Root Polytopes

Mario Marietti
Università Politecnica delle Marche

joint with Paola Cellini

Problem

$\Phi=$ (crystallographic) irreducible root system

$$
\text { Root Polytope } \mathcal{P}_{\phi}:=\text { convex hull of } \Phi
$$

Type C_{2}

Problem: Find a uniform description of the Root Polytopes \mathcal{P}_{Φ}

Problem

$\Phi=($ crystallographic $)$ irreducible root system

$$
\text { Root Polytope } \mathcal{P}_{\phi}:=\text { convex hull of } \Phi
$$

Type C_{2}

Problem: Find a uniform description of the Root Polytopes \mathcal{P}_{Φ}

Notation

- W Weyl group of Φ
group generated by all reflections through hyperplanes α^{\perp}, $\forall \alpha \in \Phi$
It fixes $\Phi: W(\Phi)=\Phi$
- $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \quad$ set of simple roots $\Phi=\Phi^{+} \cup\left(-\Phi^{+}\right)$where $\Phi^{+}=$set of positive roots (roots which are positive linear combinations of Π)
- $\breve{\omega}_{1}, \ldots, \breve{\omega}_{n}$ fundamental coweights (the dual basis of Π)
- (,) scalar product
- $c_{i}(\beta)$ the coordinates of β w.r.t. Π
$\beta=\sum c_{i}(\beta) \alpha_{i}$
- α_{0} affine simple root

Dynkin Diagram
A_{n}

B_{n}
C_{n}

Extended Dynkin Diagram

E_{6}

E_{7}
E_{8}

F_{4}

G_{2}

Root poset

Partial order structure on the set Φ^{+}

$$
\begin{aligned}
& \alpha=\sum c_{i}(\alpha) \alpha_{i}, \quad \beta=\sum c_{i}(\beta) \alpha_{i} \\
& \alpha \leq \beta \Longleftrightarrow \beta-\alpha \text { is a positive combination of } \Pi \\
& \Longleftrightarrow c_{i}(\alpha) \leq c_{i}(\beta) \quad \forall i
\end{aligned}
$$

$\alpha_{1}, \ldots, \alpha_{n}$ are minimal elements, the highest root θ is maximum
Example

Coordinate faces

For each $i=1, \ldots, n$

$$
F_{i}=\mathcal{P}_{\Phi} \cap\left\{x \mid\left(\breve{\omega}_{i}, x\right)=c_{i}(\theta)\right\} \quad i \text {-th coordinate face }
$$

$$
\begin{aligned}
& F_{1}=\text { Convex }\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} \\
& F_{2}=\text { Convex }\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}=\left\{2 \alpha_{1}+\alpha_{2}\right\} \subset F_{2} \\
& F_{2}=\text { Convex }\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}\right\}
\end{aligned}
$$

Properties of coordinate faces

1. $F_{i} \neq F_{j}$ if $i \neq j$
2. the sum of two roots in F_{i} is never a root
3. if $\alpha, \beta \in \Phi, \alpha \in F_{i}, \beta \geq \alpha$, then $\beta \in F_{i}$
(dual order ideal in the root poset)
4. $F_{i} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{i} \in \Phi^{+}$such that

$$
F_{i} \cap \Phi=\left[\eta_{i}, \theta\right]
$$

5. $\operatorname{dim} F_{i}=\#\left\{k \mid c_{k}\left(\eta_{i}\right) \neq c_{k}(\theta)\right\}$
6. The barycenter of F_{i} is parallel to $\tilde{\omega}_{i}$
7. Two coordinate faces are never in the same W-orbit

Properties of coordinate faces

1. $F_{i} \neq F_{j}$ if $i \neq j$
2. the sum of two roots in F_{i} is never a root
3. if $\alpha, \beta \in \Phi, \alpha \in F_{i}, \beta \geq \alpha$, then $\beta \in F_{i}$
(dual order ideal in the root poset)
4. $F_{i} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{i} \in \Phi^{+}$such that

$$
F_{i} \cap \Phi=\left[\eta_{i}, \theta\right]
$$

5. $\operatorname{dim} F_{i}=\#\left\{k \mid c_{k}\left(\eta_{i}\right) \neq c_{k}(\theta)\right\}$
6. The barycenter of F_{i} is parallel to $\breve{\omega}_{i}$
7. Two coordinate faces are never in the same W-orbit

