Singleton free set partitions avoiding a 3-element set

Ricardo Mamede

71th Séminaire Lotharingien de Combinatoire Joint session with XIX Incontro Italiano di Combinatoria Algebrica A partition π of a set $S \subseteq [n]$, $n \geq 1$, is a collection of nonempty disjoint subsets B_1, \ldots, B_t of S, called **blocks**, whose union is S.

A block with only one element is said to be a singleton.

 $\pi = 13/245/6/7$ is a partition of [7] with $b(\pi) = 4$ blocks

 Π_n set of all partitions of [n]

 Π'_n set of all singleton free set partitions of [n]

A partition π of a set $S \subseteq [n]$, $n \geq 1$, is a collection of nonempty disjoint subsets B_1, \ldots, B_t of S, called **blocks**, whose union is S.

A block with only one element is said to be a singleton.

 $\pi = 13/245/6/7$ is a partition of [7] with $b(\pi) = 4$ blocks

 Π_n set of all partitions of [n]

 Π'_n set of all singleton free set partitions of [n]

A partition $\sigma \vdash [n]$ is **layered** if it is of the form $[1, i]/[i+1, j]/[j+1, k]/\cdots/[\ell+i, n]$.

A partition σ is said to be a **matching** if $\#B \le 2$, for all block *B* of σ . When the cardinality of each block is exactly 2 the partition is a **perfect matching**.

If $S \subseteq [m]$ with #S = n, then the standardization map corresponding to S is the unique order-preserving bijection

$$st_S: S
ightarrow [n].$$

For example, if $S = \{2, 5, 7\}$ then st(2) = 1, st(5) = 2 and st(7) = 3. Thus, if $\pi = 27/5$ its standardization is $st(\pi) = 13/2$.

If $S \subseteq [m]$ with #S = n, then the standardization map corresponding to S is the unique order-preserving bijection

$$st_S: S \to [n].$$

For example, if $S = \{2, 5, 7\}$ then st(2) = 1, st(5) = 2 and st(7) = 3. Thus, if $\pi = 27/5$ its standardization is $st(\pi) = 13/2$.

A subpartition of a partition $\pi = B_1/B_2/\cdots/B_t$ of S is a partition π' of $S' \subseteq S$ such that each block of π' is contained in a different block of π .

For example, 27/5 is a subpartition of 1356/27/4 but not of 1357/26/4.

Let $\pi \in \Pi_k$ be a given set partition called the **pattern**. A partition $\sigma \in \Pi_n$ contains the pattern π if there exists a subpartition σ' of σ such that $st(\sigma') = \pi$. In this case, σ' is called an occurrence of the pattern π in σ .

If σ as no occurrences of $\pi,$ then we say that σ avoids the pattern $\pi.$

For example, $\sigma = 16/23/45$ avoids the pattern 123 but contains the pattern 13/2 since the standardization of the subpartition $\sigma' = 16/2$ is 13/2.

 $R \subseteq \Pi_k$

 $\Pi_n(R) = \{ \sigma \in \Pi_n : \sigma \text{ avoids every pattern } \pi \in R \}.$

 $\Pi'_n(R) = \{ \sigma \in \Pi'_n : \sigma \text{ avoids every pattern } \pi \in R \}$

The set $\Pi(R)$, with $R \subseteq \Pi_3$, was studied by Sagan when #R = 1and by Goyt for $\#R \ge 2$:

- B. E. Sagan, Pattern avoidance in set partitions. Ars Combin. 94 (2010), 79-96.
- A.M. Goyt, Avoidance of partitions of a three-element set. Adv. in Appl. Math. 41 (2008), no. 1, 95–114.
- T. Mansour, Combinatorics of set partitions, CRC Press [Taylor and Francis Group], 2013.
- M. Klazar, On abab-free and abba-free set partitions, European J. Combin. 17, 1 (1996), 53–68.

