Root Polytopes

Mario Marietti Università Politecnica delle Marche

joint with Paola Cellini

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem

 $\Phi = ({\sf crystallographic}) \text{ irreducible root system}$

Root Polytope $\mathcal{P}_{\Phi} := \text{convex hull of } \Phi$

Problem: Find a uniform description of the Root Polytopes \mathcal{P}_{Φ}

Problem

 $\Phi = ({\sf crystallographic}) \text{ irreducible root system}$

Root Polytope $\mathcal{P}_{\Phi} := \text{convex hull of } \Phi$

Problem: Find a uniform description of the Root Polytopes \mathcal{P}_{Φ}

Notation

• W Weyl group of Φ

group generated by all reflections through hyperplanes $\alpha^{\perp},$ $\forall \alpha \in \Phi$

It fixes Φ : $W(\Phi) = \Phi$

- $\Pi = \{\alpha_1, \dots, \alpha_n\}$ set of simple roots $\Phi = \Phi^+ \cup (-\Phi^+)$ where $\Phi^+ =$ set of positive roots (roots which are positive linear combinations of Π)
- ► $\breve{\omega}_1, \ldots, \breve{\omega}_n$ fundamental coweights (the dual basis of Π)

- ► (,) scalar product
- $c_i(\beta) the coordinates of \beta w.r.t. \Pi$ $\beta = \sum c_i(\beta)\alpha_i$
- α_0 affine simple root

- ▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Root poset

Partial order structure on the set Φ^+

$$\begin{split} \alpha &= \sum c_i(\alpha)\alpha_i, \quad \beta = \sum c_i(\beta)\alpha_i \\ \alpha &\leq \beta \iff \beta - \alpha \text{ is a positive combination of } \Pi \\ \iff c_i(\alpha) \leq c_i(\beta) \quad \forall i \end{split}$$

 α_1,\ldots,α_n are minimal elements, the highest root heta is maximum

Example

Root poset of A₃: $\alpha_1 + \alpha_2 + \alpha_3 = \theta$ $\alpha_1 + \alpha_2 - \alpha_2 + \alpha_3$ $\alpha_1 + \alpha_2 - \alpha_2 + \alpha_3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Coordinate faces

For each
$$i = 1, \ldots, n$$

 $F_i = \mathcal{P}_{\Phi} \cap \{x \mid (\breve{\omega}_i, x) = c_i(\theta)\}$ *i*-th coordinate face

 $F_2 = \operatorname{Convex}\{\alpha_1, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2\}$

 $F_2 = \operatorname{Convex}\{\alpha_2, \alpha_1 + \alpha_2\}$

- 1. $F_i \neq F_j$ if $i \neq j$
- 2. the sum of two roots in F_i is never a root
- 3. if $\alpha, \beta \in \Phi$, $\alpha \in F_i$, $\beta \ge \alpha$, then $\beta \in F_i$ (dual order ideal in the root poset)
- 4. $F_i \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_i \in \Phi^+$ such that

$$F_i \cap \Phi = [\eta_i, \theta]$$

- 5. dim $F_i = \#\{k \mid c_k(\eta_i) \neq c_k(\theta)\}$
- 6. The barycenter of F_i is parallel to $\breve{\omega}_i$
- 7. Two coordinate faces are never in the same W-orbit

- 1. $F_i \neq F_j$ if $i \neq j$
- 2. the sum of two roots in F_i is never a root
- 3. if $\alpha, \beta \in \Phi$, $\alpha \in F_i$, $\beta \ge \alpha$, then $\beta \in F_i$ (dual order ideal in the root poset)
- 4. $F_i \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_i \in \Phi^+$ such that

$$F_i \cap \Phi = [\eta_i, \theta]$$

- 5. dim $F_i = \#\{k \mid c_k(\eta_i) \neq c_k(\theta)\}$
- 6. The barycenter of F_i is parallel to $\breve{\omega}_i$
- 7. Two coordinate faces are never in the same W-orbit