Properties of coordinate faces

1. $F_{i} \neq F_{j}$ if $i \neq j$
2. the sum of two roots in F_{i} is never a root
3. If $\alpha, \beta \in \Phi, \alpha \in F_{i}, \beta \geq \alpha$, then $\beta \in F_{i}$
(dual order ideal in the root poset)
4. $F_{i} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{i} \in \Phi^{+}$such that

$$
F_{i} \cap \Phi=\left[\eta_{i}, \theta\right]
$$

5. $\operatorname{dim} F_{i}=\#\left\{k \mid c_{k}\left(\eta_{i}\right) \neq c_{k}(\theta)\right\}$
6. The barycenter of F_{i} is parallel to $\breve{\omega}_{i}$
7. Two coordinate faces are never in the same W-orbit

Properties of coordinate faces

1. $F_{i} \neq F_{j}$ if $i \neq j$
2. the sum of two roots in F_{i} is never a root
3. if $\alpha, \beta \in \Phi, \alpha \in F_{i}, \beta \geq \alpha$, then $\beta \in F_{i}$ (dual order ideal in the root poset)
4. $F_{i} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{i} \in \Phi^{+}$such that

$$
F_{i} \cap \Phi=\left[\eta_{i}, \theta\right]
$$

5. $\operatorname{dim} F_{i}=\#\left\{k \mid c_{k}\left(\eta_{i}\right) \neq c_{k}(\theta)\right\}$
6. The barycenter of F_{i} is parallel to $\breve{\omega}_{i}$
7. Two coordinate faces are never in the same W-orbit

Properties of coordinate faces

1. $F_{i} \neq F_{j}$ if $i \neq j$
2. the sum of two roots in F_{i} is never a root
3. if $\alpha, \beta \in \Phi, \alpha \in F_{i}, \beta \geq \alpha$, then $\beta \in F_{i}$ (dual order ideal in the root poset)
4. $F_{i} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{i} \in \Phi^{+}$such that

$$
F_{i} \cap \Phi=\left[\eta_{i}, \theta\right]
$$

5. $\operatorname{dim} F_{i}=\#\left\{k \mid c_{k}\left(\eta_{i}\right) \neq c_{k}(\theta)\right\}$
6. The barycenter of F_{i} is parallel to $\breve{\omega}_{i}$
7. Two coordinate faces are never in the same W-orbit

Properties of coordinate faces

1. $F_{i} \neq F_{j}$ if $i \neq j$
2. the sum of two roots in F_{i} is never a root
3. if $\alpha, \beta \in \Phi, \alpha \in F_{i}, \beta \geq \alpha$, then $\beta \in F_{i}$ (dual order ideal in the root poset)
4. $F_{i} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{i} \in \Phi^{+}$such that

$$
F_{i} \cap \Phi=\left[\eta_{i}, \theta\right]
$$

5. $\operatorname{dim} F_{i}=\#\left\{k \mid c_{k}\left(\eta_{i}\right) \neq c_{k}(\theta)\right\}$
6. The barycenter of F_{i} is parallel to $\breve{\omega}_{i}$
7. Two coordinate faces are never in the same W-orbit

Properties of coordinate faces

1. $F_{i} \neq F_{j}$ if $i \neq j$
2. the sum of two roots in F_{i} is never a root
3. if $\alpha, \beta \in \Phi, \alpha \in F_{i}, \beta \geq \alpha$, then $\beta \in F_{i}$ (dual order ideal in the root poset)
4. $F_{i} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{i} \in \Phi^{+}$such that

$$
F_{i} \cap \Phi=\left[\eta_{i}, \theta\right]
$$

5. $\operatorname{dim} F_{i}=\#\left\{k \mid c_{k}\left(\eta_{i}\right) \neq c_{k}(\theta)\right\}$
6. The barycenter of F_{i} is parallel to $\breve{\omega}_{i}$
7. Two coordinate faces are never in the same W-orbit

Properties of coordinate faces

1. $F_{i} \neq F_{j}$ if $i \neq j$
2. the sum of two roots in F_{i} is never a root
3. if $\alpha, \beta \in \Phi, \alpha \in F_{i}, \beta \geq \alpha$, then $\beta \in F_{i}$
(dual order ideal in the root poset)
4. $F_{i} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{i} \in \Phi^{+}$such that

$$
F_{i} \cap \Phi=\left[\eta_{i}, \theta\right]
$$

5. $\operatorname{dim} F_{i}=\#\left\{k \mid c_{k}\left(\eta_{i}\right) \neq c_{k}(\theta)\right\}$
6. The barycenter of F_{i} is parallel to $\breve{\omega}_{i}$
7. Two coordinate faces are never in the same W-orbit

