Singleton free set partitions avoiding a 3-element set

Ricardo Mamede

71th Séminaire Lotharingien de Combinatoire Joint session with
XIX Incontro Italiano di Combinatoria Algebrica

Introduction

A partition π of a set $S \subseteq[n], n \geq 1$, is a collection of nonempty disjoint subsets B_{1}, \ldots, B_{t} of S, called blocks, whose union is S.

A block with only one element is said to be a singleton.
$\pi=13 / 245 / 6 / 7$ is a partition of [7] with $b(\pi)=4$ blocks
Π_{n} set of all partitions of $[n]$
Π_{n}^{\prime} set of all singleton free set partitions of $[n]$

Introduction

A partition π of a set $S \subseteq[n], n \geq 1$, is a collection of nonempty disjoint subsets B_{1}, \ldots, B_{t} of S, called blocks, whose union is S.

A block with only one element is said to be a singleton.
$\pi=13 / 245 / 6 / 7$ is a partition of [7] with $b(\pi)=4$ blocks
Π_{n} set of all partitions of $[n]$
Π_{n}^{\prime} set of all singleton free set partitions of $[n]$
A partition $\sigma \vdash[n]$ is layered if it is of the form
$[1, i] /[i+1, j] /[j+1, k] / \cdots /[\ell+i, n]$.
A partition σ is said to be a matching if $\# B \leq 2$, for all block B of σ. When the cardinality of each block is exactly 2 the partition is a perfect matching.

If $S \subseteq[m]$ with $\# S=n$, then the standardization map corresponding to S is the unique order-preserving bijection

$$
s t_{S}: S \rightarrow[n] .
$$

For example, if $S=\{2,5,7\}$ then $s t(2)=1, s t(5)=2$ and $s t(7)=3$. Thus, if $\pi=27 / 5$ its standardization is $s t(\pi)=13 / 2$.

If $S \subseteq[m]$ with $\# S=n$, then the standardization map corresponding to S is the unique order-preserving bijection

$$
s t_{S}: S \rightarrow[n] .
$$

For example, if $S=\{2,5,7\}$ then $s t(2)=1, s t(5)=2$ and $s t(7)=3$. Thus, if $\pi=27 / 5$ its standardization is $s t(\pi)=13 / 2$.

A subpartition of a partition $\pi=B_{1} / B_{2} / \cdots / B_{t}$ of S is a partition π^{\prime} of $S^{\prime} \subseteq S$ such that each block of π^{\prime} is contained in a different block of π.

For example, $27 / 5$ is a subpartition of $1356 / 27 / 4$ but not of 1357/26/4.

Let $\pi \in \Pi_{k}$ be a given set partition called the pattern. A partition $\sigma \in \Pi_{n}$ contains the pattern π if there exists a subpartition σ^{\prime} of σ such that $\operatorname{st}\left(\sigma^{\prime}\right)=\pi$. In this case, σ^{\prime} is called an occurrence of the pattern π in σ.

If σ as no occurrences of π, then we say that σ avoids the pattern π.

For example, $\sigma=16 / 23 / 45$ avoids the pattern 123 but contains the pattern $13 / 2$ since the standardization of the subpartition $\sigma^{\prime}=16 / 2$ is $13 / 2$.
$R \subseteq \Pi_{k}$

$$
\begin{aligned}
\Pi_{n}(R) & =\left\{\sigma \in \Pi_{n}: \sigma \text { avoids every pattern } \pi \in R\right\} \\
\Pi_{n}^{\prime}(R) & =\left\{\sigma \in \Pi_{n}^{\prime}: \sigma \text { avoids every pattern } \pi \in R\right\}
\end{aligned}
$$

The set $\Pi(R)$, with $R \subseteq \Pi_{3}$, was studied by Sagan when $\# R=1$ and by Goyt for $\# R \geq 2$:

- B. E. Sagan, Pattern avoidance in set partitions. Ars Combin. 94 (2010), 79-96.
- A.M. Goyt, Avoidance of partitions of a three-element set. Adv. in Appl. Math. 41 (2008), no. 1, 95-114.
- T. Mansour, Combinatorics of set partitions, CRC Press [Taylor and Francis Group], 2013.
- M. Klazar, On abab-free and abba-free set partitions, European J. Combin. 17, 1 (1996), 53-68.

