A complexity theorem for the Novelli–Pak–Stoyanovskii-algorithm

Robin Sulzgruber joint work with Christoph Neumann

Universität Wien

September 2013

Robin Sulzgruber (Universität Wien)

The NPS-algorithm

1 The Novelli–Pak–Stoyanovskii-algorithm

3

(日) (同) (三) (三)

Table of contents

The Novelli–Pak–Stoyanovskii-algorithm

Complexity

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Definitions

Partitions

The partition 4 + 3 + 2 + 2.

3

Definitions

Partitions

A partition λ of n is a left-justified array of cells with λ_i cells in the *i*-th row, where $\lambda_1 \geq \lambda_2 \geq \ldots$ and $\sum \lambda_i = n$.

(日) (同) (三) (三)

The partition 4 + 3 + 2 + 2.

3

Tabloids

A tabloid.

Robin Sulzgruber (Universität Wien)

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Tabloids

A tabloid.

A tabloid of shape λ is a bijection $T : \lambda \to \{1, \dots, n\}.$

(日) (同) (三) (三)

3

Tabloids

A tabloid.

A tabloid of shape λ is a bijection $T : \lambda \to \{1, \dots, n\}.$

Let $T(\lambda)$ denote the set of all tabloids of shape lambda.

Image: A math a math

-

Standard Young tableaux

A standard Young tableau.

Standard Young tableaux

A standard Young tableau.

A tabloid $T \in T(\lambda)$ is called standard Young tableau if Tincreases from left to right and from top to bottom.

Standard Young tableaux

A standard Young tableau.

A tabloid $T \in T(\lambda)$ is called standard Young tableau if Tincreases from left to right and from top to bottom.

Let SYT(λ) denote the set of all standard young tableaux of shape lambda.

Hooks

We have $h_{\lambda}(x) = 6$.

3

<ロ> (日) (日) (日) (日) (日)

Hooks

We have $h_{\lambda}(x) = 6$.

The hook-length $h_{\lambda}(x)$ of a cell $x \in \lambda$ is the number of cells directly below or to right of x plus one.

Image: A math a math

3

- - E

The hook-length formula (Frame, Robinson, Thrall)

4

The hook-length formula (Frame, Robinson, Thrall) For any partition λ we have

$$\# \operatorname{SYT}(\lambda) = \frac{n!}{\prod_{x \in \lambda} h_{\lambda}(x)}.$$

ヨトィヨ

- ∢ 🗇 እ

The hook-length formula (Frame, Robinson, Thrall) For any partition λ we have

$$\# \operatorname{SYT}(\lambda) = \frac{n!}{\prod_{x \in \lambda} h_{\lambda}(x)}.$$

A bijective proof is due to Novelli, Pak and Stoyanovskii.

ヨトィヨ

The hook-length formula (Frame, Robinson, Thrall) For any partition λ we have

$$\#\operatorname{SYT}(\lambda) = \frac{n!}{\prod_{x \in \lambda} h_{\lambda}(x)}.$$

A bijective proof is due to Novelli, Pak and Stoyanovskii.

They show that

$$n! = \# \operatorname{SYT}(\lambda) \cdot \prod_{x \in \lambda} h_{\lambda}(x)$$

by assigning to each tabloid $T \in T(\lambda)$ a pair of a SYT W and a hook function H.

$$T\mapsto (W,H)$$

(日) (同) (三) (三)

Ordering the cells

We define an order \prec_U on the cells of λ where $U \in SYT(\lambda)$ as

 $x \prec_U y :\Leftrightarrow U(x) < U(y).$

3

(日) (周) (三) (三)

Ordering the cells

We define an order \prec_U on the cells of λ where $U \in \mathsf{SYT}(\lambda)$ as

$$x \prec_U y :\Leftrightarrow U(x) < U(y).$$

The column-wise order.

Ordering the cells

We define an order \prec_U on the cells of λ where $U \in \mathsf{SYT}(\lambda)$ as

$$x \prec_U y :\Leftrightarrow U(x) < U(y).$$

The column-wise order.

The row-wise order.

-

How to sort a tabloid?

The tabloid is not sorted at x = (1, 2).

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

How to sort a tabloid?

Fix an order \prec_U , and let $T \in T(\lambda)$ be a tabloid.

The tabloid is not sorted at x = (1, 2).

-

How to sort a tabloid?

The tabloid is not sorted at x = (1, 2).

Fix an order \prec_U , and let $T \in T(\lambda)$ be a tabloid.

