Pasquale Petrullo

Universitá degli Studi della Basilicata

71th SLC and XIX IICA - September 15-18, 2013

...work in progress...

This is a joint-work (in progress) with R. Cori and D. Senato.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Hall-Littlewood polynomials: the $R_{\lambda}(x; t)$ -normalization

If λ is a partition with $l \leq n$ parts and $x = \{x_1, x_2, \dots, x_n\}$ then we set

$$R_{\lambda}(x;t) = \sum_{\sigma \in \mathfrak{S}_n} \sigma \left(x^{\lambda} \prod_{1 \leq i < j \leq n} \frac{x_i - tx_j}{x_i - x_j} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

٠

- Toppling on a graph

Configurations and toppling

If G = (V, E) then a **configuration** of G is a map

$$\alpha \colon \mathbf{v} \in \mathbf{V} \to \alpha(\mathbf{v}) \in \mathbb{Z}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Configurations and toppling

If G = (V, E) then a **configuration** of G is a map

$$\alpha \colon \mathbf{v} \in \mathbf{V} \to \alpha(\mathbf{v}) \in \mathbb{Z}.$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Firing a vertex v produces a toppling of its weight,

Configurations and toppling

If G = (V, E) then a **configuration** of G is a map

$$\alpha \colon \mathbf{v} \in \mathbf{V} \to \alpha(\mathbf{v}) \in \mathbb{Z}.$$

Firing a vertex v produces a **toppling** of its weight, namely

• the weight $\alpha(v)$ of v decreases by deg(v);

• the weight $\alpha(w)$ of each neighbour w of v increases by 1.

- Toppling on a graph

Firing a vertex: an example

Consider the following configuration

└─ Toppling on a graph

Firing a vertex: an example

Let's fire a vertex

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

└─ Toppling on a graph

Firing a vertex: an example

new labels are

Firing a vertex: an example

and a new configuration is obtained

Toppling equivalence

If, for a fixed graph G, there exists a sequence of firings that change α in β then we say that α and β are **equivalent**, written

$$\alpha \equiv_{\mathbf{G}} \beta.$$

Toppling equivalence

If, for a fixed graph G, there exists a sequence of firings that change α in β then we say that α and β are **equivalent**, written

$$\alpha \equiv_{\mathbf{G}} \beta.$$

Toppling equivalence has relations with parking functions and q, *t*-Catalan numbers [Cori and Le Borgne]

Fix a graph G and label its vertices so that

$$V = \{1, 2, ..., n\}.$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Fix a graph G and label its vertices so that

$$V = \{1, 2, \ldots, n\}.$$

Set $\alpha_i = \alpha(i)$ and identify

$$\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n).$$

Fix a graph G and label its vertices so that

$$V = \{1, 2, \ldots, n\}.$$

Set $\alpha_i = \alpha(i)$ and identify

$$\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n).$$

Define the map $T_i: \mathbb{Z}^n \to \mathbb{Z}^n$ so that

$$T_i(\alpha) = \beta$$

iff

 β comes from α by firing the vertex i

The **toppling group** of *G* is the group $\mathcal{T} = \mathcal{T}^{G}$ generated by T_1, T_2, \ldots, T_n .

(日)

The **toppling group** of *G* is the group $\mathcal{T} = \mathcal{T}^{G}$ generated by T_1, T_2, \ldots, T_n .

The **orbits** of its action on \mathbb{Z}^n are the class of equivalences of \equiv_G :

$$\alpha \equiv_{\mathbf{G}} \beta \text{ iff } \beta = T^{\lambda}(\alpha),$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

where $\lambda \in \mathbb{N}^n$ and $T^{\lambda} = T_1^{\lambda_1} T_2^{\lambda_2} \cdots T_n^{\lambda_n}$.

The partial order \leq_G

We set

$$\beta \leq_{\mathsf{G}} \alpha \text{ iff } \beta = T^{\lambda}(\alpha)$$

for some $\lambda_1 \geq \lambda_2 \ldots \geq \lambda_n \geq 0$.

Theorem

- $1 \leq_G$ is a partial order
- 2 if $\beta \leq_G \alpha$ then there exists a unique λ such that $\lambda_n = 0$ and $\beta = T^{\lambda}(\alpha)$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

The principal order ideal \mathcal{H}_{α}

Instead of studying orbits

$$\mathcal{O}_{\alpha} = \{\beta \mid \beta \equiv_{\mathbf{G}} \alpha\}$$

we focus our attention on ideals

$$\mathcal{H}_{\alpha} = \{\beta \mid \beta \leq_{\mathbf{G}} \alpha\}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The principal order ideal \mathcal{H}_{α}