Singleton free set partitions, $\# R=1$

Let π a pattern in Π_{3}, namely $123,1 / 23,12 / 3,1 / 2 / 3$ and $13 / 2$.

$$
F_{l}(x)=\sum_{i \in I} \frac{x^{i}}{i!}
$$

for I a set of nonnegative integers. In particular, when $I=[0, m]$, we write

$$
\exp _{m}(x)=\sum_{i=0}^{m} \frac{x^{i}}{i!}
$$

Let $a_{n, \ell}^{\prime}$ denote the number of partitions of [n] with ℓ blocks with cardinalities in the set $I \subseteq \mathbb{N}$. It follows that

$$
\sum_{n \geq 0} a_{n, \ell}^{\prime} \frac{x^{n}}{n!}=\frac{F_{l}(x)^{\ell}}{\ell!}
$$

is the exponential generating function for the number of partitions of $[n]$ with ℓ blocks, each of them having sizes in the set I.

Finally, we write

$$
F_{\pi}(x)=\sum_{n \geq 0} \# \Pi_{n}^{\prime}(\pi) \frac{x^{n}}{n!}
$$

For example, with $I=\mathbb{N} \backslash\{1\}$, the exponential generating function for the number of singleton free set partitions of $[n]$ is

$$
\begin{aligned}
F(x) & =\sum_{n \geq 0} \# \Pi_{n}^{\prime} \frac{x^{n}}{n!}=\sum_{n, \ell \geq 0} a_{n, \ell}^{\prime} \frac{x^{n}}{n!} \\
& =\sum_{\ell \geq 0} \frac{\left(e^{x}-1-x\right)^{\ell}}{\ell!}=\exp \left(e^{x}-1-x\right)
\end{aligned}
$$

$\pi=12 / 3,1 / 23$

Given positive integers $i<m$, let π_{m}^{i} be the layered pattern

$$
1 / 2 / \cdots / i-1 / i(i+1) / i+2 / \cdots / m
$$

in Π_{m}, where all blocks are singletons with the exception of $B_{i}=\{i, i+1\}$.

Theorem

For $n \geq 2$,

$$
\begin{array}{r}
\Pi_{n}^{\prime}\left(\pi_{m}^{i}\right)=\left\{\sigma \in \Pi_{n}^{\prime}: b(\sigma) \leq m-2\right\} \\
F_{\pi_{m}^{i}}(x)=\exp _{m-2}(\exp (x)-1-x)
\end{array}
$$

Corollary
For $n \geq 2$,

$$
\begin{aligned}
& \Pi_{n}^{\prime}(12 / 3)=\Pi_{n}^{\prime}(1 / 23)=\{12 \cdots n\} \\
& F_{1 / 23}(x)=F_{12 / 3}(x)=e^{x}-x
\end{aligned}
$$

Theorem

For $n \geq 2$,

$$
\begin{aligned}
& \Pi_{n}^{\prime}(12 \cdots m)=\left\{\sigma \in \Pi_{n}: 2 \leq \# B \leq m-1, \text { for all block } B \in \sigma\right\} \\
& F_{12 \cdots m}(x)=\exp \left(\exp _{m-1}(x)-1-x\right)
\end{aligned}
$$

The double factorial of an odd positive integer $2 i-1$ is defined as the product of all positive odd integers up to $2 i-1$:

$$
(2 i-1)!!=(2 i-1)(2 i-3) \cdots 5 \cdot 3 \cdot 1
$$

Corollary

For $n \geq 2$,

$$
\begin{aligned}
& \Pi_{n}^{\prime}(123)=\left\{\sigma \in \Pi_{n}: \sigma \text { is a perfect matching }\right\} \\
& \# \Pi_{n}^{\prime}(123)= \begin{cases}(2 k-1)!! & \text { if } n=2 k \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$\pi=1 / 2 / 3$

Theorem
For $n \geq 2$,

$$
\begin{aligned}
& \Pi_{n}^{\prime}(1 / 2 / \cdots / m)=\left\{\sigma \in \Pi_{n}^{\prime}: b(\sigma) \leq m-1\right\} \\
& F_{1 / 2 / \cdots / m}(x)=\exp _{m-1}(\exp (x)-1-x)
\end{aligned}
$$

Corollary

We have

$$
\begin{aligned}
& \Pi_{n}^{\prime}(1 / 2 / 3)=\left\{\sigma \in \Pi_{n}^{\prime}: b(\sigma) \leq 2\right\} \\
& \# \Pi_{n}^{\prime}(1 / 2 / 3)=2^{n-1}-n, \text { for } n \geq 3
\end{aligned}
$$

with $\# \Pi_{0}^{\prime}(1 / 2 / 3)=\# \Pi_{2}^{\prime}(1 / 2 / 3)=1$ and $\# \Pi_{1}^{\prime}(1 / 2 / 3)=0$.