- 1. $F_i \neq F_j$ if $i \neq j$
- 2. the sum of two roots in F_i is never a root
- 3. if $\alpha, \beta \in \Phi$, $\alpha \in F_i$, $\beta \ge \alpha$, then $\beta \in F_i$ (dual order ideal in the root poset)
- 4. $F_i \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_i \in \Phi^+$ such that

$$F_i \cap \Phi = [\eta_i, \theta]$$

- 5. dim $F_i = \#\{k \mid c_k(\eta_i) \neq c_k(\theta)\}$
- 6. The barycenter of F_i is parallel to $\breve{\omega}_i$
- 7. Two coordinate faces are never in the same W-orbit

- 1. $F_i \neq F_j$ if $i \neq j$
- 2. the sum of two roots in F_i is never a root
- 3. if $\alpha, \beta \in \Phi$, $\alpha \in F_i$, $\beta \ge \alpha$, then $\beta \in F_i$ (dual order ideal in the root poset)

4. $F_i \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_i \in \Phi^+$ such that

$$F_i \cap \Phi = [\eta_i, \theta]$$

- 5. dim $F_i = \#\{k \mid c_k(\eta_i) \neq c_k(\theta)\}$
- 6. The barycenter of F_i is parallel to $\breve{\omega}_i$
- 7. Two coordinate faces are never in the same W-orbit

- 1. $F_i \neq F_j$ if $i \neq j$
- 2. the sum of two roots in F_i is never a root
- 3. if $\alpha, \beta \in \Phi$, $\alpha \in F_i$, $\beta \ge \alpha$, then $\beta \in F_i$ (dual order ideal in the root poset)
- 4. $F_i \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_i \in \Phi^+$ such that

$$F_i \cap \Phi = [\eta_i, \theta]$$

- 5. dim $F_i = \#\{k \mid c_k(\eta_i) \neq c_k(\theta)\}$
- 6. The barycenter of F_i is parallel to $\breve{\omega}_i$
- 7. Two coordinate faces are never in the same W-orbit

- 1. $F_i \neq F_j$ if $i \neq j$
- 2. the sum of two roots in F_i is never a root
- 3. if $\alpha, \beta \in \Phi$, $\alpha \in F_i$, $\beta \ge \alpha$, then $\beta \in F_i$ (dual order ideal in the root poset)
- 4. $F_i \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_i \in \Phi^+$ such that

$$F_i \cap \Phi = [\eta_i, \theta]$$

- 5. dim $F_i = \#\{k \mid c_k(\eta_i) \neq c_k(\theta)\}$
- 6. The barycenter of F_i is parallel to $\breve{\omega}_i$
- 7. Two coordinate faces are never in the same W-orbit

- 1. $F_i \neq F_j$ if $i \neq j$
- 2. the sum of two roots in F_i is never a root
- 3. if $\alpha, \beta \in \Phi$, $\alpha \in F_i$, $\beta \ge \alpha$, then $\beta \in F_i$ (dual order ideal in the root poset)
- 4. $F_i \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_i \in \Phi^+$ such that

$$F_i \cap \Phi = [\eta_i, \theta]$$

- 5. dim $F_i = \#\{k \mid c_k(\eta_i) \neq c_k(\theta)\}$
- 6. The barycenter of F_i is parallel to $\breve{\omega}_i$
- 7. Two coordinate faces are never in the same W-orbit

- 1. $F_i \neq F_j$ if $i \neq j$
- 2. the sum of two roots in F_i is never a root
- 3. if $\alpha, \beta \in \Phi$, $\alpha \in F_i$, $\beta \ge \alpha$, then $\beta \in F_i$ (dual order ideal in the root poset)
- 4. $F_i \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_i \in \Phi^+$ such that

$$F_i \cap \Phi = [\eta_i, \theta]$$

- 5. dim $F_i = \#\{k \mid c_k(\eta_i) \neq c_k(\theta)\}$
- 6. The barycenter of F_i is parallel to $\breve{\omega}_i$
- 7. Two coordinate faces are never in the same W-orbit

Proposition

- F_i is a facet $\iff F_i$ is maximal among the coordinate faces
- F_i ⊆ F_j ⇐⇒ every path from α_j to α₀ in the extended Dynkin diagram contains α_i

Remark $F_i \subseteq F_j$ means that every root having maximal *i*-th coordinate (w.r.t. Π) has also maximal *j*-th coordinate

