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® = (crystallographic) irreducible root system

Root Polytope Py := convex hull of ®
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Problem: Find a uniform description of the Root Polytopes Pg



Notation

v

>

W Weyl group of ¢

group generated by all reflections through hyperplanes o,
Vo € ¢

It fixes &: W(®) = &

MN={a1,...,a,} setof simple roots

¢ =T U (—dT) where &+ = set of positive roots (roots
which are positive linear combinations of 1)

&1,...,0, fundamental coweights (the dual basis of IM)
(,) scalar product

¢i(B)  the coordinates of 8 w.r.t. T

B =2 c(B)a

g  affine simple root



Dynkin Diagram

—eo—o - o—o
—eo—o --° &0
—eo—=o - &%

Extended Dynkin Diagram






Root poset

Partial order structure on the set ®*

a=) c(a)ai, f=7 c(B)e
a<fp <= [ —«isa positive combination of Il

<~ C,'(CV)SC,'(,B) Vi

ai,...,a, are minimal elements, the highest root 8 is maximum

Example

O+ e+ Otg= v)

/\

Root poset of A,: O¢y+0xz Ozt O3

N/ N\



Coordinate faces

Foreachi=1,...,n

Fi =Po N {x | (@i,x) = ci(0)}

&, X+ Xy

F1 = Convex{ay, a1 + as}
F> = Convex{az, a1 + an}

i-th coordinate face

F= {20&1 + az} C k>
F> = Convex{ai, a1+, 201 +an}
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Properties of coordinate faces

1.
2.
3.

Fi# Fjifi#]
the sum of two roots in F; is never a root
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(dual order ideal in the root poset)
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Properties of coordinate faces
L Fi#Fifi#]
2. the sum of two roots in F; is never a root

3.ifa,€d, € F;, B>, then B EF;
(dual order ideal in the root poset)

4. F;N® is an interval in the root poset, i.e. In; € ®T such that

Fine = [77,',9]

5. dim F,' == #{k | Ck(n,') 75 Ck(e)}
6. The barycenter of F; is parallel to &;

7. Two coordinate faces are never in the same W-orbit



Proposition

» F; is a facet <= F; is maximal among the coordinate faces

» F; C F; <= every path from a; to ayq in the extended Dynkin
diagram contains o

Remark F; C F; means that every root having maximal i-th
coordinate (w.r.t. I1) has also maximal j-th coordinate

Example

Hasse Diagram of type A,

u?‘\
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i
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Standard parabolic faces

For each I C{1,...,n}

F; :=nNjeF; standard parabolic face
Properties
1. F;N® is an interval in the root poset, i.e. 31, € T such that

F[ﬂq) = [77/,9]

2. dim F/ = #{k | Ck(77/) 75 Ck(e)}
3. The barycenter of F; is in the cone generated by &;, i € /

4. Two standard parabolic faces are never in the same W-orbit
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Fi=F =% 1=J
Question: For which J we have that F; equals a prescribed F;?
Answer: Again the extended Dynkin diagram comes out
Mm:=nu {ao}
H/LZ:{Oé,"I'G/} R
(M\ My)q, := connected component of ag in MM\ I,

Definitions
closure of [/

T o= {k|oxg (M\T))ag}
border of /
Al = {k| oy & (M\T))a,, and ay is adjacent to (M \ M;)q, }

Clearly 0l C I C 1



T o= {k | i & (M 1))a} N
Ol :=={k | ax ¢ (M\ Mj)ay, and ay is adjacent to (M\ M;)q,}
Example

B; 1={1,57)

1={1,5,6,7,8} 9l={1,5}



Theorem

Fix I C{1,2,...,n}. Then
1. Fj=F < 0lCJCI
2. dimF; =n—|I|

3. Stab(F;) = Wmn,, (

parabolic subgroup of W
generated by the refls ¢ My,

Example: type A4

{1 2,3 4} L/__ F=|(:1,2,3,4}=|(:1,2.4>=[<:1,3,4)=|{:1,4)

_____ . i s dim F=n - [{1,2,3,4}I=0
Stab( )=Wex,

Xz}




Example: type By

F=F

1,34y =

EW 3}

N33 (134 34y faaay dmPen-KI34=

m S0y

{1 2} {2,3} {2,4} ; {1 4} {1 3} {3 4}




Example: type By

F=F

(1,3,4)

=Fig

133 (154 (23 4y fiaay Fsn=iaoimi=]

)";/0 4\ Stab(F)=\N{<x2,u4)
5 {1 2 {23 {24 . {1 4} {1 3} {3 4}

Corollary

There is an inclusion preserving bijection o

{standard parabolic faces} PN { connected subdiagrams of the }

ext. Dynkin diag. containing oy
Fi = (M T)aq
Fea,om\r i Mr

Remark: dim F; = # of vertices of o(F;) —
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Theorem
The standard parabolic faces form a complete set of
representatives of the W -orbits of faces (of all dimensions).

Corollary

1. The W-orbits are parametrized by the connected subdiagrams
of the extended Dynkin diagram which contain the affine
simple root «q (also follows from Vinberg's results)

2. Half-space representation:
Po = {x | (wii, x) < ci(6)}

for all i s. t. TI\ {a;} is connected and w € W (coset repr.)
3. f-polynomial:

. r
Z[W W”\”a(n\r)]t‘ |
=

where the sum is over I C I such that T U {«ag} is connected



Pa; = Pp, = cuboctahedron

Ps, = Pp,
distinct generalizations of the cuboctahedron
Pa

n

Pc, = n-dimensional cross-polytope

7DF4 = PB4 = PD4
P, = Pa,



The 1-skeleton
The 1-skeleton is " made out of roots”
Proposition

Let F be a 1-dimensional face with vertices o and 3. Then oo —
is either a root or twice a short root.

&3 ©¢1+0¢y+ 0t g &, ©¢+0¢p 20¢,+0¢
Oto + O3
(S
Ot + Oty oty
¢z
8 T B T

=B = oy+0x, x—8 = 20cx,



Faces and Abelian ideals of the Borel subalgebras

g = complex simple Lie algebra

b = Cartan subalgebra

® = root system

T = set of simple roots of ®

b = Borel subalgebra associated with T1

g=b+> g« b=b+ > g

acd acdt
go = root space
An Abelian ideal of b is a subspace i C b such that
1. [b,i] Ci
2. [i,i] = {0}

These are of the form i = )" go for [ € ®7 such that
L (¢F+M)notCr
2.(FT+r)net =40



Recall that, for every standard parabolic face F; of the root
polytope Po:

1. the sum of two roots in F; is never a root

2. the roots in F; form a dual order ideal of the root poset

3. the roots in F; form an interval [, 6] in the root poset

1, 2, 3 imply that

> o

a€EF

is a principal Abelian ideal of b (generated by any non-zero vector
in 977/)