Singleton free set partitions, #R = 1

Let π a pattern in Π_3 , namely 123, 1/23, 12/3, 1/2/3 and 13/2.

$$F_I(x) = \sum_{i \in I} \frac{x^i}{i!},$$

for I a set of nonnegative integers. In particular, when I = [0, m], we write

$$\exp_m(x) = \sum_{i=0}^m \frac{x^i}{i!}.$$

Let $a'_{n,\ell}$ denote the number of partitions of [n] with ℓ blocks with cardinalities in the set $I \subseteq \mathbb{N}$. It follows that

$$\sum_{n\geq 0} a'_{n,\ell} \frac{x^n}{n!} = \frac{F_I(x)^\ell}{\ell!}$$

is the exponential generating function for the number of partitions of [n] with ℓ blocks, each of them having sizes in the set I.

Finally, we write

$$F_{\pi}(x) = \sum_{n\geq 0} \# \Pi'_n(\pi) \frac{x^n}{n!}.$$

For example, with $I = \mathbb{N} \setminus \{1\}$, the exponential generating function for the number of singleton free set partitions of [n] is

$$F(x) = \sum_{n \ge 0} \# \Pi'_n \frac{x^n}{n!} = \sum_{n,\ell \ge 0} a'_{n,\ell} \frac{x^n}{n!}$$
$$= \sum_{\ell \ge 0} \frac{(e^x - 1 - x)^\ell}{\ell!} = \exp(e^x - 1 - x).$$

$\pi = 12/3, 1/23$

Given positive integers i < m, let π_m^i be the layered pattern

$$1/2/\cdots/i-1/i(i+1)/i+2/\cdots/m$$

in Π_m , where all blocks are singletons with the exception of $B_i = \{i, i+1\}.$

Theorem

For $n \geq 2$, $\Pi'_n(\pi^i_m) = \{ \sigma \in \Pi'_n : b(\sigma) \leq m-2 \},$ $F_{\pi^i_m}(x) = exp_{m-2}(exp(x) - 1 - x).$

Corollary

For $n \geq 2$,

$$\Pi'_n(12/3) = \Pi'_n(1/23) = \{12 \cdots n\},\$$

$$F_{1/23}(x) = F_{12/3}(x) = e^x - x.$$

$\pi = 123$

Theorem

For $n \geq 2$,

 $\Pi'_n(12\cdots m) = \{\sigma \in \Pi_n : 2 \le \#B \le m-1, \text{ for all block } B \in \sigma\},\$ $F_{12\cdots m}(x) = \exp(\exp_{m-1}(x) - 1 - x).$

The **double factorial** of an odd positive integer 2i - 1 is defined as the product of all positive odd integers up to 2i - 1:

$$(2i-1)!! = (2i-1)(2i-3)\cdots 5\cdot 3\cdot 1.$$

Corollary

For $n \geq 2$,

$$\Pi'_n(123) = \{ \sigma \in \Pi_n : \sigma \text{ is a perfect matching} \},$$
$$\#\Pi'_n(123) = \begin{cases} (2k-1)!! & \text{if } n = 2k \\ 0 & \text{otherwise} \end{cases}.$$

$$\pi = 1/2/3$$

Theorem

For $n \geq 2$,

$$\Pi'_n(1/2/\cdots/m) = \{ \sigma \in \Pi'_n : b(\sigma) \le m-1 \},\$$

$$F_{1/2/\cdots/m}(x) = exp_{m-1}(exp(x) - 1 - x).$$

Corollary

We have

$$\Pi'_n(1/2/3) = \{ \sigma \in \Pi'_n : b(\sigma) \le 2 \}, \\ \# \Pi'_n(1/2/3) = 2^{n-1} - n, \text{ for } n \ge 3,$$

with $\#\Pi'_0(1/2/3) = \#\Pi'_2(1/2/3) = 1$ and $\#\Pi'_1(1/2/3) = 0$.

The **Eulerian number** e(n, m) is the number of permutations $p_1p_2 \cdots p_n$ of [n] with exactly m descents, that is, m places in which $p_j > p_{j+1}$, for $1 \le j \le n-1$. Let E(n, m) be the set of all permutations of [n] with exactly m descents.