Proposition

- F_{i} is a facet $\Longleftrightarrow F_{i}$ is maximal among the coordinate faces
- $F_{i} \subseteq F_{j} \Longleftrightarrow$ every path from α_{j} to α_{0} in the extended Dynkin diagram contains α_{i}

Remark $F_{i} \subseteq F_{j}$ means that every root having maximal i-th coordinate (w.r.t. Π) has also maximal j-th coordinate

Example
Hasse Diagram of type A_{n}

Example

Standard parabolic faces

For each $I \subseteq\{1, \ldots, n\}$

$$
F_{I}:=\cap_{i \in I} F_{i} \quad \text { standard parabolic face }
$$

Properties

1. $F_{I} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{I} \in \Phi^{+}$such that

$$
F_{I} \cap \Phi=\left[\eta_{I}, \theta\right]
$$

2. $\operatorname{dim} F_{I}=\#\left\{k \mid c_{k}\left(\eta_{I}\right) \neq c_{k}(\theta)\right\}$
3. The barycenter of F_{l} is in the cone generated by $\breve{\omega}_{i}, i \in I$
4. Two standard parabolic faces are never in the same W-orbit

Standard parabolic faces

For each $I \subseteq\{1, \ldots, n\}$

$$
F_{I}:=\cap_{i \in I} F_{i} \quad \text { standard parabolic face }
$$

Properties

1. $F_{I} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{I} \in \Phi^{+}$such that

$$
F_{I} \cap \Phi=\left[\eta_{I}, \theta\right]
$$

2. $\operatorname{dim} F_{I}=\#\left\{k \mid c_{k}\left(\eta_{I}\right) \neq c_{k}(\theta)\right\}$
3. The barycenter of F_{l} is in the cone generated by $\breve{\omega}_{i}, i \in I$
4. Two standard parabolic faces are never in the same W -orbit

Standard parabolic faces

For each $I \subseteq\{1, \ldots, n\}$

$$
F_{I}:=\cap_{i \in I} F_{i} \quad \text { standard parabolic face }
$$

Properties

1. $F_{I} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{I} \in \Phi^{+}$such that

$$
F_{I} \cap \Phi=\left[\eta_{I}, \theta\right]
$$

2. $\operatorname{dim} F_{I}=\#\left\{k \mid c_{k}\left(\eta_{I}\right) \neq c_{k}(\theta)\right\}$
3. The barycenter of F_{l} is in the cone generated by $\breve{\omega}_{i}, i \in I$
4. Two standard parabolic faces are never in the same W-orbit

Standard parabolic faces

For each $I \subseteq\{1, \ldots, n\}$

$$
F_{I}:=\cap_{i \in I} F_{i} \quad \text { standard parabolic face }
$$

Properties

1. $F_{I} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{I} \in \Phi^{+}$such that

$$
F_{I} \cap \Phi=\left[\eta_{I}, \theta\right]
$$

2. $\operatorname{dim} F_{I}=\#\left\{k \mid c_{k}\left(\eta_{I}\right) \neq c_{k}(\theta)\right\}$
3. The barycenter of F_{l} is in the cone generated by $\breve{\omega}_{i}, i \in I$
4. Two standard parabolic faces are never in the same W-orbit

Standard parabolic faces

For each $I \subseteq\{1, \ldots, n\}$

$$
F_{I}:=\cap_{i \in I} F_{i} \quad \text { standard parabolic face }
$$

Properties

1. $F_{I} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{I} \in \Phi^{+}$such that

$$
F_{I} \cap \Phi=\left[\eta_{I}, \theta\right]
$$

2. $\operatorname{dim} F_{I}=\#\left\{k \mid c_{k}\left(\eta_{I}\right) \neq c_{k}(\theta)\right\}$
3. The barycenter of F_{l} is in the cone generated by $\breve{\omega}_{i}, i \in I$
4. Two standard parabolic faces are never in the same W -orbit

