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Introduction

A partition 7 of a set S C [n], n > 1, is a collection of nonempty
disjoint subsets By, ..., B; of S, called blocks, whose union is S.

A block with only one element is said to be a singleton.
7w =13/245/6/7 is a partition of [7] with b(7) = 4 blocks
M, set of all partitions of [n]

M’ set of all singleton free set partitions of [n]
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A partition o F [n] is layered if it is of the form
(L 1/l + 11/ + Lkl - T+, n].
A partition o is said to be a matching if #B < 2, for all block B

of 0. When the cardinality of each block is exactly 2 the partition
is a perfect matching.



If S C [m] with #S = n, then the standardization map
corresponding to S is the unique order-preserving bijection

sts : S — [n].

For example, if S = {2,5,7} then st(2) = 1,st(5) = 2 and
st(7) = 3. Thus, if 7 = 27/5 its standardization is st(7) = 13/2.



If S C [m] with #S = n, then the standardization map
corresponding to S is the unique order-preserving bijection

sts : S — [n].

For example, if S = {2,5,7} then st(2) = 1,st(5) = 2 and
st(7) = 3. Thus, if 7 = 27/5 its standardization is st(7) = 13/2.

A subpartition of a partition 7 = B;/By/--- /B of Sis a
partition ' of S’ C S such that each block of 7’ is contained in a
different block of .

For example, 27/5 is a subpartition of 1356/27/4 but not of
1357/26/4.



Let m € N, be a given set partition called the pattern. A partition
o € N, contains the pattern 7 if there exists a subpartition ¢’ of
o such that st(c’) = 7. In this case, o’ is called an occurrence of
the pattern 7 in o.

If o as no occurrences of 7, then we say that o avoids the pattern
.

For example, o = 16/23/45 avoids the pattern 123 but contains
the pattern 13/2 since the standardization of the subpartition
o' =16/2 is 13/2.



R C Ny

Mh(R) ={o € M, : o avoids every pattern 7 € R}.
N'(R) = {0 € I, : o avoids every pattern 7 € R}

The set M(R), with R C 3, was studied by Sagan when #R =1
and by Goyt for #R > 2:

e B. E. Sagan, Pattern avoidance in set partitions. Ars Combin.
94 (2010), 79-96.

@ A.M. Goyt, Avoidance of partitions of a three-element set.
Adv. in Appl. Math. 41 (2008), no. 1, 95-114.

@ T. Mansour, Combinatorics of set partitions, CRC Press
[Taylor and Francis Group], 2013.

e M. Klazar, On abab-free and abba-free set partitions,
European J. Combin. 17, 1 (1996), 53-68.



Singleton free set partitions, #R =1

Let 7 a pattern in I3, namely 123,1/23,12/3, 1/2/3 and 13/2.

XI
Fil)=>_
iel
for | a set of nonnegative integers. In particular, when | = [0, m],

we write
m.

X

exp,(x) = Z T

i=0
Let a! , denote the number of partitions of [n] with ¢ blocks with
cardinalities in the set / C N. It follows that
;X" FI(X)K
an,Z =
n>0

n! /!

is the exponential generating function for the number of partitions
of [n] with ¢ blocks, each of them having sizes in the set /.



Finally, we write

Fl) = 3 #(m) %

n>0

For example, with / = N'\ {1}, the exponential generating function
for the number of singleton free set partitions of [n] is

/Xn I Xn
F(x) = Z#nnﬁ = Z Ay

n>0 n¢>0

X _ 1 _ v\
= Z(egllx) = exp(e* — 1 — x).
>0 '



T =12/3,1/23

Given positive integers i < m, let 7/ be the layered pattern
1/2/---/i—=1/i(i+1)/i+2/---/m

in M,,,, where all blocks are singletons with the exception of
Bi ={i,i+1}.

Theorem
For n > 2,
My(wly) = {o € My : b() < m -2},
Fri (x) = expm—2(exp(x) — 1 — x).
Corollary
For n > 2,

M,(12/3) = M}(1/23) = {12--- n},
F1/23(x) = Fia/3(x) = €* — x.