Theorem

There is a bijection between $\Pi'_n(1/2/3)$ and E(n-1,1), for $n \ge 1$.

Proof:

$$\psi : E(n-1,1) \longrightarrow \Pi'_n(1/2/3), \ n \ge 3$$

$$S = \{p_1, \dots, p_k\} \subseteq [n-1] \text{ such that } S \neq [k] \text{ and } p_1 < \dots < p_k.$$

$$If \#S \neq n-2 \text{ set } \psi(S) = \{1, p_1 + 1, \dots, p_k + 1\}/B$$

$$If \#S = n-2 \text{ then } S = \{1, \dots, \hat{i}, \dots, n-1\} \text{ for some } i. \text{ Set } f(i-1) = (1-i)/(i+1) = n$$

$$\psi(S) = \begin{cases} \{1, \dots, i\}/\{i+1, \dots, n\}, & \text{if } i \neq 1\\ \{1, \dots, n\}, & \text{if } i = 1 \end{cases}. \square$$

$$\pi = 13/2$$

Denote by F_n the *n*-th Fibonacci number which is defined by the recurrence relation

$$F_n=F_{n-1}+F_{n-2}, \quad n\geq 2,$$

with the initial conditions $F_0 = 0$ and $F_1 = 1$

Theorem

For $n \geq 1$,

$$\begin{aligned} &\Pi'_n(13/2) = \{\sigma \in \Pi'_n : \sigma \text{ is layered}\}, \\ &\#\Pi'_n(13/2) = F_{n-1}. \end{aligned}$$

Corollary

The number of layered set partitions of [n] with at least one singleton is given by $2^{n-1} - F_{n-1}$.

π	$\Pi'_n(\pi)$	$\#\Pi'_n(\pi)$
12/3	$12 \cdots n$	1
1/23	$12 \cdots n$	1
1/2/3	partitions with at most 2 blocks	$2^{n-1} - n$
13/2	layered partitions	F_{n-1}
102	perfect matchings	(2k-1)!! if $n=2k$
125		0 otherwise

Table: Singleton free partitions avoiding a 3-letter pattern

 $\#R \ge 2$

R	$\Pi'_n(R)$
<u></u>	\emptyset if $\pi = 123$
12/3, //	$\{12\cdots n\}$ if $\pi \neq 123$
∫123 13/2โ	$\{12/34/\cdots/(n-1)n\}$ if <i>n</i> even
123,13/25	\emptyset if <i>n</i> odd
[102 1/0/2]	\emptyset if $n \neq 4$
{123,1/2/3}	$\{12/34, 13/24, 14/23\}$ if $n = 4$
{13/2,1/2/3}	$\{1 \cdots i/(i+1) \cdots n : i \in [2, n-2]\} \cup \{12 \cdots n\}$
$\{12/3, 13/2, 1/2/3\}$	$\{12\cdots n\}$
$\{12/3, 123, \pi\}$	\emptyset for $\pi=1/2/3$ or $\pi=13/2$
	$\{12/34\}$ if $n = 4$
$\{13/2, 123, 1/2/3\}$	\emptyset if $n \neq 4$

Table: Singleton free partitions with more than one restriction

A partition $\sigma \vdash [n]$ with $b(\sigma) = k$ has sign

$$sgn(\sigma) = (-1)^{n-k}.$$

A partition σ of [n] is **even** if sgn(n) = 1, and is **odd** if sgn(n) = -1.

Denote by $E\Pi'_n$ (resp. $O\Pi'_n$) the set of all singleton free even (resp. odd) set partitions of [n]. Given $R \subset \Pi_3$, let $E\Pi'_n(R)$ (resp. $O\Pi'_n(R)$) be the set of all singleton free even (resp. odd) set partitions of [n] that avoids the patterns in R.

Lemma

For $n \ge 1$, $\#E\Pi'_n(12/3) = \#E\Pi'_n(1/23)$.