Standard parabolic faces

For each $I \subseteq\{1, \ldots, n\}$

$$
F_{I}:=\cap_{i \in I} F_{i} \quad \text { standard parabolic face }
$$

Properties

1. $F_{I} \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_{I} \in \Phi^{+}$such that

$$
F_{I} \cap \Phi=\left[\eta_{I}, \theta\right]
$$

2. $\operatorname{dim} F_{I}=\#\left\{k \mid c_{k}\left(\eta_{I}\right) \neq c_{k}(\theta)\right\}$
3. The barycenter of F_{l} is in the cone generated by $\breve{\omega}_{i}, i \in I$
4. Two standard parabolic faces are never in the same W-orbit

$$
F_{I}=F_{J} \nRightarrow I=J
$$

Question: For which J we have that F_{J} equals a prescribed F_{I} ?
Answer: Again the extended Dynkin diagram comes out
$\widehat{\Pi}:=\Pi \cup\left\{\alpha_{0}\right\}$
$\Pi_{I}:=\left\{\alpha_{i} \mid i \in I\right\}$
$\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}:=$ connected component of α_{0} in $\widehat{\Pi} \backslash \Pi_{l}$
Definitions
closure of /

$$
\bar{I}:=\left\{k \mid \alpha_{k} \notin\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right\}
$$

border of I
$\partial I:=\left\{k \mid \alpha_{k} \notin\left(\hat{\Pi} \backslash \Pi_{I}\right)_{\alpha_{0}}\right.$, and α_{k} is adjacent to $\left.\left(\widehat{\Pi} \backslash \Pi_{I}\right)_{\alpha_{0}}\right\}$
Clearly $\partial I \subseteq I \subseteq \bar{I}$

$$
F_{I}=F_{J} \nRightarrow I=J
$$

Question: For which J we have that F_{J} equals a prescribed F_{l} ?

Definitions
closure of /

$$
\bar{l}:=\left\{k \mid \alpha_{k} \notin\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right\}
$$

border of I

$$
F_{I}=F_{J} \nRightarrow I=J
$$

Question: For which J we have that F_{J} equals a prescribed F_{l} ?
Answer: Again the extended Dynkin diagram comes out

Definitions
closure of I

$$
\bar{l}:=\left\{k \mid \alpha_{k} \notin\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right\}
$$

$$
F_{I}=F_{J} \nRightarrow I=J
$$

Question: For which J we have that F_{J} equals a prescribed F_{I} ?
Answer: Again the extended Dynkin diagram comes out $\widehat{\Pi}:=\Pi \cup\left\{\alpha_{0}\right\}$
$\Pi_{I}:=\left\{\alpha_{i} \mid i \in I\right\}$
$\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}:=$ connected component of α_{0} in $\widehat{\Pi} \backslash \Pi_{l}$
Definitions
closure of I

$$
\bar{l}:=\left\{k \mid \alpha_{k} \notin\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right\}
$$

border of I

$$
F_{I}=F_{J} \nRightarrow I=J
$$

Question: For which J we have that F_{J} equals a prescribed F_{I} ?
Answer: Again the extended Dynkin diagram comes out $\widehat{\Pi}:=\Pi \cup\left\{\alpha_{0}\right\}$
$\Pi_{I}:=\left\{\alpha_{i} \mid i \in I\right\}$
$\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}:=$ connected component of α_{0} in $\widehat{\Pi} \backslash \Pi_{l}$
Definitions closure of I

$$
\bar{l}:=\left\{k \mid \alpha_{k} \notin\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right\}
$$

$$
F_{I}=F_{J} \nRightarrow I=J
$$

Question: For which J we have that F_{J} equals a prescribed F_{I} ?
Answer: Again the extended Dynkin diagram comes out $\widehat{\Pi}:=\Pi \cup\left\{\alpha_{0}\right\}$
$\Pi_{I}:=\left\{\alpha_{i} \mid i \in I\right\}$
$\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}:=$ connected component of α_{0} in $\widehat{\Pi} \backslash \Pi_{l}$
Definitions closure of I

$$
\bar{l}:=\left\{k \mid \alpha_{k} \notin\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right\}
$$

border of I
$\partial I \quad:=\left\{k \mid \alpha_{k} \notin\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right.$, and α_{k} is adjacent to $\left.\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right\}$
Clearly $\partial I \subseteq I \subseteq T$