The Eulerian number $e(n, m)$ is the number of permutations $p_{1} p_{2} \cdots p_{n}$ of [n] with exactly m descents, that is, m places in which $p_{j}>p_{j+1}$, for $1 \leq j \leq n-1$. Let $E(n, m)$ be the set of all permutations of [n] with exactly m descents.

Theorem

There is a bijection between $\Pi_{n}^{\prime}(1 / 2 / 3)$ and $E(n-1,1)$, for $n \geq 1$.

Proof:

$$
\psi: E(n-1,1) \longrightarrow \Pi_{n}^{\prime}(1 / 2 / 3), n \geq 3
$$

$S=\left\{p_{1}, \ldots, p_{k}\right\} \subseteq[n-1]$ such that $S \neq[k]$ and $p_{1}<\cdots<p_{k}$.

- If $\# S \neq n-2$ set $\psi(S)=\left\{1, p_{1}+1, \ldots, p_{k}+1\right\} / B$
- If $\# S=n-2$ then $S=\{1, \ldots, \hat{i}, \ldots, n-1\}$ for some i. Set

$$
\psi(S)=\left\{\begin{array}{ll}
\{1, \ldots, i\} /\{i+1, \ldots, n\}, & \text { if } i \neq 1 \\
\{1, \ldots, n\}, & \text { if } i=1
\end{array} .\right.
$$

$\pi=13 / 2$

Denote by F_{n} the n-th Fibonacci number which is defined by the recurrence relation

$$
F_{n}=F_{n-1}+F_{n-2}, \quad n \geq 2
$$

with the initial conditions $F_{0}=0$ and $F_{1}=1$

Theorem

For $n \geq 1$,

$$
\begin{aligned}
& \Pi_{n}^{\prime}(13 / 2)=\left\{\sigma \in \Pi_{n}^{\prime}: \sigma \text { is layered }\right\} \\
& \# \Pi_{n}^{\prime}(13 / 2)=F_{n-1}
\end{aligned}
$$

Corollary

The number of layered set partitions of [n] with at least one singleton is given by $2^{n-1}-F_{n-1}$.

π	$\Pi_{n}^{\prime}(\pi)$	$\# \Pi_{n}^{\prime}(\pi)$
$12 / 3$	$12 \cdots n$	1
$1 / 23$	$12 \cdots n$	1
$1 / 2 / 3$	partitions with at most 2 blocks	$2^{n-1}-n$
$13 / 2$	layered partitions	F_{n-1}
123	perfect matchings	$(2 k-1)!!$ if $n=2 k$ 0 otherwise

Table: Singleton free partitions avoiding a 3-letter pattern

$\# R \geq 2$

R	$\Pi_{n}^{\prime}(R)$
$\{12 / 3, \pi\}$	\emptyset if $\pi=123$
	$\{12 \cdots n\}$ if $\pi \neq 123$
$\{123,13 / 2\}$	$\{12 / 34 / \cdots /(n-1) n\}$ if n even
\emptyset if n odd	

Table: Singleton free partitions with more than one restriction

Even and Odd Singleton Free Set Partitions

A partition $\sigma \vdash[n]$ with $b(\sigma)=k$ has sign

$$
\operatorname{sgn}(\sigma)=(-1)^{n-k}
$$

A partition σ of $[n]$ is even if $\operatorname{sgn}(n)=1$, and is odd if $\operatorname{sgn}(n)=-1$.

Denote by $E \Pi_{n}^{\prime}$ (resp. $O \Pi_{n}^{\prime}$) the set of all singleton free even (resp. odd) set partitions of $[n]$. Given $R \subset \Pi_{3}$, let $E \Pi_{n}^{\prime}(R)$ (resp. $\left.O \Pi_{n}^{\prime}(R)\right)$ be the set of all singleton free even (resp. odd) set partitions of $[n$] that avoids the patterns in R.

Lemma

For $n \geq 1, \# E \Pi_{n}^{\prime}(12 / 3)=\# E \Pi_{n}^{\prime}(1 / 23)$.

Theorem

For $n \geq 1, E \Pi_{n}^{\prime}(12 / 3)=\left\{\begin{array}{ll}\emptyset, & \text { if } n \text { is even } \\ \{12 \cdots n\}, & \text { if } n \text { is odd }\end{array}\right.$.