Example

Hasse Diagram of type An

Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

For each $I \subseteq \{1, \ldots, n\}$

$F_I := \bigcap_{i \in I} F_i$ standard parabolic face

Properties

$$F_I \cap \Phi = [\eta_I, \theta]$$

- 2. dim $F_I = \#\{k \mid c_k(\eta_I) \neq c_k(\theta)\}$
- 3. The barycenter of F_I is in the cone generated by $\breve{\omega}_i, i \in I$
- 4. Two standard parabolic faces are never in the same W-orbit

For each $I \subseteq \{1, \ldots, n\}$

$F_I := \bigcap_{i \in I} F_i$ standard parabolic face

Properties

$$F_I \cap \Phi = [\eta_I, \theta]$$

- 2. dim $F_I = \#\{k \mid c_k(\eta_I) \neq c_k(\theta)\}$
- 3. The barycenter of F_I is in the cone generated by $\breve{\omega}_i, i \in I$
- 4. Two standard parabolic faces are never in the same W-orbit

For each $I \subseteq \{1, \ldots, n\}$

$F_I := \bigcap_{i \in I} F_i$ standard parabolic face

Properties

$$F_I \cap \Phi = [\eta_I, \theta]$$

- 2. dim $F_I = #\{k \mid c_k(\eta_I) \neq c_k(\theta)\}$
- 3. The barycenter of F_I is in the cone generated by $\breve{\omega}_i, i \in I$
- 4. Two standard parabolic faces are never in the same W-orbit

For each $I \subseteq \{1, \ldots, n\}$

$F_I := \bigcap_{i \in I} F_i$ standard parabolic face

Properties

1. $F_I \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_I \in \Phi^+$ such that

$$F_I \cap \Phi = [\eta_I, \theta]$$

- 2. dim $F_I = #\{k \mid c_k(\eta_I) \neq c_k(\theta)\}$
- 3. The barycenter of F_I is in the cone generated by $\breve{\omega}_i, i \in I$
- 4. Two standard parabolic faces are never in the same W-orbit

For each $I \subseteq \{1, \ldots, n\}$

$F_I := \bigcap_{i \in I} F_i$ standard parabolic face

Properties

1. $F_I \cap \Phi$ is an interval in the root poset, i.e. $\exists \eta_I \in \Phi^+$ such that

$$F_I \cap \Phi = [\eta_I, \theta]$$

- 2. dim $F_I = \#\{k \mid c_k(\eta_I) \neq c_k(\theta)\}$
- 3. The barycenter of F_I is in the cone generated by $\breve{\omega}_i$, $i \in I$

4. Two standard parabolic faces are never in the same W-orbit

For each $I \subseteq \{1, \ldots, n\}$

$F_I := \bigcap_{i \in I} F_i$ standard parabolic face

Properties

$$F_I \cap \Phi = [\eta_I, \theta]$$

- 2. dim $F_I = \#\{k \mid c_k(\eta_I) \neq c_k(\theta)\}$
- 3. The barycenter of F_I is in the cone generated by $\breve{\omega}_i$, $i \in I$
- 4. Two standard parabolic faces are never in the same W-orbit

$$F_I = F_J \implies I = J$$

Answer: Again the extended Dynkin diagram comes our $\widehat{\Pi} := \Pi \cup \{\alpha_0\}$ $\Pi_I := \{\alpha_i \mid i \in I\}$ $(\widehat{\Pi} \setminus \Pi_I)_{\alpha_0} := \text{connected component of } \alpha_0 \text{ in } \widehat{\Pi} \setminus \Pi_I$

Definitions closure of *I*

$$\overline{I} := \{k \mid \alpha_k \not\in (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$$

border of I

 $\partial I := \{k \mid \alpha_k \notin (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}, \text{ and } \alpha_k \text{ is adjacent to } (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$ Clearly $\partial I \subseteq I \subseteq \overline{I}$

$$F_I = F_J \implies I = J$$

Answer: Again the extended Dynkin diagram comes ou $\widehat{\Pi} := \Pi \cup \{\alpha_0\}$ $\Pi_I := \{\alpha_i \mid i \in I\}$ $(\widehat{\Pi} \setminus \Pi_I)_{\alpha_0} := \text{connected component of } \alpha_0 \text{ in } \widehat{\Pi} \setminus \Pi_I$