Choose $x \in \lambda$ maximal with respect to \prec_U with an entry larger than its right or bottom neighbour.

< 67 ▶

How to sort a tabloid?

The tabloid is not sorted at x = (1, 2).

Fix an order \prec_U , and let $T \in T(\lambda)$ be a tabloid.

Choose $x \in \lambda$ maximal with respect to \prec_U with an entry larger than its right or bottom neighbour.

< 🗗 🕨

How to sort a tabloid?

We sort by exchanging entries.

Let s = T(x). Exchange s with the least entry among its right or bottom neighbours.

How to sort a tabloid?

We sort by exchanging entries.

Let s = T(x). Exchange s with the least entry among its right or bottom neighbours.

There are two cases.

< A[™] →

How to sort a tabloid?

We sort by exchanging entries.

Let s = T(x). Exchange s with the least entry among its right or bottom neighbours.

There are two cases.

- ∢ ศ⊒ ▶

How to sort a tabloid?

We sort by exchanging entries.

Let s = T(x). Exchange s with the least entry among its right or bottom neighbours.

There are two cases.

- ∢ ศ⊒ ▶

How to sort a tabloid?

We sort by exchanging entries.

Let s = T(x). Exchange s with the least entry among its right or bottom neighbours.

There are two cases.

< A[™] →

An example

We need five exchanges.

3

Image: A math a math

Table of contents

3

イロト イヨト イヨト イヨト

Complexity

Definition

Robin Sulzgruber (Universität Wien)

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Complexity

Definition

We define the complexity of the Novelli–Pak–Stoyanovskii-algorithm with respect to the order \prec_U as the average number of exchanges, i.e.,

$$C(U) := \frac{1}{n!} \sum_{T \in \mathsf{T}(\lambda)} N_U(T),$$

where $N_U(T)$ is the number of exchanges needed to sort the tabloid T.

A conjecture

Conjecture (Krattenthaler, Müller)

3

(日) (同) (三) (三)

A conjecture

Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U) = C(V).$$

A 🖓

A conjecture

Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U)=C(V).$$

However, $N_U(T) \neq N_V(T)$ for some tabloids.

3

(日) (同) (三) (三)
Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U) = C(V).$$

However, $N_U(T) \neq N_V(T)$ for some tabloids.

Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U)=C(V).$$

However, $N_U(T) \neq N_V(T)$ for some tabloids.

3

Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U)=C(V).$$

However, $N_U(T) \neq N_V(T)$ for some tabloids.

3

Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U) = C(V).$$

However, $N_U(T) \neq N_V(T)$ for some tabloids.

3

Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U)=C(V).$$

However, $N_U(T) \neq N_V(T)$ for some tabloids.

3

Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U) = C(V).$$

However, $N_U(T) \neq N_V(T)$ for some tabloids.

3

Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U) = C(V).$$

However, $N_U(T) \neq N_V(T)$ for some tabloids.

3

Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U) = C(V).$$

However, $N_U(T) \neq N_V(T)$ for some tabloids.

Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U) = C(V).$$

However, $N_U(T) \neq N_V(T)$ for some tabloids.

Conjecture (Krattenthaler, Müller)

Let \prec_U be the row-wise and \prec_V be the column-wise order on λ . Then we have

$$C(U) = C(V).$$

However, $N_U(T) \neq N_V(T)$ for some tabloids.

3

Table of contents

2 Complexity

3

イロト イヨト イヨト イヨト

Exchange numbers

Definition (Exchange numbers)

3

Exchange numbers

Definition (Exchange numbers)

Let a < b be entries. Denote by $m_U(a, b)$ the number of times a and b are exchanged while sorting all tabloids in $T(\lambda)$ with respect to the order \prec_U .

Exchange numbers

Definition (Exchange numbers)

Let a < b be entries. Denote by $m_U(a, b)$ the number of times a and b are exchanged while sorting all tabloids in $T(\lambda)$ with respect to the order \prec_U .

Lemma

□ ▶ ▲ □ ▶ ▲ □

Exchange numbers

Definition (Exchange numbers)

Let a < b be entries. Denote by $m_U(a, b)$ the number of times a and b are exchanged while sorting all tabloids in $T(\lambda)$ with respect to the order \prec_U .

Lemma

Let a, b, c be entries such that a < b < c. Then

$$m_U(a,b)=m_U(a,c).$$

Robin Sulzgruber (Universität Wien)

September 2013 31 / 38

周 ト イ ヨ ト イ ヨ

Exchange numbers

Definition (Exchange numbers)

Let a < b be entries. Denote by $m_U(a, b)$ the number of times a and b are exchanged while sorting all tabloids in $T(\lambda)$ with respect to the order \prec_U .