$$
F_{I}=F_{J} \nRightarrow I=J
$$

Question: For which J we have that F_{J} equals a prescribed F_{I} ?
Answer: Again the extended Dynkin diagram comes out $\widehat{\Pi}:=\Pi \cup\left\{\alpha_{0}\right\}$
$\Pi_{I}:=\left\{\alpha_{i} \mid i \in I\right\}$
$\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}:=$ connected component of α_{0} in $\widehat{\Pi} \backslash \Pi_{l}$
Definitions closure of I

$$
\bar{l}:=\left\{k \mid \alpha_{k} \notin\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right\}
$$

border of I
$\partial I \quad:=\left\{k \mid \alpha_{k} \notin\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right.$, and α_{k} is adjacent to $\left.\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right\}$
Clearly $\partial I \subseteq I \subseteq \bar{I}$

$$
\begin{aligned}
& \bar{I}:=\left\{k \mid \alpha_{k} \notin\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right\} \\
& \partial I:=\left\{k \mid \alpha_{k} \notin\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}, \text { and } \alpha_{k} \text { is adjacent to }\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}\right\}
\end{aligned}
$$

Example
B_{8}

$$
I=\{1,5,7\}
$$

$$
\bar{I}=\{1,5,6,7,8\} \quad \partial \mathrm{I}=\{1,5\}
$$

Theorem

Fix $I \subseteq\{1,2, \ldots, n\}$. Then

1. $F_{J}=F_{I} \Longleftrightarrow \partial I \subseteq J \subseteq \bar{I}$
2. $\operatorname{dim} F_{I}=n-|\bar{I}|$
3. $\operatorname{Stab}\left(F_{l}\right)=W_{\Pi \backslash \Pi_{\partial \iota}} \quad\left(\begin{array}{c}\text { parabolic subgroup of } W^{\text {generated by the refls } \notin \Pi_{\partial \iota}}\end{array}\right)$

Example: type A_{4}

Example: type B_{4}

There is an inclusion preserving bijection σ

Example: type B_{4}

Corollary

There is an inclusion preserving bijection σ
\{standard parabolic faces\} $\quad \stackrel{\sigma}{\longleftrightarrow}\left\{\begin{array}{c}\text { connected subdiagrams of the } \\ \text { ext. Dynkin diag. containing } \alpha_{0}\end{array}\right\}$

$$
\begin{gathered}
F_{I} \\
F_{\{1, \ldots, n\} \backslash\ulcorner }
\end{gathered}
$$

$$
\mapsto
$$

$\left(\widehat{\Pi} \backslash \Pi_{l}\right)_{\alpha_{0}}$

$$
\hookleftarrow
$$

Π_{Γ}
Remark: $\operatorname{dim} F_{l}=\#$ of vertices of $\sigma\left(F_{l}\right)-1$

> Theorem
> The standard parabolic faces form a complete set of representatives of the W-orbits of faces (of all dimensions).

Corollary

1. The W-orbits are parametrized by the connected subdiagrams of the extended Dynkin diagram which contain the affine simple root α_{0} (also follows from Vinberg's results)
2. Half-space representation:

$$
\mathcal{P}_{\Phi}=\left\{x \mid\left(w \breve{w}_{i}, x\right) \leq c_{i}(\theta)\right\}
$$

for all i s. $t . \widehat{\Pi} \backslash\left\{\alpha_{i}\right\}$ is connected and $w \in W^{\alpha_{i}}$ (coset repr.)
3. f-polynomial:

Theorem

The standard parabolic faces form a complete set of representatives of the W-orbits of faces (of all dimensions).

Corollary

1. The W-orbits are parametrized by the connected subdiagrams of the extended Dynkin diagram which contain the affine simple root α_{0} (also follows from Vinberg's results)
2. Half-space representation:

$$
\mathcal{P}_{\Phi}=\left\{x \mid\left(w \breve{\omega}_{i}, x\right) \leq c_{i}(\theta)\right\}
$$

for all i s. $t . \widehat{\Pi} \backslash\left\{\alpha_{i}\right\}$ is connected and $w \in W^{\alpha_{i}}$ (coset repr.)
3. f-polynomial:

Theorem

The standard parabolic faces form a complete set of representatives of the W-orbits of faces (of all dimensions).

