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Φ = (crystallographic) irreducible root system

Root Polytope PΦ := convex hull of Φ

Problem: Find a uniform description of the Root Polytopes PΦ
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Notation

I W Weyl group of Φ
group generated by all reflections through hyperplanes α⊥,
∀α ∈ Φ
It fixes Φ: W (Φ) = Φ

I Π = {α1, . . . , αn} set of simple roots
Φ = Φ+ ∪ (−Φ+) where Φ+ = set of positive roots (roots
which are positive linear combinations of Π)

I ω̆1, . . . , ω̆n fundamental coweights (the dual basis of Π)

I ( , ) scalar product

I ci (β) the coordinates of β w.r.t. Π
β =

∑
ci (β)αi

I α0 affine simple root







Root poset

Partial order structure on the set Φ+

α =
∑

ci (α)αi , β =
∑

ci (β)αi

α ≤ β ⇐⇒ β − α is a positive combination of Π
⇐⇒ ci (α) ≤ ci (β) ∀i

α1, . . . , αn are minimal elements, the highest root θ is maximum

Example



Coordinate faces

For each i = 1, . . . , n

Fi = PΦ ∩ {x | (ω̆i , x) = ci (θ)} i-th coordinate face

F1 = Convex{α1, α1 + α2}
F2 = Convex{α2, α1 + α2}

F1 = {2α1 + α2} ⊂ F2

F2 = Convex{α1, α1+α2, 2α1+α2}



Properties of coordinate faces

1. Fi 6= Fj if i 6= j

2. the sum of two roots in Fi is never a root

3. if α, β ∈ Φ, α ∈ Fi , β ≥ α, then β ∈ Fi

(dual order ideal in the root poset)

4. Fi ∩Φ is an interval in the root poset, i.e. ∃ηi ∈ Φ+ such that

Fi ∩ Φ = [ηi , θ]

5. dim Fi = #{k | ck(ηi ) 6= ck(θ)}
6. The barycenter of Fi is parallel to ω̆i

7. Two coordinate faces are never in the same W -orbit
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Proposition

I Fi is a facet ⇐⇒ Fi is maximal among the coordinate faces

I Fi ⊆ Fj ⇐⇒ every path from αj to α0 in the extended Dynkin
diagram contains αi

Remark Fi ⊆ Fj means that every root having maximal i-th
coordinate (w.r.t. Π) has also maximal j-th coordinate

Example
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Standard parabolic faces

For each I ⊆ {1, . . . , n}

FI := ∩i∈IFi standard parabolic face

Properties

1. FI ∩Φ is an interval in the root poset, i.e. ∃ηI ∈ Φ+ such that

FI ∩ Φ = [ηI , θ]

2. dim FI = #{k | ck(ηI ) 6= ck(θ)}
3. The barycenter of FI is in the cone generated by ω̆i , i ∈ I

4. Two standard parabolic faces are never in the same W -orbit
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FI = FJ 6=⇒ I = J

Question: For which J we have that FJ equals a prescribed FI ?

Answer: Again the extended Dynkin diagram comes out
Π̂ := Π ∪ {α0}
ΠI := {αi | i ∈ I}
(Π̂ \ ΠI )α0 := connected component of α0 in Π̂ \ ΠI

Definitions
closure of I

I := {k | αk 6∈ (Π̂ \ ΠI )α0}

border of I

∂I := {k | αk /∈ (Π̂ \ ΠI )α0 , and αk is adjacent to (Π̂ \ ΠI )α0}

Clearly ∂I ⊆ I ⊆ I



FI = FJ 6=⇒ I = J

Question: For which J we have that FJ equals a prescribed FI ?

Answer: Again the extended Dynkin diagram comes out
Π̂ := Π ∪ {α0}
ΠI := {αi | i ∈ I}
(Π̂ \ ΠI )α0 := connected component of α0 in Π̂ \ ΠI

Definitions
closure of I

I := {k | αk 6∈ (Π̂ \ ΠI )α0}

border of I

∂I := {k | αk /∈ (Π̂ \ ΠI )α0 , and αk is adjacent to (Π̂ \ ΠI )α0}

Clearly ∂I ⊆ I ⊆ I



FI = FJ 6=⇒ I = J

Question: For which J we have that FJ equals a prescribed FI ?

Answer: Again the extended Dynkin diagram comes out
Π̂ := Π ∪ {α0}
ΠI := {αi | i ∈ I}
(Π̂ \ ΠI )α0 := connected component of α0 in Π̂ \ ΠI

Definitions
closure of I

I := {k | αk 6∈ (Π̂ \ ΠI )α0}

border of I

∂I := {k | αk /∈ (Π̂ \ ΠI )α0 , and αk is adjacent to (Π̂ \ ΠI )α0}

Clearly ∂I ⊆ I ⊆ I



FI = FJ 6=⇒ I = J

Question: For which J we have that FJ equals a prescribed FI ?