Theorem

For
$$n \ge 1$$
, $E\Pi'_n(12/3) = \begin{cases} \emptyset, & \text{if } n \text{ is even} \\ \{12 \cdots n\}, & \text{if } n \text{ is odd} \end{cases}$

Theorem

For $n \geq 1$,

$$E\Pi'_n(1/2/3) = \begin{cases} \{\sigma \in \Pi'_n : b(\sigma) = 2\}, & \text{if } n \text{ is even} \\ \{12 \cdots n\}, & \text{if } n \text{ is odd} \end{cases},$$
$$\#E\Pi'_n(1/2/3) = \begin{cases} 2^{n-1} - n - 1, & \text{if } n \text{ is even} \\ 1, & \text{if } n \text{ is odd} \end{cases};$$

.

Theorem

If n is an odd integer then $E\Pi'_n(123) = O\Pi'_n(123) = \emptyset$. If $n = 2k \ge 1$, then

$$E\Pi'_n(123) = \Pi'_n(123)$$
 and $O\Pi'_n(123) = \emptyset$, if k is even.

 and

$$O\Pi'_n(123) = \Pi'_n(123)$$
 and $E\Pi'_n(123) = \emptyset$, if k is odd.

Theorem

For $n \geq 1$,

 $E\Pi'_n(13/2) = \{ \sigma \in \Pi'_n : \sigma \text{ is layered and } b(\sigma) \text{ has the parity of } n \},$ $\#E\Pi'_n(13/2) = \frac{1}{2} \left(\frac{\alpha^n - \beta^n}{\alpha - \beta} \right) - \frac{1}{2} \left(\frac{\gamma^n - \delta^n}{\gamma - \delta} \right),$

where

$$\alpha = \frac{1 + \sqrt{5}}{2}, \quad \beta = \frac{1 - \sqrt{5}}{2}, \quad \gamma = -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \quad \delta = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

are the roots of the equation $x^4 + 2x^3 + x^2 - 1 = 0$.

Proof: We have

 $#E\Pi'_n(13/2) = #O\Pi'_{n-2}(13/2) + #O\Pi'_{n-1}(13/2)$ since any partition $\sigma \in E\Pi'_n(13/2)$ is uniquely obtained from a partition in $\Pi'_{n-2}(13/2)$, with parity different from *n*, by adding the block $\{n-1, n\}$, or from a partition in $\Pi'_{n-1}(13/2)$, with parity different from *n*, by adding *n* to the block having the letter n-1. Thus,

$$\# E\Pi'_{n}(13/2) = \# O\Pi'_{n-2}(13/2) + \# O\Pi'_{n-1}(13/2)$$

= $F_{n-3} + F_{n-2} - \# E\Pi'_{n-2}(13/2) - \# E\Pi'_{n-1}(13/2).$

Solving this linear recursion we find that the generating function for $\#E\Pi'_n(13/2)$ is

$$G(x) = \frac{x^2(x+1)}{(1-x-x^2)(1+x+x^2)}.$$

P-recursion

A sequence $(a_n)_{n\geq 0}$ is said to be *P*-recursive (short for *polynomial recursive*) if there exist polynomials $p_0(x), p_1(x), \dots, p_d(x)$ with $p_d(x) \neq 0$, such that

$$p_0(n)a_n + p_1(n)a_{n+1} + \cdots + p_d(n)a_{n+d} = 0,$$

for all $n \ge 0$.

P-recursion

A sequence $(a_n)_{n\geq 0}$ is said to be *P*-recursive (short for *polynomial recursive*) if there exist polynomials $p_0(x), p_1(x), \dots, p_d(x)$ with $p_d(x) \neq 0$, such that

$$p_0(n)a_n + p_1(n)a_{n+1} + \cdots + p_d(n)a_{n+d} = 0,$$

for all $n \ge 0$.

wh

A power series f(x) is *D*-finite (short for *differentiably finite*) if there exist finitely many polynomials $p_0(x), p_1(x), \ldots, p_m(x)$ with $p_m(x) \neq 0$ such that

$$p_0(x)f(x) + p_1(x)f^{(1)}(x) + \dots + p_m(x)f^{(m)}(x) = 0,$$

ere $f^{(i)}(x) = d^i f/dx^i.$

Theorem (Stanley)

A sequence $(a_n)_{n\geq 0}$ is *P*-recursive if and only if its ordinary generating function $f(x) = \sum_{n\geq 0} a_n x^n$ is *D*-finite.