Corollary

1. The W-orbits are parametrized by the connected subdiagrams of the extended Dynkin diagram which contain the affine simple root α_{0} (also follows from Vinberg's results)
2. Half-space representation:

$$
\mathcal{P}_{\Phi}=\left\{x \mid\left(w \breve{\omega}_{i}, x\right) \leq c_{i}(\theta)\right\}
$$

for all i s. $t . \widehat{\Pi} \backslash\left\{\alpha_{i}\right\}$ is connected and $w \in W^{\alpha_{i}}$ (coset repr.)

Theorem

The standard parabolic faces form a complete set of representatives of the W-orbits of faces (of all dimensions).

Corollary

1. The W-orbits are parametrized by the connected subdiagrams of the extended Dynkin diagram which contain the affine simple root α_{0} (also follows from Vinberg's results)
2. Half-space representation:

$$
\mathcal{P}_{\Phi}=\left\{x \mid\left(w \breve{\omega}_{i}, x\right) \leq c_{i}(\theta)\right\}
$$

for all i s. $t . \widehat{\Pi} \backslash\left\{\alpha_{i}\right\}$ is connected and $w \in W^{\alpha_{i}}$ (coset repr.)
3. f-polynomial:

$$
\sum_{\Gamma}\left[W: W_{\left.\Pi \backslash \Pi_{\partial(\Pi \backslash \Gamma)}\right]} t^{|\Gamma|}\right.
$$

where the sum is over $\Gamma \subseteq \Pi$ such that $\Gamma \cup\left\{\alpha_{0}\right\}$ is connected
$\mathcal{P}_{A_{3}}=\mathcal{P}_{B_{3}}=$ cuboctahedron

$\left.\begin{array}{l}\mathcal{P}_{B_{n}}=\mathcal{P}_{D_{n}} \\ \mathcal{P}_{A_{n}}\end{array}\right\}$ distinct generalizations of the cuboctahedron
$\mathcal{P}_{C_{n}}=n$-dimensional cross-polytope

$\mathcal{P}_{F_{4}}=\mathcal{P}_{B_{4}}=\mathcal{P}_{D_{4}}$
$\mathcal{P}_{G_{2}}=\mathcal{P}_{A_{2}}$

The 1-skeleton

The 1-skeleton is "made out of roots"

Proposition

Let F be a 1-dimensional face with vertices α and β. Then $\alpha-\beta$ is either a root or twice a short root.

$$
\alpha-\beta=\alpha_{1}+\alpha_{2}
$$

$\alpha-\beta=2 \alpha_{1}$

Faces and Abelian ideals of the Borel subalgebras

$\mathfrak{g}=$ complex simple Lie algebra
$\mathfrak{h}=$ Cartan subalgebra
$\Phi=$ root system
$\Pi=$ set of simple roots of Φ
$\mathfrak{b}=$ Borel subalgebra associated with Π

$$
\mathfrak{g}=\mathfrak{h}+\sum_{\alpha \in \Phi} \mathfrak{g}_{\alpha} \quad \mathfrak{b}=\mathfrak{h}+\sum_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}
$$

$\mathfrak{g}_{\alpha}=$ root space
An Abelian ideal of \mathfrak{b} is a subspace $\mathfrak{i} \subseteq \mathfrak{b}$ such that

1. $[\mathfrak{b}, \mathfrak{i}] \subseteq \mathfrak{i}$
2. $[i, i]=\{0\}$

These are of the form $\mathfrak{i}=\sum_{\alpha \in \Gamma} \mathfrak{g}_{\alpha}$ for $\Gamma \subseteq \Phi^{+}$such that

1. $\left(\Phi^{+}+\Gamma\right) \cap \Phi^{+} \subseteq \Gamma$
2. $(\Gamma+\Gamma) \cap \Phi^{+}=\emptyset$

Recall that, for every standard parabolic face F_{l} of the root polytope $\mathcal{P}_{\boldsymbol{\Phi}}$:

1. the sum of two roots in F_{l} is never a root
2. the roots in F_{I} form a dual order ideal of the root poset
3. the roots in F_{l} form an interval $\left[\eta_{I}, \theta\right]$ in the root poset

1, 2, 3 imply that

$$
\sum_{\alpha \in F_{I}} \mathfrak{g}_{\alpha}
$$

is a principal Abelian ideal of \mathfrak{b} (generated by any non-zero vector in $\mathfrak{g}_{\eta_{I}}$)