Instead of studying orbits

$$\mathcal{O}_{\alpha} = \{\beta \mid \beta \equiv_{\mathbf{G}} \alpha\}$$

we focus our attention on ideals

$$\mathcal{H}_{\alpha} = \{\beta \mid \beta \leq_{\mathbf{G}} \alpha\}$$

In particular we can give a description of the the series

$$\mathcal{H}_{lpha}(x;t) = \sum_{eta \leq_{G} lpha} t^{\textit{dist}(\lambda')} x^{eta},$$

with λ being the unique such that $\lambda_n = 0$ and $\beta = T^{\lambda}(\alpha)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The principal order ideal \mathcal{H}_{α}

Instead of studying orbits

$$\mathcal{O}_{\alpha} = \{\beta \mid \beta \equiv_{\mathbf{G}} \alpha\}$$

we focus our attention on ideals

$$\mathcal{H}_{\alpha} = \{\beta \mid \beta \leq_{\mathbf{G}} \alpha\}$$

In particular we can give a description of the the series

$$\mathcal{H}_{lpha}(x;t) = \sum_{eta \leq_G lpha} t^{\textit{dist}(\lambda')} x^eta,$$

with λ being the unique such that $\lambda_n = 0$ and $\beta = T^{\lambda}(\alpha)$ and $dist(\lambda')$ is the number of distinct parts of its conjugate.

A first result

 ${\mathcal T}$ acts on monomials x^α by following

$$T_i \cdot x^{\alpha} = x^{T_i(\alpha)}.$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

A first result

${\mathcal T}$ acts on monomials x^{lpha} by following

$$T_i \cdot x^{\alpha} = x^{T_i(\alpha)}.$$

Theorem

We have

$$\mathcal{H}_{lpha}(x;t) = \prod_{\substack{1 \leq i \leq n-1 \ au}} rac{1-(1-t)[i]}{1-[i]} \cdot x^{lpha},$$

where

$$[i] = T_1 T_2 \cdots T_i.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A first result

${\mathcal T}$ acts on monomials x^{lpha} by following

$$T_i \cdot x^{\alpha} = x^{T_i(\alpha)}.$$

Theorem

We have

$$\mathcal{H}_{lpha}(x;t) = \prod_{\substack{1 \leq i \leq n-1 \ au}} rac{1-(1-t)[i]}{1-[i]} \cdot x^{lpha},$$

where

$$[i] = T_1 T_2 \cdots T_i.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A first result: a sketch proof

Since

$T^{\lambda} = \begin{cases} R_1 & R_1 & \dots & R_1 & R_1 & \lambda_1 \text{ times} \\ R_2 & R_2 & \dots & R_2 & \lambda_2 \text{ times} \\ \vdots & \vdots & & , \end{cases}$ $R_n \ldots R_n$ λ_n times

by multiplying along columns

$$T^{\lambda} = [\lambda_1'][\lambda_2'] \cdots$$

,

A first result: a sketch proof

Since

$$T^{\lambda} = \begin{cases} R_1 & R_1 & \dots & R_1 & R_1 & \lambda_1 \text{ times} \\ R_2 & R_2 & \dots & R_2 & \lambda_2 \text{ times} \\ \vdots & \vdots & & \\ R_n & \dots & R_n & \lambda_n \text{ times} \end{cases}$$

by multiplying along columns

$$T^{\lambda} = [\lambda_1'][\lambda_2'] \cdots$$

Finally, by expanding τ as a series

$$\tau \cdot x^{\alpha} = \sum_{\lambda'_i \leq n-1} t^{dist(\lambda')}[\lambda'_1][\lambda'_2] \cdots = \sum_{\ell(\lambda) \leq n-1} t^{dist(\lambda')} T^{\lambda} \cdot x^{\alpha}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Acting on polynomials: basis attached on each graph

An action of \mathcal{T} on $\mathbb{Z}[x_1, x_2, \dots, x_n]$ is obtained by means of

$$T_i \cdot x^{\alpha} = \begin{cases} x^{T_i(\alpha)} & \text{ if } T_i(\alpha) \in \mathbb{N}^n \\ 0 & \text{ otherwise} \end{cases}$$

Acting on polynomials: basis attached on each graph

An action of \mathcal{T} on $\mathbb{Z}[x_1, x_2, \dots, x_n]$ is obtained by means of

$$T_i \cdot x^{lpha} = egin{cases} x^{T_i(lpha)} & ext{if } T_i(lpha) \in \mathbb{N}^n \ 0 & ext{otherwise} \end{cases}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

In this case $(\mathcal{H}_{\alpha}(x; t))_{\alpha}$ is a basis (a **basis** for each *G*).