Theorem
For n > 2,

M(12---m)={c€N,:2<#B < m-—1, for all block B € o},
F12..m(x) = exp(expm-1(x) — 1 — x).

The double factorial of an odd positive integer 2/ — 1 is defined
as the product of all positive odd integers up to 2i — 1:

(2i — 1)1 = (2i —1)(2i —3)---5-3- 1.
Corollary
For n > 2,
N/ (123) = {o € N, : o is a perfect matching},

2k — DI if n=2k
4 (103) = { KD =2k
0 otherwise



Theorem
For n > 2,

n(1/2/---/m)y={cen, :blc) <m-1},
Fi/2/../m(x) = expm-1(exp(x) — 1 — x).
Corollary

We have

N (1/2/3) = {o € M, : b(o) < 2},
#1M,(1/2/3) = 2" —n, for n >3,

with #005(1/2/3) = #M(1/2/3) = 1 and #M(1/2/3) = 0.



The Eulerian number e(n, m) is the number of permutations
p1p2 - - - pn of [n] with exactly m descents, that is, m places in
which p; > pjiq, for 1 < j < n—1. Let E(n, m) be the set of all
permutations of [n] with exactly m descents.

Theorem
There is a bijection between M,(1/2/3) and E(n—1,1), for n > 1.



Proof:
¥ E(n—1,1) — M(1/2/3), n>3
S={p1,--.,pc} C[n—1] such that S # [k] and p1 < --- < px.

o If #S#n—2sety(S)={1,pr+1,...,pc+1}/B
° If#Szn—chenS:{1,...,7,...,n—1}forsome i. Set

iy, i £
¢(S)_{{1,...,n}, ifi=1"



Denote by F, the n-th Fibonacci number which is defined by the
recurrence relation

Fn: n—1+Fn—27 n227

with the initial conditions Fp =0 and f; =1

Theorem

For n>1,
N(13/2) = {oc € I}, : o is layered},
#M'(13/2) = Fp_1.

Corollary

The number of layered set partitions of [n] with at least one
singleton is given by 21 — F,_;.



7T M, (m) #Mn(7)
12/3 12--n 1
1/23 12--n 1
1/2/3 | partitions with at most 2 blocks 2n=1 _p
13/2 layered partitions Fn_1
123 perfect matchings (2k —)if n =2k
0 otherwise

Table: Singleton free partitions avoiding a 3-letter pattern



- M(R)
0ifm =123
{12/3, 7} {12---n} if T # 123
{12/34/--- /(n— 1)n} if n even
{123,13/2} 0 if n odd

Difn#£4
{123.1/2/3} (12/34,13/24, 1423} if n — 4
(13/21/2/3] |- i/(it1)---n:icn_2]Ju{l2--n]

{12/3,13/2,1/2/3} {12 n}
{12/3,123, 7} 0 for m = 1/2/3 or 7 = 13/2
{12/34Yifn=4
{13/2,123,1/2/3} 0ifn 4

Table: Singleton free partitions with more than one restriction



Even and Odd Singleton Free Set Partitions

A partition o F [n] with b(c) = k has sign

sgn(o) = (—1)"%,
A partition o of [n] is even if sgn(n) = 1, and is odd if
sgn(n) = —1.

Denote by ETT), (resp. OI}) the set of all singleton free even
(resp. odd) set partitions of [n]. Given R C M3, let EM/(R) (resp.
OM/,(R)) be the set of all singleton free even (resp. odd) set
partitions of [n] that avoids the patterns in R.



Lemma
For n > 1, #EN(12/3) = #EM(1/23).

Theorem

T
For n> 1, EM’(12/3) = {@, if nis even

{12---n}, ifnisodd

Theorem
For n>1,

{oc e :b(c) =2}, ifniseven

EMT,(1/2/3) = {{12 - n}, if nis odd ’

2"l _n—1, ifniseven

#Eﬂ’,,(l/2/3) - {1 if nisodd '



Theorem

If nis an odd integer then ET1/(123) = O’ (123) = 0.
If n=2k >1, then

ET’(123) = M/,(123) and O/, (123) = 0, if k is even.
and

O’ (123) = M,(123) and EM’,(123) = 0, if k is odd.



