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Hall-Littlewood polynomials

Hall-Littlewood polynomials: the Rλ(x ; t)-normalization

If λ is a partition with l ≤ n parts and x = {x1, x2, . . . , xn} then we

set

Rλ(x ; t) =
∑
σ∈Sn

σ

xλ
∏

1≤i<j≤n

xi − txj
xi − xj

 .
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Toppling on a graph

Configurations and toppling

If G = (V ,E ) then a configuration of G is a map

α : v ∈ V → α(v) ∈ Z.

Firing a vertex v produces a toppling of its weight,namely

the weight α(v) of v decreases by deg(v);

the weight α(w) of each neighbour w of v increases by 1.
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Toppling on a graph

Firing a vertex: an example

Consider the following configuration

-1

-4

5 0
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Firing a vertex: an example

Let’s fire a vertex
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Toppling on a graph

Firing a vertex: an example

new labels are

 0

-3

2 1
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Toppling on a graph

Firing a vertex: an example

and a new configuration is obtained

 0

-3

2 1

5
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Toppling on a graph

Toppling equivalence

If, for a fixed graph G , there exists a sequence of firings that

change α in β then we say that α and β are equivalent, written

α ≡G β.

Toppling equivalence has relations with parking functions and
q, t-Catalan numbers [Cori and Le Borgne]
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A partial order

The toppling group

Fix a graph G and label its vertices so that

V = {1, 2, . . . , n}.

Set αi = α(i) and identify

α = (α1, α2, . . . , αn).

Define the map Ti : Zn → Zn so that

Ti (α) = β

iff
β comes from α by firing the vertex i
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A partial order

The toppling group

The toppling group of G is the group T = T G generated by
T1,T2, . . . ,Tn.

The orbits of its action on Zn are the class of equivalences of ≡G :

α ≡G β iff β = Tλ(α),

where λ ∈ Nn and Tλ = Tλ1
1 Tλ2

2 · · ·Tλn
n .
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A partial order

The partial order ≤G

We set
β ≤G α iff β = Tλ(α)

for some λ1 ≥ λ2 . . . ≥ λn ≥ 0.

Theorem

1 ≤G is a partial order

2 if β ≤G α then there exists a unique λ such that λn = 0 and
β = Tλ(α)
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A partial order

The principal order ideal Hα

Instead of studying orbits

Oα = {β
∣∣β ≡G α}

we focus our attention on ideals

Hα = {β
∣∣β ≤G α}

In particular we can give a description of the the series

Hα(x ; t) =
∑
β≤Gα

tdist(λ′)xβ,

with λ being the unique such that λn = 0 and β = Tλ(α) and
dist(λ′) is the number of distinct parts of its conjugate.
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A partial order

A first result

T acts on monomials xα by following

Ti · xα = xTi (α).

Theorem

We have

Hα(x ; t) =
∏

1≤i≤n−1

1− (1− t)[i ]

1− [i ]︸ ︷︷ ︸
τ

·xα,

where
[i ] = T1T2 · · ·Ti .
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A partial order

A first result: a sketch proof

Since

Tλ =

R1 R1 . . . R1 R1 λ1 times
R2 R2 . . . R2 λ2 times
...

...
Rn . . . Rn λn times

,

by multiplying along columns

Tλ = [λ′1][λ′2] · · ·

Finally, by expanding τ as a series

τ · xα =
∑

λ′i≤n−1

tdist(λ′)[λ′1][λ′2] · · · =
∑

`(λ)≤n−1

tdist(λ′)Tλ · xα.
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A partial order

Acting on polynomials: basis attached on each graph

An action of T on Z[x1, x2, . . . , xn] is obtained by means of

Ti · xα =

{
xTi (α) if Ti (α) ∈ Nn

0 otherwise
.

In this case (Hα(x ; t))α is a basis (a basis for each G ).

By symmetrizing a basis (attached on each G ) of symmetric
polynomials is obtained

H∗α(x ; t) =
∑
σ∈Sn

σ (Hα(x ; t)) .
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From toppling to Hall-Littlewood polynomials

Some manipulation

Note that

Ti · xα = xα
1

x
deg(i)
i

∏
k neig. of i

xk ,

and in particular
τ · xα = τ(x ; t) xα,

for some τ(x , t) ∈ Z[t]
[[
x±1

1 , x±2
2 , . . . , x±1

n

]]
uniquely

determined by G .
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From toppling to Hall-Littlewood polynomials

A special case

If G = Ln is the graph

           1                          2                                                                           n-1                         n

then [i ] = T1T2 · · ·Ti “produces”αi − 1 and αi+1 + 1 and then∏
1≤i≤n−1

1− (1− t)[i ]

1− [i ]
· xα =

∏
1≤i≤n

xi − (1− t)xi+1

xi − xi+1
xα.

N.B. τ(x ; t) is obtained by expanding in powers of xi+1/xi
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From toppling to Hall-Littlewood polynomials

From toppling to Rλ(x ; t): looking for elements [i , j ]’s

The idea is to find elements [i , j ] in the toppling group that for Ln
give ∏

1≤i<j≤n

1− (1− t)[i , j ]

1− [i , j ]
· xα =

∏
1≤i<j≤n

xi − (1− t)xj
xi − xj

xα,

so that if

Ĥα(x ; t) =
∏

1≤i<j≤n

1− (1− t)[i , j ]

1− [i , j ]
· xα,

then
Ĥ∗α(x ; t) =

∑
σ∈Sn

σ
(
Ĥα(x ; t)

)
= Rα(x , 1− t)
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From toppling to Hall-Littlewood polynomials

From toppling to Rλ(x ; t)

This is obtained by setting

[i , j ] = [i ][i + 1] · · · [j − 1].

Also we have the following combinatorial interpretation:

Ĥα(x ; t) =
∏

1≤i<j≤n

1− (1− t)[i , j ]

1− [i , j ]
· xα =

∑
β≤Gα

Kα,β(t)xβ,

where
Kα,β(t) =

∑
β=[i1,j1]a1 [i2,j2]a2 ···[ik ,jk ]ak (α)

tk ,

with the [i1, j1], [i2, j2], . . . , [ik , jk ] pairwise distinct.
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Reassuming

Reassuming

We have

1 via topplings, for each graph we define a partial order ≤G

2 (for each graph!) we construct a basis of symmetric
polynomials (Ĥ∗α(x ; t))α

3 such basis encodes principal order ideals of ≤G and reduces to
Hall-Littlewood symmetric polynomials when G = L
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Reassuming

What’s more?

1 more parameters t, q, z related to further statistics of the unique λ
and more general polynomials (Ĥ∗

α(x ; t, q, z))α may be constructed
(do they share some property with Macdonald polynomials?)

2 explicit connection between ≤G and standard tableaux are possible:
PLAYING TOPPLING GAME:
starting configuration: α
goal: you want to move from α towards a given β ≤G α
rules: you may fire a node i only if this produces a configuration
β ≤G α
question: in how many ways you may get β?
answer : number of standard Young tableaux of shape λ

3 do special choices of G (trees, cyclic graphs,. . . ) give rise to
interesting basis?
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Reassuming

Thanks

Many thanks for your attention!