Definitions closure of *I*

$$\overline{I} := \{k \mid \alpha_k \not\in (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$$

border of I

 $\partial I := \{k \mid \alpha_k \notin (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}, \text{ and } \alpha_k \text{ is adjacent to } (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$ Clearly $\partial I \subseteq I \subseteq \overline{I}$

$$F_I = F_J \implies I = J$$

Answer: Again the extended Dynkin diagram comes out $\widehat{\Pi} := \Pi \cup \{\alpha_0\}$ $\Pi_I := \{\alpha_i \mid i \in I\}$ $(\widehat{\Pi} \setminus \Pi_I)_{\alpha_0} := \text{connected component of } \alpha_0 \text{ in } \widehat{\Pi} \setminus \Pi_I$

Definitions closure of *I*

$$\overline{I} := \{k \mid \alpha_k \not\in (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$$

border of I

 $\partial I := \{k \mid \alpha_k \notin (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}, \text{ and } \alpha_k \text{ is adjacent to } (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$ Clearly $\partial I \subseteq I \subseteq \overline{I}$

$$F_I = F_J \implies I = J$$

Answer: Again the extended Dynkin diagram comes out $\widehat{\Pi} := \Pi \cup \{\alpha_0\}$ $\Pi_I := \{\alpha_i \mid i \in I\}$ $(\widehat{\Pi} \setminus \Pi_I)_{\alpha_0} := \text{connected component of } \alpha_0 \text{ in } \widehat{\Pi} \setminus \Pi_I$

Definitions closure of *I*

$$\overline{I} := \{k \mid \alpha_k \notin (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$$

border of I

 $\partial I := \{k \mid \alpha_k \notin (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}, \text{ and } \alpha_k \text{ is adjacent to } (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$ Clearly $\partial I \subseteq I \subseteq \overline{I}$

$$F_I = F_J \implies I = J$$

Answer: Again the extended Dynkin diagram comes out $\widehat{\Pi} := \Pi \cup \{\alpha_0\}$ $\Pi_I := \{\alpha_i \mid i \in I\}$ $(\widehat{\Pi} \setminus \Pi_I)_{\alpha_0} := \text{connected component of } \alpha_0 \text{ in } \widehat{\Pi} \setminus \Pi_I$

Definitions closure of *I*

$$\overline{I} := \{k \mid \alpha_k \not\in (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$$

border of I

 $\partial I := \{k \mid \alpha_k \notin (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}, \text{ and } \alpha_k \text{ is adjacent to } (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$ Clearly $\partial I \subseteq I \subseteq \overline{I}$

$$F_I = F_J \implies I = J$$

Answer: Again the extended Dynkin diagram comes out $\widehat{\Pi} := \Pi \cup \{\alpha_0\}$ $\Pi_I := \{\alpha_i \mid i \in I\}$ $(\widehat{\Pi} \setminus \Pi_I)_{\alpha_0} := \text{connected component of } \alpha_0 \text{ in } \widehat{\Pi} \setminus \Pi_I$

Definitions closure of *I*

$$\overline{I} := \{k \mid \alpha_k \not\in (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$$

border of *I*

$$\partial I := \{k \mid \alpha_k \notin (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}, \text{ and } \alpha_k \text{ is adjacent to } (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$$

Clearly $\partial I \subseteq I \subseteq \overline{I}$

$$F_I = F_J \implies I = J$$

Answer: Again the extended Dynkin diagram comes out $\widehat{\Pi} := \Pi \cup \{\alpha_0\}$ $\Pi_I := \{\alpha_i \mid i \in I\}$ $(\widehat{\Pi} \setminus \Pi_I)_{\alpha_0} := \text{connected component of } \alpha_0 \text{ in } \widehat{\Pi} \setminus \Pi_I$

Definitions closure of *I*

$$\overline{I} := \{k \mid \alpha_k \not\in (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$$

border of *I*

 $\partial I := \{k \mid \alpha_k \notin (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}, \text{ and } \alpha_k \text{ is adjacent to } (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}$ Clearly $\partial I \subseteq I \subseteq \overline{I}$
$$\begin{split} \bar{I} &:= \{k \mid \alpha_k \not\in (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\}\\ \partial I &:= \{k \mid \alpha_k \notin (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}, \text{ and } \alpha_k \text{ is adjacent to } (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}\} \end{split}$$