Theorem
For n>1,

EN’(13/2) = {0 € ), : o is layered and b(c) has the parity of n},

, 1 n_ p2n 1 n_gn
#Eﬂn(13/2)_2(aa_g )—2<V7_5 )

where

1+56 5_1—
=

i
e
o5

are the roots of the equation x* +2x3 4+ x2 —1=0.



Proof: We have

#ET(13/2) = #0M,_,(13/2) + #0I),_,(13/2) since any
partition o € ET’(13/2) is uniquely obtained from a partition in
M’ _,(13/2), with parity different from n, by adding the block
{n—1,n}, or from a partition in M/, _;(13/2), with parity different
from n, by adding n to the block having the letter n — 1. Thus,

HETN(13/2) = #OT,_,(13/2) + #0MM,_,(13/2)
— Fos + Faoa — #ET, ,(13/2) — #ETT,_;(13/2).

Solving this linear recursion we find that the generating function
for #EM (13/2) is

x?(x + 1)

G(x) = (1—x—x2)(1+x+x?)




P-recursion

A sequence (ap)n>0 is said to be P-recursive (short for polynomial
recursive) if there exist polynomials po(x), p1(x) ..., p4(x) with
pd(x) # 0, such that

po(n)an + p1(n)any1 + - -+ + pa(n)antqd = 0,

for all n > 0.



P-recursion

A sequence (ap)n>0 is said to be P-recursive (short for polynomial
recursive) if there exist polynomials po(x), p1(x) ..., p4(x) with
pd(x) # 0, such that

po(n)an + p1(n)ans1 + -+ pa(n)antq =0,
for all n > 0.

A power series f(x) is D-finite (short for differentiably finite) if
there exist finitely many polynomials po(x), p1(x), ..., pm(x) with
Pm(x) # 0 such that

PO () + PLOFD(x) + - + pm()F™(x) = 0,

where f()(x) = d'f /dx'.



Theorem (Stanley)
A sequence (ap)n>0 is P-recursive if and only if its ordinary
generating function f(x) = >, 5o anx" is D-finite.

Corollary
A sequence (ap)n>0 is P-recursive if and only if its exponential
generating function f(x) =) -, anx"/nlis D-finite.



A power series is said to be algebraic if there exist polynomials
po(x), - .., pd(x), not all zero, such that

Po(x) + pLOF()L + -+ pa(x)F(x)? = 0.

Theorem (Stanley)
If f(x) is an algebraic power series then f(x) is D-finite

The converse of this result is false, since, for instance, the power
series f(x) = €* is D-finite but not algebraic.

Theorem

If f(x) and g(x) are D-finite, then any linear combination

af (x) + bg(x) is also D-finite.

If f(x) is D-finite and g(x) is algebraic with g(0) = 0, then the
composition f(g(x)) is D-finite.



Proposition
The sequence #I1", n > 1, is not P-recursive.

nt

Proof.

By contradiction, assume that the sequence #[1/, is P-recursive.
Then, its generating function F(x) = e ~1=% must be D-finite,
and so it must satisfy equation

po(x)F(x) + p1(x)FP(x) + - -+ + pm(x) F™(x) = 0.

A simple induction shows that
d' ; ; ; ; ; ;
&F(x) = F(x) <36 + aleX 4+ ahe™ + -+ a}_le(’_l)x + e’X) ,

for constants aJ’:, j=0,1,...,i—1. Thus, we get

go(x) + qi(x)e* + - - - + gg(x)e? = 0, where

qi(x) = pi(x) + Zi:,-H a¥pk(x). Moreover, since the p;(x) are
not all zero, the same is true for the g;(x). But this imply that e*
is algebraic, a contradiction. O



Theorem
For any m > 1, the following sequences are P-recursive, for n > 1:

#M(12---m),  #M (7)., #M,(1/2/---/m).