Answer: Again the extended Dynkin diagram comes out
Π̂ := Π ∪ {α0}
ΠI := {αi | i ∈ I}
(Π̂ \ ΠI )α0 := connected component of α0 in Π̂ \ ΠI

Definitions
closure of I

I := {k | αk 6∈ (Π̂ \ ΠI )α0}

border of I

∂I := {k | αk /∈ (Π̂ \ ΠI )α0 , and αk is adjacent to (Π̂ \ ΠI )α0}

Clearly ∂I ⊆ I ⊆ I



FI = FJ 6=⇒ I = J

Question: For which J we have that FJ equals a prescribed FI ?

Answer: Again the extended Dynkin diagram comes out
Π̂ := Π ∪ {α0}
ΠI := {αi | i ∈ I}
(Π̂ \ ΠI )α0 := connected component of α0 in Π̂ \ ΠI

Definitions
closure of I

I := {k | αk 6∈ (Π̂ \ ΠI )α0}

border of I

∂I := {k | αk /∈ (Π̂ \ ΠI )α0 , and αk is adjacent to (Π̂ \ ΠI )α0}

Clearly ∂I ⊆ I ⊆ I



FI = FJ 6=⇒ I = J

Question: For which J we have that FJ equals a prescribed FI ?

Answer: Again the extended Dynkin diagram comes out
Π̂ := Π ∪ {α0}
ΠI := {αi | i ∈ I}
(Π̂ \ ΠI )α0 := connected component of α0 in Π̂ \ ΠI

Definitions
closure of I

I := {k | αk 6∈ (Π̂ \ ΠI )α0}

border of I

∂I := {k | αk /∈ (Π̂ \ ΠI )α0 , and αk is adjacent to (Π̂ \ ΠI )α0}

Clearly ∂I ⊆ I ⊆ I



FI = FJ 6=⇒ I = J

Question: For which J we have that FJ equals a prescribed FI ?

Answer: Again the extended Dynkin diagram comes out
Π̂ := Π ∪ {α0}
ΠI := {αi | i ∈ I}
(Π̂ \ ΠI )α0 := connected component of α0 in Π̂ \ ΠI

Definitions
closure of I

I := {k | αk 6∈ (Π̂ \ ΠI )α0}

border of I

∂I := {k | αk /∈ (Π̂ \ ΠI )α0 , and αk is adjacent to (Π̂ \ ΠI )α0}

Clearly ∂I ⊆ I ⊆ I



I := {k | αk 6∈ (Π̂ \ ΠI )α0}
∂I := {k | αk /∈ (Π̂ \ ΠI )α0 , and αk is adjacent to (Π̂ \ ΠI )α0}
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Theorem
Fix I ⊆ {1, 2, . . . , n}. Then

1. FJ = FI ⇐⇒ ∂I ⊆ J ⊆ I

2. dim FI = n − |I |

3. Stab(FI ) = WΠ\Π∂I

(
parabolic subgroup of W

generated by the refls /∈ Π∂I

)
Example: type A4



Example: type B4

Corollary

There is an inclusion preserving bijection σ

{standard parabolic faces} σ←→
{

connected subdiagrams of the
ext. Dynkin diag. containing α0

}
FI 7→ (Π̂ \ ΠI )α0

F{1,...,n}\Γ 7→ ΠΓ

Remark: dim FI = # of vertices of σ(FI )− 1
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Theorem
The standard parabolic faces form a complete set of
representatives of the W -orbits of faces (of all dimensions).

Corollary

1. The W -orbits are parametrized by the connected subdiagrams
of the extended Dynkin diagram which contain the affine
simple root α0 (also follows from Vinberg’s results)

2. Half-space representation:

PΦ = {x | (w ω̆i , x) ≤ ci (θ)}

for all i s. t. Π̂ \ {αi} is connected and w ∈W αi (coset repr.)

3. f -polynomial: ∑
Γ

[W : WΠ\Π∂(Π\Γ)]t |Γ|

where the sum is over Γ ⊆ Π such that Γ ∪ {α0} is connected
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PA3 = PB3 = cuboctahedron

PBn = PDn

PAn

 distinct generalizations of the cuboctahedron

PCn = n-dimensional cross-polytope

PF4 = PB4 = PD4

PG2 = PA2



The 1-skeleton
The 1-skeleton is ”made out of roots”

Proposition

Let F be a 1-dimensional face with vertices α and β. Then α− β
is either a root or twice a short root.



Faces and Abelian ideals of the Borel subalgebras

g = complex simple Lie algebra
h = Cartan subalgebra
Φ = root system
Π = set of simple roots of Φ
b = Borel subalgebra associated with Π

g = h +
∑
α∈Φ

gα b = h +
∑
α∈Φ+

gα

gα = root space
An Abelian ideal of b is a subspace i ⊆ b such that

1. [b, i] ⊆ i

2. [i, i] = {0}
These are of the form i =

∑
α∈Γ gα for Γ ⊆ Φ+ such that

1. (Φ+ + Γ) ∩ Φ+ ⊆ Γ

2. (Γ + Γ) ∩ Φ+ = ∅



Recall that, for every standard parabolic face FI of the root
polytope PΦ:

1. the sum of two roots in FI is never a root

2. the roots in FI form a dual order ideal of the root poset

3. the roots in FI form an interval [ηI , θ] in the root poset

1, 2, 3 imply that ∑
α∈FI

gα

is a principal Abelian ideal of b (generated by any non-zero vector
in gηI )