Example

 $\overline{I} = \{1, 5, 6, 7, 8\}$ $\partial I = \{1, 5\}$

Theorem Fix $I \subseteq \{1, 2, ..., n\}$. Then 1. $F_J = F_I \iff \partial I \subseteq J \subseteq \overline{I}$ 2. dim $F_I = n - |\overline{I}|$ 3. $\operatorname{Stab}(F_I) = W_{\Pi \setminus \Pi_{\partial I}}$ $\begin{pmatrix} parabolic \ subgroup \ of \ W \\ generated \ by \ the \ refls \notin \Pi_{\partial I} \end{pmatrix}$

Example: type A_4

Example: type B_4

Corollary

There is an inclusion preserving bijection σ

 $\{ standard \ parabolic \ faces \} \quad \stackrel{\sigma}{\longleftrightarrow} \quad \begin{cases} connected \ subdiagrams \ of \ the \\ ext. \ Dynkin \ diag. \ containing \ \alpha_0 \end{cases}$ $F_I \qquad \mapsto \qquad (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}$ $F_{\{1,...,n\}\setminus\Gamma} \qquad \longleftrightarrow \qquad \Pi_{\Gamma}$

Example: type B_4

Corollary

There is an inclusion preserving bijection σ

 $\{ standard \ parabolic \ faces \} \quad \stackrel{\sigma}{\longleftrightarrow} \quad \begin{cases} connected \ subdiagrams \ of \ the \\ ext. \ Dynkin \ diag. \ containing \ \alpha_0 \end{cases}$ $F_I \qquad \mapsto \qquad (\widehat{\Pi} \setminus \Pi_I)_{\alpha_0}$ $F_{\{1,...,n\} \setminus \Gamma} \qquad \longleftrightarrow \qquad \Pi_{\Gamma}$

Remark: dim $F_I = \#$ of vertices of $\sigma(F_I) - 1_{\text{CD}}$ is the set of $\sigma(F_I) = 0$

Sac

The standard parabolic faces form a complete set of representatives of the W-orbits of faces (of all dimensions).

Corollary

- The W-orbits are parametrized by the connected subdiagrams of the extended Dynkin diagram which contain the affine simple root α₀ (also follows from Vinberg's results)
- 2. Half-space representation:

$$\mathcal{P}_{\Phi} = \{x \mid (w\breve{\omega}_i, x) \leq c_i(\theta)\}$$

for all *i* s. t. $\widehat{\Pi} \setminus {\alpha_i}$ is connected and $w \in W^{\alpha_i}$ (coset repr.) 3. *f*-polynomial:

$$\sum_{\Gamma} [W: W_{\Pi \setminus \Pi_{\partial(\Pi \setminus \Gamma)}}]t^{|\Gamma|}$$

where the sum is over $\Gamma \subseteq \Pi$ such that $\Gamma \cup \{\alpha_0\}$ is connected

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The standard parabolic faces form a complete set of representatives of the W-orbits of faces (of all dimensions).

Corollary

1. The W-orbits are parametrized by the connected subdiagrams of the extended Dynkin diagram which contain the affine simple root α_0 (also follows from Vinberg's results)

2. Half-space representation:

$$\mathcal{P}_{\Phi} = \{x \mid (w\breve{\omega}_i, x) \leq c_i(\theta)\}$$

for all i s. t. $\widehat{\Pi} \setminus {\alpha_i}$ is connected and $w \in W^{\alpha_i}$ (coset repr.) 3. f-polynomial:

$$\sum_{\Gamma} [W: W_{\Pi \setminus \Pi_{\partial(\Pi \setminus \Gamma)}}]t^{|\Gamma|}$$

where the sum is over $\Gamma \subseteq \Pi$ such that $\Gamma \cup \{ lpha_0 \}$ is connected

The standard parabolic faces form a complete set of representatives of the W-orbits of faces (of all dimensions).

Corollary

- 1. The W-orbits are parametrized by the connected subdiagrams of the extended Dynkin diagram which contain the affine simple root α_0 (also follows from Vinberg's results)
- 2. Half-space representation:

$$\mathcal{P}_{\Phi} = \{x \mid (w\breve{\omega}_i, x) \leq c_i(\theta)\}$$

for all *i* s. t. $\widehat{\Pi} \setminus {\alpha_i}$ is connected and $w \in W^{\alpha_i}$ (coset repr.) 3. *f*-polynomial:

$$\sum_{\Gamma} [W: W_{\Pi \setminus \Pi_{\partial(\Pi \setminus \Gamma)}}]t^{|\Gamma|}$$

where the sum is over $\Gamma \subseteq \Pi$ such that $\Gamma \cup \{\alpha_0\}$ is connected

The standard parabolic faces form a complete set of representatives of the W-orbits of faces (of all dimensions).