Acting on polynomials: basis attached on each graph

An action of \mathcal{T} on $\mathbb{Z}[x_1, x_2, \dots, x_n]$ is obtained by means of

$$T_i \cdot x^{lpha} = egin{cases} x^{T_i(lpha)} & ext{if } T_i(lpha) \in \mathbb{N}^n \ 0 & ext{otherwise} \end{cases}$$

In this case $(\mathcal{H}_{\alpha}(x; t))_{\alpha}$ is a basis (a **basis** for each *G*).

By **symmetrizing** a basis (attached on each *G*) of symmetric polynomials is obtained

$$\mathcal{H}^*_{lpha}(\mathsf{x};t) = \sum_{\sigma \in \mathfrak{S}_n} \sigma\left(\mathcal{H}_{lpha}(\mathsf{x};t)
ight).$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Some manipulation

Note that

$$T_i \cdot x^{\alpha} = x^{\alpha} \frac{1}{x_i^{deg(i)}} \prod_{k \text{ neig. of } i} x_k,$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Some manipulation

Note that

$$T_i \cdot x^{\alpha} = x^{\alpha} \frac{1}{x_i^{deg(i)}} \prod_{k \text{ neig. of } i} x_k,$$

and in particular

$$\tau \cdot x^{\alpha} = \tau(x; t) x^{\alpha},$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

for some $\tau(x, t) \in \mathbb{Z}[t] \left[\left[x_1^{\pm 1}, x_2^{\pm 2}, \dots, x_n^{\pm 1} \right] \right]$ uniquely determined by *G*.

A special case

If $G = L_n$ is the graph

then $[i] = T_1 T_2 \cdots T_i$ "produces" $\alpha_i - 1$ and $\alpha_{i+1} + 1$ and then

$$\prod_{1 \le i \le n-1} \frac{1 - (1 - t)[i]}{1 - [i]} \cdot x^{\alpha} = \prod_{1 \le i \le n} \frac{x_i - (1 - t)x_{i+1}}{x_i - x_{i+1}} x^{\alpha}.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

A special case

If $G = L_n$ is the graph

then $[i] = T_1 T_2 \cdots T_i$ "produces" $\alpha_i - 1$ and $\alpha_{i+1} + 1$ and then

$$\prod_{1 \le i \le n-1} \frac{1 - (1 - t)[i]}{1 - [i]} \cdot x^{\alpha} = \prod_{1 \le i \le n} \frac{x_i - (1 - t)x_{i+1}}{x_i - x_{i+1}} x^{\alpha}.$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

N.B. $\tau(x; t)$ is obtained by expanding in powers of x_{i+1}/x_i

From toppling to $R_{\lambda}(x; t)$: looking for elements [i, j]'s

The idea is to find elements [i, j] in the toppling group that for L_n give

$$\prod_{1 \le i < j \le n} \frac{1 - (1 - t)[i, j]}{1 - [i, j]} \cdot x^{\alpha} = \prod_{1 \le i < j \le n} \frac{x_i - (1 - t)x_j}{x_i - x_j} x^{\alpha},$$

From toppling to $R_{\lambda}(x; t)$: looking for elements [i, j]'s

The idea is to find elements [i, j] in the toppling group that for L_n give

$$\prod_{1 \le i < j \le n} \frac{1 - (1 - t)[i, j]}{1 - [i, j]} \cdot x^{\alpha} = \prod_{1 \le i < j \le n} \frac{x_i - (1 - t)x_j}{x_i - x_j} x^{\alpha},$$

so that if

$$\hat{\mathcal{H}}_{\alpha}(x;t) = \prod_{1 \leq i < j \leq n} \frac{1 - (1-t)[i,j]}{1 - [i,j]} \cdot x^{\alpha},$$

then

$$\hat{\mathcal{H}}^*_lpha(x;t) = \sum_{\sigma\in\mathfrak{S}_n} \sigma\left(\hat{\mathcal{H}}_lpha(x;t)
ight) = R_lpha(x,1-t)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

From toppling to $R_{\lambda}(x; t)$

This is obtained by setting

$$[i,j] = [i][i+1] \cdots [j-1].$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From toppling to $R_{\lambda}(x; t)$

This is obtained by setting

$$[i,j] = [i][i+1]\cdots[j-1].$$

Also we have the following combinatorial interpretation:

$$\hat{\mathcal{H}}_{lpha}(x;t) = \prod_{1 \leq i < j \leq n} rac{1-(1-t)[i,j]}{1-[i,j]} \cdot x^{lpha} = \sum_{eta \leq_{\mathcal{G}} lpha} \mathcal{K}_{lpha,eta}(t) x^{eta},$$

From toppling to $R_{\lambda}(x; t)$

This is obtained by setting

$$[i,j] = [i][i+1] \cdots [j-1].$$

Also we have the following combinatorial interpretation:

$$\hat{\mathcal{H}}_{\alpha}(x;t) = \prod_{1 \leq i < j \leq n} rac{1 - (1 - t)[i, j]}{1 - [i, j]} \cdot x^{lpha} = \sum_{eta \leq_G lpha} \mathcal{K}_{lpha, eta}(t) x^{eta},$$

where

$$\mathcal{K}_{\alpha,\beta}(t) = \sum_{eta = [i_1,j_1]^{a_1} [i_2,j_2]^{a_2} \cdots [i_k,j_k]^{a_k}(\alpha)} t^k,$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

with the $[i_1, j_1], [i_2, j_2], \ldots, [i_k, j_k]$ pairwise distinct.