Theorem

For $n \geq 1$,

$$
\begin{aligned}
& E \Pi_{n}^{\prime}(1 / 2 / 3)= \begin{cases}\left\{\sigma \in \Pi_{n}^{\prime}: b(\sigma)=2\right\}, & \text { if } n \text { is even } \\
\{12 \cdots n\}, & \text { if } n \text { is odd }\end{cases} \\
& \# E \Pi_{n}^{\prime}(1 / 2 / 3)= \begin{cases}2^{n-1}-n-1, & \text { if } n \text { is even } \\
1, & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Theorem
If n is an odd integer then $E \Pi_{n}^{\prime}(123)=O \Pi_{n}^{\prime}(123)=\emptyset$.
If $n=2 k \geq 1$, then
$E \Pi_{n}^{\prime}(123)=\Pi_{n}^{\prime}(123)$ and $O \Pi_{n}^{\prime}(123)=\emptyset$, if k is even.
and

$$
O \Pi_{n}^{\prime}(123)=\Pi_{n}^{\prime}(123) \text { and } E \Pi_{n}^{\prime}(123)=\emptyset, \text { if } k \text { is odd }
$$

Theorem

For $n \geq 1$,
$E \Pi_{n}^{\prime}(13 / 2)=\left\{\sigma \in \Pi_{n}^{\prime}: \sigma\right.$ is layered and $b(\sigma)$ has the parity of $\left.n\right\}$, $\# E \Pi_{n}^{\prime}(13 / 2)=\frac{1}{2}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)-\frac{1}{2}\left(\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}\right)$,
where
$\alpha=\frac{1+\sqrt{5}}{2}, \quad \beta=\frac{1-\sqrt{5}}{2}, \quad \gamma=-\frac{1}{2}+\frac{\sqrt{3}}{2} i, \quad \delta=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$
are the roots of the equation $x^{4}+2 x^{3}+x^{2}-1=0$.

Proof: We have $\# E \Pi_{n}^{\prime}(13 / 2)=\# O \Pi_{n-2}^{\prime}(13 / 2)+\# O \Pi_{n-1}^{\prime}(13 / 2)$ since any partition $\sigma \in E \Pi_{n}^{\prime}(13 / 2)$ is uniquely obtained from a partition in $\Pi_{n-2}^{\prime}(13 / 2)$, with parity different from n, by adding the block $\{n-1, n\}$, or from a partition in $\Pi_{n-1}^{\prime}(13 / 2)$, with parity different from n, by adding n to the block having the letter $n-1$. Thus,

$$
\begin{aligned}
\# E \Pi_{n}^{\prime}(13 / 2) & =\# O \Pi_{n-2}^{\prime}(13 / 2)+\# O \Pi_{n-1}^{\prime}(13 / 2) \\
& =F_{n-3}+F_{n-2}-\# E \Pi_{n-2}^{\prime}(13 / 2)-\# E \Pi_{n-1}^{\prime}(13 / 2)
\end{aligned}
$$

Solving this linear recursion we find that the generating function for $\# E \Pi_{n}^{\prime}(13 / 2)$ is

$$
G(x)=\frac{x^{2}(x+1)}{\left(1-x-x^{2}\right)\left(1+x+x^{2}\right)}
$$

P-recursion

A sequence $\left(a_{n}\right)_{n \geq 0}$ is said to be P-recursive (short for polynomial recursive) if there exist polynomials $p_{0}(x), p_{1}(x) \ldots, p_{d}(x)$ with $p_{d}(x) \neq 0$, such that

$$
p_{0}(n) a_{n}+p_{1}(n) a_{n+1}+\cdots+p_{d}(n) a_{n+d}=0
$$

for all $n \geq 0$.

P-recursion

A sequence $\left(a_{n}\right)_{n \geq 0}$ is said to be P-recursive (short for polynomial recursive) if there exist polynomials $p_{0}(x), p_{1}(x) \ldots, p_{d}(x)$ with $p_{d}(x) \neq 0$, such that

$$
p_{0}(n) a_{n}+p_{1}(n) a_{n+1}+\cdots+p_{d}(n) a_{n+d}=0
$$

for all $n \geq 0$.
A power series $f(x)$ is D-finite (short for differentiably finite) if there exist finitely many polynomials $p_{0}(x), p_{1}(x), \ldots, p_{m}(x)$ with $p_{m}(x) \neq 0$ such that

$$
p_{0}(x) f(x)+p_{1}(x) f^{(1)}(x)+\cdots+p_{m}(x) f^{(m)}(x)=0
$$

where $f^{(i)}(x)=d^{i} f / d x^{i}$.