Corollary

A sequence $(a_n)_{n\geq 0}$ is *P*-recursive if and only if its exponential generating function $f(x) = \sum_{n\geq 0} a_n x^n / n!$ is *D*-finite.

A power series is said to be *algebraic* if there exist polynomials $p_0(x), \ldots, p_d(x)$, not all zero, such that

$$p_0(x) + p_1(x)f(x)^1 + \cdots + p_d(x)f(x)^d = 0.$$

Theorem (Stanley)

If f(x) is an algebraic power series then f(x) is D-finite

The converse of this result is false, since, for instance, the power series $f(x) = e^x$ is *D*-finite but not algebraic.

Theorem

If f(x) and g(x) are *D*-finite, then any linear combination af(x) + bg(x) is also *D*-finite. If f(x) is *D*-finite and g(x) is algebraic with g(0) = 0, then the composition f(g(x)) is *D*-finite.

Proposition

The sequence $\#\Pi'_n$, $n \ge 1$, is not *P*-recursive.

Proof.

By contradiction, assume that the sequence $\#\Pi'_n$ is *P*-recursive. Then, its generating function $F(x) = e^{e^x - 1 - x}$, must be *D*-finite, and so it must satisfy equation

$$p_0(x)F(x) + p_1(x)F^{(1)}(x) + \cdots + p_m(x)F^{(m)}(x) = 0.$$

A simple induction shows that

$$\frac{d^{i}}{dx^{i}}F(x) = F(x)\left(a_{0}^{i} + a_{1}^{i}e^{x} + a_{2}^{i}e^{2x} + \dots + a_{i-1}^{i}e^{(i-1)x} + e^{ix}\right),$$

for constants a_{j}^{i} , j = 0, 1, ..., i - 1. Thus, we get $q_{0}(x) + q_{1}(x)e^{x} + \cdots + q_{d}(x)e^{dx} = 0$, where $q_{i}(x) = p_{i}(x) + \sum_{k=i+1}^{d} a_{i}^{k}p_{k}(x)$. Moreover, since the $p_{i}(x)$ are not all zero, the same is true for the $q_{i}(x)$. But this imply that e^{x} is algebraic, a contradiction.

Theorem

For any $m \ge 1$, the following sequences are *P*-recursive, for $n \ge 1$:

$$\#\Pi'_n(12\cdots m), \quad \#\Pi'_n(\pi^i_m), \quad \#\Pi'_n(1/2/\cdots/m)$$

Furthermore, for any $\pi \vdash [3]$, the sequences $\#\Pi'_n(\pi)$, $\#E\Pi'_n(\pi)$ and $\#O\Pi'_n(\pi)$, $n \ge 1$, are *P*-recursive.

Proof.

The egf for $\#\Pi'_n(12\cdots m)$, $n \ge 1$, is given by $F_{12\cdots m}(x) = \exp(\exp_{m-1}(x) - 1 - x)$. Since $f(x) = e^x$ is *D*-finite, and $g(x) = \exp_{m-1}(x) - 1 - x$ is algebraic, the composition $f(g(x)) = F_{12\cdots m}(x)$ is *D*-finite. The egf $\exp_{m-2}(e^x - 1 - x)$ and $\exp_{m-1}(e^x - 1 - x)$ for $\#\Pi'_n(\pi_m^i)$ and $\#\Pi'_n(1/2/\cdots/m)$, $n \ge 1$, are *D*-finite since this functions are linear combinations of series of the form $x^m e^{ax}$, with $m \in \mathbb{N}$ and $a \in \mathbb{R}$, and thus satisfy a linear homogeneous differential equation with constant coefficients.