Lemma

Let a, b, c be entries such that a < b < c. Then

$$m_U(a,b)=m_U(a,c).$$

Therefore, we just write $m_{U}(a)$.

4 3 5 4 3

Proof of lemma

Proof (Sketch).

2

・ロン ・四 ・ ・ ヨン ・ ヨン

Proof of lemma

Proof (Sketch). It suffices the show $m_U(a, b) = m_U(a, b+1)$.

э

・ロン ・四 ・ ・ ヨン ・ ヨン

Proof of lemma

Proof (Sketch). It suffices the show $m_U(a, b) = m_U(a, b+1)$.

Let T' arise from T by exchanging the entries b and b+1. Then $T \mapsto T'$ is an involution on $T(\lambda)$.

3

Proof of lemma

Proof (Sketch). It suffices the show $m_U(a, b) = m_U(a, b+1)$.

Let T' arise from T by exchanging the entries b and b + 1. Then $T \mapsto T'$ is an involution on $T(\lambda)$.

All entries $s \notin \{b, b+1\}$ are less than both b and b+1 or larger than both. Thus, b and b+1 behave similarly during sorting.

Proof of lemma

Proof (Sketch). It suffices the show $m_U(a, b) = m_U(a, b+1)$.

Let T' arise from T by exchanging the entries b and b+1. Then $T \mapsto T'$ is an involution on $T(\lambda)$.

All entries $s \notin \{b, b+1\}$ are less than both b and b+1 or larger than both. Thus, b and b+1 behave similarly during sorting.

Both situations may appear only after b and b + 1 have dropped.

Distribution

Definition (Distribution vector)

Robin Sulzgruber (Universität Wien)

3

Distribution

Definition (Distribution vector)

Let $U, W \in SYT(\lambda)$. Denote by $z_U(W)$ the number of tabloids $T \in T(\lambda)$ such that sorting with respect to \prec_U transforms T into W. We call

$$\mathbf{z}_U := (z_U(W))_{W \in \mathsf{SYT}(\lambda)}$$

the distribution vector of U.

We have h'(5, T) = 2 while h'(3, T) = 3.

Robin Sulzgruber (Universität Wien)

3

<ロ> (日) (日) (日) (日) (日)

Let x = (i, j) be a cell in λ . We define its height as h'(x) := i + j - 2.

(日) (同) (三) (三)

We have h'(5, T) = 2 while h'(3, T) = 3.

We have h'(5, T) = 2 while h'(3, T) = 3.

Let x = (i, j) be a cell in λ . We define its height as h'(x) := i + j - 2.

Let $T \in T(\lambda)$ be a tabloid and aan entry, then we write $h'(a, T) := h'(T^{-1}(a)).$

(日) (同) (三) (三)

We have h'(5, T) = 2 while h'(3, T) = 3.

Let x = (i, j) be a cell in λ . We define its height as h'(x) := i + j - 2.

Let $T \in T(\lambda)$ be a tabloid and aan entry, then we write $h'(a, T) := h'(T^{-1}(a)).$

Suppose during sorting we exchange *a* and *b* where a < b. Then $h'(a, T_i) = h'(a, T_{i-1}) - 1$ and $h'(b, T_i) = h'(b, T_{i-1}) + 1$.

イロト イポト イヨト イヨト

- 3

Fix an entry $1 \le b \le n$.

э

<ロ> (日) (日) (日) (日) (日)

Fix an entry $1 \le b \le n$.

Consider the total initial height of this entry

3

Fix an entry $1 \le b \le n$.

Consider the total initial height of this entry

 $\sum_{a,b} h'(b,T),$ $T \in T(\lambda)$

・ロン ・四 ・ ・ ヨン ・ ヨン

Fix an entry $1 \le b \le n$.

Consider the total initial height of this entry

add the number moves away from the top left corner

 $\sum h'(b,T),$ $T \in T(\lambda)$

(日) (周) (三) (三)

Fix an entry $1 \le b \le n$.

Consider the total initial height of this entry

add the number moves away from the top left corner

 $\sum h'(b,T),$ $T \in T(\lambda)$ b-1 $\sum m_U(a),$ a=1

(日) (周) (三) (三)

Fix an entry $1 \le b \le n$.

Consider the total initial height of this entry

add the number moves away from the top left corner

and subtract the number moves towards the top left corner

 $\sum h'(b,T),$ $T \in T(\lambda)$ b-1 $\sum m_U(a),$ a=1

(日) (周) (三) (三)

Fix an entry $1 \le b \le n$.