Furthermore, for any 7 F [3], the sequences #/ (), #EMN’ ()
and #0M(7), n > 1, are P-recursive.

Proof.

The egf for #M/(12---m), n > 1, is given by

Fi2..m(x) = exp(exp,,_1(x) — 1 — x). Since f(x) = e* is D-finite,
and g(x) = exp,,,_1(x) — 1 — x is algebraic, the composition
f(g(x)) = Fi2..m(x) is D-finite.

The egf exp,, »(€X —1—x) and exp,,,_1(eX — 1 — x) for #M' (7! )
and #M/(1/2/---/m), n > 1, are D-finite since this functions are
linear combinations of series of the form x™e?*, with m € N and

a € R, and thus satisfy a linear homogeneous differential equation
with constant coefficients. O]



Gray codes

A Gray code for a class of combinatorial objects is a list of these
objects so that the transition from one object in the list to its
successor takes only a “small change”. The definition of “small
change” depends on the particular class of objects.

In our case, we define the distance between two partitions 7, w of
[n] as the minimum number of letters that must be moved between
blocks of 7, possibly creating a new block, so that the resulting
partition is w.



M(13/2)

Definition

Let 0 = By/---/Bt—1/B: and 7 be layered singleton free
partitions of [n]. We say that ¢ and 7 forms a good pair if
whenever #B;_1 > 3 and By = {n—1,n}, then B;_1 U{n—1,n}
is not a block of .

Theorem
For each n > 4 there is a Gray code sequence with distance 2,

T, T2 ..., s,

for 1M7,(13/2) such that any two consecutive elements are good
pairs, 11 = 12---nand 7s = 12---(n—2)/(n — 1)n.



M’ (1/2/3) and MM, (123)

Theorem

For each n > 4 there is a Gray code sequence with distance 2 for
M’.(1/2/3) which starts with 12---n and is followed by
1n/2---(n—1).

Theorem
For each integer k > 1, there is a Gray code sequence for 15, (123)
with distance 2.



My(13/2) | 12

M5(13/2) | 123

M,(13/2) | 1234, 12/34

ML(13/2) | 12345, 12/345, 123/45

M5(13/2) | 123456, 12/3456, 123/456, 12/34/56, 1234/56
M,(13/2) | 1234567, 12/34567, 123/4567, 12/34/567, 1234/567,

123/45/67,12/345 /67, 12345 /67

ML(13/2) | 12345678, 12/345678, 12345678, 12/34/5678, 1234,/5678,
123/45/678, 12,/345 /678, 12345 /678, 1234 /5678,
12/34/56/78, 123/456/78, 12/3456 /78, 12345678

Table: Gray codes for I/,(13/2), n=2,...,8



My (1/2/3) | 12

M4(1/2/3) [ 123

M,(1/2/3) | 1234, 14/23, 24/13, 12/34

ML(1/2/3) | 12345, 15/234, 25/134, 35/124, 45/123, 14/235, 24/135,

12/345, 125/34, 245/13, 145/23

M5(1/2/3) | 123456, 16/2345, 26,1345, 36/1245, 46,1235, 56/1234,
15/2346, 25/1346, 35,1246, 45/1236, 14/2356, 24/1356,
12/3456, 125/346, 245,136, 145/236 1456/23, 2456/13,
1256/34, 126/345, 246,135, 146/235, 456,123, 356/124,
256/134, 156,234

Table: Gray codes for M/,(1/2/3), n=2,3,4,5,6



M,(123)

12

M, (123)

12/34, 13/24, 14/23

Mg(123)

12/34/56, 16/34 /25, 26/34/15, 36/24/15, 46/23/15,
16,/23/45,16/24/35, 13/24/56, 13/26/45, 12/36/45,
12/46/35, 13/46,25,14/36/25, 14/26/35, 14/23/45

Table: Gray codes for 1/,(123), n =2,4,6