Theorem (Stanley)
A sequence $\left(a_{n}\right)_{n \geq 0}$ is P-recursive if and only if its ordinary generating function $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ is D-finite.

Corollary

A sequence $\left(a_{n}\right)_{n \geq 0}$ is P-recursive if and only if its exponential generating function $f(x)=\sum_{n \geq 0} a_{n} x^{n} / n!$ is D-finite.

A power series is said to be algebraic if there exist polynomials $p_{0}(x), \ldots, p_{d}(x)$, not all zero, such that

$$
p_{0}(x)+p_{1}(x) f(x)^{1}+\cdots+p_{d}(x) f(x)^{d}=0 .
$$

Theorem (Stanley)

If $f(x)$ is an algebraic power series then $f(x)$ is D-finite
The converse of this result is false, since, for instance, the power series $f(x)=e^{x}$ is D-finite but not algebraic.

Theorem

If $f(x)$ and $g(x)$ are D-finite, then any linear combination $a f(x)+b g(x)$ is also D-finite.
If $f(x)$ is D-finite and $g(x)$ is algebraic with $g(0)=0$, then the composition $f(g(x))$ is D-finite.

Proposition

The sequence $\# \Pi_{n}^{\prime}, n \geq 1$, is not P-recursive.

Proof.

By contradiction, assume that the sequence $\# \Pi_{n}^{\prime}$ is P-recursive. Then, its generating function $F(x)=e^{e^{x}-1-x}$, must be D-finite, and so it must satisfy equation

$$
p_{0}(x) F(x)+p_{1}(x) F^{(1)}(x)+\cdots+p_{m}(x) F^{(m)}(x)=0 .
$$

A simple induction shows that

$$
\frac{d^{i}}{d x^{i}} F(x)=F(x)\left(a_{0}^{i}+a_{1}^{i} e^{x}+a_{2}^{i} e^{2 x}+\cdots+a_{i-1}^{i} e^{(i-1) x}+e^{i x}\right),
$$

for constants $a_{j}^{i}, j=0,1, \ldots, i-1$. Thus, we get $q_{0}(x)+q_{1}(x) e^{x}+\cdots+q_{d}(x) e^{d x}=0$, where $q_{i}(x)=p_{i}(x)+\sum_{k=i+1}^{d} a_{i}^{k} p_{k}(x)$. Moreover, since the $p_{i}(x)$ are not all zero, the same is true for the $q_{i}(x)$. But this imply that e^{x} is algebraic, a contradiction.

Theorem

For any $m \geq 1$, the following sequences are P-recursive, for $n \geq 1$:

$$
\# \Pi_{n}^{\prime}(12 \cdots m), \quad \# \Pi_{n}^{\prime}\left(\pi_{m}^{i}\right), \quad \# \Pi_{n}^{\prime}(1 / 2 / \cdots / m)
$$

Furthermore, for any $\pi \vdash[3]$, the sequences $\# \Pi_{n}^{\prime}(\pi), \# E \Pi_{n}^{\prime}(\pi)$ and $\# O \Pi_{n}^{\prime}(\pi), n \geq 1$, are P-recursive.

Proof.

The egf for $\# \Pi_{n}^{\prime}(12 \cdots m), n \geq 1$, is given by
$F_{12 \cdots m}(x)=\exp \left(\exp _{m-1}(x)-1-x\right)$. Since $f(x)=e^{x}$ is D-finite, and $g(x)=\exp _{m-1}(x)-1-x$ is algebraic, the composition $f(g(x))=F_{12 \cdots m}(x)$ is D-finite.
The egf $\exp _{m-2}\left(e^{x}-1-x\right)$ and $\exp _{m-1}\left(e^{x}-1-x\right)$ for $\# \Pi_{n}^{\prime}\left(\pi_{m}^{i}\right)$ and $\# \Pi_{n}^{\prime}(1 / 2 / \cdots / m), n \geq 1$, are D-finite since this functions are linear combinations of series of the form $x^{m} e^{a x}$, with $m \in \mathbb{N}$ and $a \in \mathbb{R}$, and thus satisfy a linear homogeneous differential equation with constant coefficients.

Gray codes

A Gray code for a class of combinatorial objects is a list of these objects so that the transition from one object in the list to its successor takes only a "small change". The definition of "small change" depends on the particular class of objects.