Consider the total initial height of this entry

add the number moves away from the top left corner

and subtract the number moves towards the top left corner

$$\sum_{T \in \mathsf{T}(\lambda)} h'(b, T),$$
$$\sum_{a=1}^{b-1} m_U(a),$$

$$\sum_{c=b+1}^n m_U(b) = (n-b)m_U(b).$$

E 5 4 E

Fix an entry $1 \le b \le n$.

Consider the total initial height of this entry

add the number moves away from the top left corner

and subtract the number moves towards the top left corner

We obtain the total terminal height

$$\sum_{T\in \mathsf{T}(\lambda)} h'(b,T),$$
$$\sum_{a=1}^{b-1} m_U(a),$$

$$\sum_{c=b+1}^n m_U(b) = (n-b)m_U(b).$$

- N

Fix an entry $1 \le b \le n$.

Consider the total initial height of this entry

add the number moves away from the top left corner

and subtract the number moves towards the top left corner

We obtain the total terminal height

$$\sum_{T \in \mathsf{T}(\lambda)} h'(b, T),$$
$$\sum_{a=1}^{b-1} m_U(a),$$

$$\sum_{c=b+1}^n m_U(b) = (n-b)m_U(b).$$

$$\sum_{W \in \mathsf{SYT}(\lambda)} z_U(W) h'(b, W).$$
The recursion

Theorem

Robin Sulzgruber (Universität Wien)

3

<ロ> (日) (日) (日) (日) (日)

A recursion

The recursion

Theorem

Let \prec_U be given by $U \in SYT(\lambda)$. For all $1 \le b \le n$ we have

$$(n-b) m_U(b) = (n-1)! \sum_{x \in \lambda} h'(x) + \sum_{a=1}^{b-1} m_U(a) - \sum_{W \in SYT(\lambda)} z_U(W) h'(b, W).$$

3

(日) (同) (三) (三)

A recursion

The recursion

Theorem

Let \prec_U be given by $U \in SYT(\lambda)$. For all $1 \le b \le n$ we have

$$(n-b) m_U(b) = (n-1)! \sum_{x \in \lambda} h'(x) + \sum_{a=1}^{b-1} m_U(a) - \sum_{W \in SYT(\lambda)} z_U(W) h'(b, W).$$

Corollary

(日) (同) (三) (三)

The recursion

Theorem

Let \prec_U be given by $U \in SYT(\lambda)$. For all $1 \le b \le n$ we have

$$(n-b) m_U(b) = (n-1)! \sum_{x \in \lambda} h'(x) + \sum_{a=1}^{b-1} m_U(a) - \sum_{W \in SYT(\lambda)} z_U(W) h'(b, W).$$

Corollary

The exchange numbers $m_U(a)$ only depend on the distribution vector \mathbf{z}_U .

3

(日) (同) (三) (三)

We have
$$C(U) = \frac{1}{n!} \sum_{a=1}^{n} (n-a) m_U(a)$$
.

3

<ロ> (日) (日) (日) (日) (日)

We have
$$C(U) = \frac{1}{n!} \sum_{a=1}^{n} (n-a) m_U(a)$$
.

Corollary

э

A recursion

The conjecture follows

We have
$$C(U) = \frac{1}{n!} \sum_{a=1}^{n} (n-a) m_U(a)$$
.

Corollary

The complexity only depends on the distribution vector.

3

∃ → < ∃</p>

< A[™] →

We have
$$C(U) = \frac{1}{n!} \sum_{a=1}^{n} (n-a) m_U(a)$$
.

Corollary

The complexity only depends on the distribution vector.

Let \prec_U be the column-wise order. Due to the bijection of Novelli, Pak and Stoyanovskii we have

$$z_U(W) = \prod_{x \in \lambda} h_\lambda(x).$$

- **(())) (())) ())**

We have
$$C(U) = \frac{1}{n!} \sum_{a=1}^{n} (n-a) m_U(a)$$
.

Corollary

The complexity only depends on the distribution vector.

Let \prec_U be the column-wise order. Due to the bijection of Novelli, Pak and Stoyanovskii we have

$$z_U(W) = \prod_{x \in \lambda} h_\lambda(x).$$

Let \prec_V be the row-wise order, then $\mathbf{z}_U = \mathbf{z}_V$. The conjecture follows.

< ロ > < 同 > < 三 > < 三

The end

Thanks for your attention!

3

<ロ> (日) (日) (日) (日) (日)