Reassuming

We have

- **1** via topplings, for each graph we define a partial order \leq_{G}
- 2 (for each graph!) we construct a basis of symmetric polynomials $(\hat{\mathcal{H}}^*_{\alpha}(x;t))_{\alpha}$
- **3** such basis encodes principal order ideals of \leq_G and reduces to Hall-Littlewood symmetric polynomials when G = L

1 more parameters t, q, z related to further statistics of the unique λ and more general polynomials $(\hat{\mathcal{H}}^*_{\alpha}(x; t, q, z))_{\alpha}$ may be constructed (do they share some property with Macdonald polynomials?)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- I more parameters t, q, z related to further statistics of the unique λ and more general polynomials $(\hat{\mathcal{H}}^*_{\alpha}(x; t, q, z))_{\alpha}$ may be constructed (do they share some property with Macdonald polynomials?)
- **2** explicit connection between \leq_G and standard tableaux are possible:

- I more parameters t, q, z related to further statistics of the unique λ and more general polynomials $(\hat{\mathcal{H}}^*_{\alpha}(x; t, q, z))_{\alpha}$ may be constructed (do they share some property with Macdonald polynomials?)
- **2** explicit connection between \leq_G and standard tableaux are possible: PLAYING TOPPLING GAME: starting configuration: α

- I more parameters t, q, z related to further statistics of the unique λ and more general polynomials $(\hat{\mathcal{H}}^*_{\alpha}(x; t, q, z))_{\alpha}$ may be constructed (do they share some property with Macdonald polynomials?)
- 2 explicit connection between ≤_G and standard tableaux are possible: PLAYING TOPPLING GAME: starting configuration: α
 goal: you want to move from α towards a given β ≤_G α

- **1** more parameters t, q, z related to further statistics of the unique λ and more general polynomials $(\hat{\mathcal{H}}^*_{\alpha}(x; t, q, z))_{\alpha}$ may be constructed (do they share some property with Macdonald polynomials?)
- 2 explicit connection between \leq_G and standard tableaux are possible: PLAYING TOPPLING GAME: starting configuration: α

goal: you want to move from α towards a given $\beta \leq_G \alpha$ **rules**: you may fire a node *i* only if this produces a configuration $\beta \leq_G \alpha$

- I more parameters t, q, z related to further statistics of the unique λ and more general polynomials $(\hat{\mathcal{H}}^*_{\alpha}(x; t, q, z))_{\alpha}$ may be constructed (do they share some property with Macdonald polynomials?)
- **2** explicit connection between \leq_G and standard tableaux are possible: PLAYING TOPPLING GAME:

starting configuration: α

goal: you want to move from α towards a given $\beta \leq_G \alpha$ **rules**: you may fire a node *i* only if this produces a configuration $\beta \leq_G \alpha$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

question: in how many ways you may get β ?

- I more parameters t, q, z related to further statistics of the unique λ and more general polynomials $(\hat{\mathcal{H}}^*_{\alpha}(x; t, q, z))_{\alpha}$ may be constructed (do they share some property with Macdonald polynomials?)
- **2** explicit connection between \leq_G and standard tableaux are possible: PLAYING TOPPLING GAME:

starting configuration: α

goal: you want to move from α towards a given $\beta \leq_G \alpha$ **rules**: you may fire a node *i* only if this produces a configuration $\beta \leq_G \alpha$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

question: in how many ways you may get β ?

<u>answer</u>: number of standard Young tableaux of shape λ

- I more parameters t, q, z related to further statistics of the unique λ and more general polynomials $(\hat{\mathcal{H}}^*_{\alpha}(x; t, q, z))_{\alpha}$ may be constructed (do they share some property with Macdonald polynomials?)
- **2** explicit connection between \leq_G and standard tableaux are possible: PLAYING TOPPLING GAME:

starting configuration: α

goal: you want to move from α towards a given $\beta \leq_G \alpha$ **rules**: you may fire a node *i* only if this produces a configuration $\beta \leq_G \alpha$ <u>question</u>: in how many ways you may get β ? <u>answer</u>: number of standard Young tableaux of shape λ

3 do special choices of *G* (trees, cyclic graphs,...) give rise to interesting basis?

Thanks

Many thanks for your attention!

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