Corollary

- 1. The W-orbits are parametrized by the connected subdiagrams of the extended Dynkin diagram which contain the affine simple root α_0 (also follows from Vinberg's results)
- 2. Half-space representation:

$$\mathcal{P}_{\Phi} = \{x \mid (w\breve{\omega}_i, x) \leq c_i(\theta)\}$$

for all *i* s. t. $\widehat{\Pi} \setminus {\{\alpha_i\}}$ is connected and $w \in W^{\alpha_i}$ (coset repr.) 3. *f*-polynomial:

$$\sum_{\Gamma} [W: W_{\Pi \setminus \Pi_{\partial(\Pi \setminus \Gamma)}}]t^{|\Gamma|}$$

where the sum is over $\Gamma \subseteq \Pi$ such that $\Gamma \cup \{\alpha_0\}$ is connected

 $\mathcal{P}_{A_3} = \mathcal{P}_{B_3} = \mathsf{cuboctahedron}$

$$\left. \begin{array}{c} \mathcal{P}_{B_n} = \mathcal{P}_{D_n} \\ \\ \mathcal{P}_{A_n} \end{array} \right\} \hspace{0.1cm} \text{distinct generalizations of the cuboctahedron} \\ \end{array} \right.$$

 $\mathcal{P}_{C_n} = n$ -dimensional cross-polytope

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathcal{P}_{F_4} = \mathcal{P}_{B_4} = \mathcal{P}_{D_4}$$

 $\mathcal{P}_{G_2} = \mathcal{P}_{A_2}$

The 1-skeleton

The 1-skeleton is "made out of roots"

Proposition

Let F be a 1-dimensional face with vertices α and β . Then $\alpha - \beta$ is either a root or twice a short root.

Faces and Abelian ideals of the Borel subalgebras

- $\mathfrak{g} = \mathsf{complex} \ \mathsf{simple} \ \mathsf{Lie} \ \mathsf{algebra}$
- $\mathfrak{h}=\mathsf{Cartan}\ \mathsf{subalgebra}$
- $\Phi = \text{root system}$
- $\Pi = set \text{ of simple roots of } \Phi$
- $\mathfrak{b}=\mathsf{Borel}$ subalgebra associated with Π

$$\mathfrak{g} = \mathfrak{h} + \sum_{lpha \in \mathbf{\Phi}} \mathfrak{g}_{lpha} \qquad \mathfrak{b} = \mathfrak{h} + \sum_{lpha \in \mathbf{\Phi}^+} \mathfrak{g}_{lpha}$$

 $\mathfrak{g}_{\alpha} = \operatorname{root} \operatorname{space}$

An Abelian ideal of $\mathfrak b$ is a subspace $\mathfrak i\subseteq \mathfrak b$ such that

- 1. $[\mathfrak{b},\mathfrak{i}]\subseteq\mathfrak{i}$
- 2. $[i, i] = \{0\}$

These are of the form $\mathfrak{i} = \sum_{\alpha \in \Gamma} \mathfrak{g}_{\alpha}$ for $\Gamma \subseteq \Phi^+$ such that

1.
$$(\Phi^+ + \Gamma) \cap \Phi^+ \subseteq \Gamma$$

2. $(\Gamma + \Gamma) \cap \Phi^+ = \emptyset$

Recall that, for every standard parabolic face F_I of the root polytope \mathcal{P}_{Φ} :

- 1. the sum of two roots in F_I is never a root
- 2. the roots in F_I form a dual order ideal of the root poset
- 3. the roots in F_I form an interval $[\eta_I, \theta]$ in the root poset
- 1, 2, 3 imply that

$$\sum_{\alpha\in F_I}\mathfrak{g}_{\alpha}$$

is a principal Abelian ideal of $\mathfrak b$ (generated by any non-zero vector in $\mathfrak g_{\eta_l})$