Gray codes

A Gray code for a class of combinatorial objects is a list of these objects so that the transition from one object in the list to its successor takes only a "small change". The definition of "small change" depends on the particular class of objects.

In our case, we define the distance between two partitions π, ω of [n] as the minimum number of letters that must be moved between blocks of π , possibly creating a new block, so that the resulting partition is ω .

Definition

Let $\sigma = B_1 / \cdots / B_{t-1} / B_t$ and π be layered singleton free partitions of [n]. We say that σ and π forms a *good pair* if whenever $\#B_{t-1} \ge 3$ and $B_t = \{n-1, n\}$, then $B_{t-1} \cup \{n-1, n\}$ is not a block of π .

Theorem

For each $n \ge 4$ there is a Gray code sequence with distance 2,

$$\pi_1, \pi_2 \ldots, \pi_s,$$

for $\Pi'_n(13/2)$ such that any two consecutive elements are good pairs, $\pi_1 = 12 \cdots n$ and $\pi_s = 12 \cdots (n-2)/(n-1)n$.

$\Pi'_{n}(1/2/3)$ and $\Pi'_{2k}(123)$

Theorem

For each $n \ge 4$ there is a Gray code sequence with distance 2 for $\Pi'_n(1/2/3)$ which starts with $12 \cdots n$ and is followed by $1n/2 \cdots (n-1)$.

Theorem

For each integer $k \ge 1$, there is a Gray code sequence for $\Pi'_{2k}(123)$ with distance 2.

$\Pi_{2}^{\prime}(13/2)$	12
$\Pi'_{3}(13/2)$	123
$\Pi'_4(13/2)$	1234, 12/34
$\Pi_{5}'(13/2)$	12345, 12/345, 123/45
$\Pi_{6}'(13/2)$	123456, 12/3456, 123/456, 12/34/56, 1234/56
$\Pi_7'(13/2)$	1234567, 12/34567, 123/4567, 12/34/567, 1234/567,
	123/45/67, 12/345/67, 12345/67
$\Pi_8'(13/2)$	12345678, 12/345678, 123/45678, 12/34/5678, 1234/5678,
	123/45/678, 12/345/678, 12345/678, 1234/56/78,
	12/34/56/78, 123/456/78, 12/3456/78, 123456/78

Table: Gray codes for $\Pi'_n(13/2)$, $n = 2, \ldots, 8$

$\Pi_{2}^{\prime}(1/2/3)$	12
$\Pi'_3(1/2/3)$	123
$\Pi'_4(1/2/3)$	1234, 14/23, 24/13, 12/34
$\Pi_{5}'(1/2/3)$	12345, 15/234, 25/134, 35/124, 45/123, 14/235, 24/135,
	12/345, 125/34, 245/13, 145/23
$\Pi_{6}'(1/2/3)$	123456, 16/2345, 26/1345, 36/1245, 46/1235, 56/1234,
	15/2346, 25/1346, 35/1246, 45/1236, 14/2356, 24/1356,
	12/3456, 125/346, 245/136, 145/2361456/23, 2456/13,
	1256/34, 126/345, 246/135, 146/235, 456/123, 356/124,
	256/134, 156/234

Table: Gray codes for $\Pi'_n(1/2/3)$, n = 2, 3, 4, 5, 6

$\Pi_{2}^{\prime}(123)$	12
$\Pi'_{4}(123)$	12/34, 13/24, 14/23
$\Pi_{6}^{\prime}(123)$	12/34/56, 16/34/25, 26/34/15, 36/24/15, 46/23/15,
	16/23/45, 16/24/35, 13/24/56, 13/26/45, 12/36/45,
	12/46/35, 13/46/25, 14/36/25, 14/26/35, 14/23/45

Table: Gray codes for $\Pi'_n(123)$, n = 2, 4, 6