In our case, we define the distance between two partitions π, ω of [n] as the minimum number of letters that must be moved between blocks of π, possibly creating a new block, so that the resulting partition is ω.

Definition

Let $\sigma=B_{1} / \cdots / B_{t-1} / B_{t}$ and π be layered singleton free partitions of $[n]$. We say that σ and π forms a good pair if whenever $\# B_{t-1} \geq 3$ and $B_{t}=\{n-1, n\}$, then $B_{t-1} \cup\{n-1, n\}$ is not a block of π.

Theorem

For each $n \geq 4$ there is a Gray code sequence with distance 2,

$$
\pi_{1}, \pi_{2} \ldots, \pi_{s}
$$

for $\Pi_{n}^{\prime}(13 / 2)$ such that any two consecutive elements are good pairs, $\pi_{1}=12 \cdots n$ and $\pi_{s}=12 \cdots(n-2) /(n-1) n$.

$\Pi_{n}^{\prime}(1 / 2 / 3)$ and $\Pi_{2 k}^{\prime}(123)$

Theorem

For each $n \geq 4$ there is a Gray code sequence with distance 2 for $\Pi_{n}^{\prime}(1 / 2 / 3)$ which starts with $12 \cdots n$ and is followed by $1 n / 2 \cdots(n-1)$.

Theorem

For each integer $k \geq 1$, there is a Gray code sequence for $\Pi_{2 k}^{\prime}(123)$ with distance 2.

$\Pi_{2}^{\prime}(13 / 2)$	12
$\Pi_{3}^{\prime}(13 / 2)$	123
$\Pi_{4}^{\prime}(13 / 2)$	$1234,12 / 34$
$\Pi_{5}^{\prime}(13 / 2)$	$12345,12 / 345,123 / 45$
$\Pi_{6}^{\prime}(13 / 2)$	$123456,12 / 3456,123 / 456,12 / 34 / 56,1234 / 56$
$\Pi_{7}^{\prime}(13 / 2)$	$1234567,12 / 34567,123 / 4567,12 / 34 / 567,1234 / 567$,
	$123 / 45 / 67,12 / 345 / 67,12345 / 67$
$\Pi_{8}^{\prime}(13 / 2)$	$12345678,12 / 345678,123 / 45678,12 / 34 / 5678,1234 / 5678$,
	$123 / 45 / 678,12 / 345 / 678,12345 / 678,1234 / 56 / 78$,
	$12 / 34 / 56 / 78,123 / 456 / 78,12 / 3456 / 78,123456 / 78$

Table: Gray codes for $\Pi_{n}^{\prime}(13 / 2), n=2, \ldots, 8$

$\Pi_{2}^{\prime}(1 / 2 / 3)$	12
$\Pi_{3}^{\prime}(1 / 2 / 3)$	123
$\Pi_{4}^{\prime}(1 / 2 / 3)$	$1234,14 / 23,24 / 13,12 / 34$
$\Pi_{5}^{\prime}(1 / 2 / 3)$	$12345,15 / 234,25 / 134,35 / 124,45 / 123,14 / 235,24 / 135$,
	$12 / 345,125 / 34,245 / 13,145 / 23$
$\Pi_{6}^{\prime}(1 / 2 / 3)$	$123456,16 / 2345,26 / 1345,36 / 1245,46 / 1235,56 / 1234$,
	$15 / 2346,25 / 1346,35 / 1246,45 / 1236,14 / 2356,24 / 1356$,
	$12 / 3456,125 / 346,245 / 136,145 / 2361456 / 23,2456 / 13$,
	$1256 / 34,126 / 345,246 / 135,146 / 235,456 / 123,356 / 124$,
	$256 / 134,156 / 234$

Table: Gray codes for $\Pi_{n}^{\prime}(1 / 2 / 3), n=2,3,4,5,6$

$\Pi_{2}^{\prime}(123)$	12
$\Pi_{4}^{\prime}(123)$	$12 / 34,13 / 24,14 / 23$
$\Pi_{6}^{\prime}(123)$	$12 / 34 / 56,16 / 34 / 25,26 / 34 / 15,36 / 24 / 15,46 / 23 / 15$,
	$16 / 23 / 45,16 / 24 / 35,13 / 24 / 56,13 / 26 / 45,12 / 36 / 45$,
	$12 / 46 / 35,13 / 46 / 25,14 / 36 / 25,14 / 26 / 35,14 / 23 / 45$

Table: Gray codes for $\Pi_{n}^{\prime}(123), n=2,4,6$

