/123, 14/235, 24/135,
12/345, 125/34, 245/13, 145/23

Π′6(1/2/3) 123456, 16/2345, 26/1345, 36/1245, 46/1235, 56/1234,
15/2346, 25/1346, 35/1246, 45/1236, 14/2356, 24/1356,
12/3456, 125/346, 245/136, 145/236 1456/23, 2456/13,
1256/34, 126/345, 246/135, 146/235, 456/123, 356/124,
256/134, 156/234

Table: Gray codes for Π′
n(1/2/3), n = 2, 3, 4, 5, 6



Π′2(123) 12

Π′4(123) 12/34, 13/24, 14/23

Π′6(123) 12/34/56, 16/34/25, 26/34/15, 36/24/15, 46/23/15,
16/23/45, 16/24/35, 13/24/56, 13/26/45, 12/36/45,
12/46/35, 13/46/25, 14/36/25, 14/26/35, 14/23/45

Table: Gray codes for Π′
n(123), n = 2, 4, 6


