A complexity theorem for the Novelli-Pak-Stoyanovskii-algorithm

Robin Sulzgruber joint work with Christoph Neumann
Universität Wien

September 2013

Outline

(1) The Novelli-Pak-Stoyanovskii-algorithm
(2) Complexity
(3) The theorem

Table of contents

(1) The Novelli-Pak-Stoyanovskii-algorithm

(2) Complexity

Partitions

The partition $4+3+2+2$.

Partitions

A partition λ of n is a left-justified array of cells with λ_{i} cells in the i-th row, where $\lambda_{1} \geq \lambda_{2} \geq \ldots$ and $\sum \lambda_{i}=n$.

The partition $4+3+2+2$.

Tabloids

A tabloid.

Tabloids

> A tabloid of shape λ is a bijection $T: \lambda \rightarrow\{1, \ldots, n\}$.

A tabloid.

Tabloids

A tabloid of shape λ is a bijection $T: \lambda \rightarrow\{1, \ldots, n\}$.

Let $\mathrm{T}(\lambda)$ denote the set of all tabloids of shape lambda.

A tabloid.

Standard Young tableaux

A standard Young tableau.

Standard Young tableaux

A tabloid $T \in T(\lambda)$ is called standard Young tableau if T increases from left to right and from top to bottom.

A standard Young tableau.

Standard Young tableaux

A standard Young tableau.

A tabloid $T \in T(\lambda)$ is called standard Young tableau if T increases from left to right and from top to bottom.

Let $\operatorname{SYT}(\lambda)$ denote the set of all standard young tableaux of shape lambda.

Hooks

We have $h_{\lambda}(x)=6$.

Hooks

The hook-length $h_{\lambda}(x)$ of a cell $x \in \lambda$ is the number of cells directly below or to right of x plus one.

We have $h_{\lambda}(x)=6$.

How many SYT are there?

The hook-length formula (Frame, Robinson, Thrall)

How many SYT are there?

The hook-length formula (Frame, Robinson, Thrall)
For any partition λ we have

$$
\# \operatorname{SYT}(\lambda)=\frac{n!}{\prod_{x \in \lambda} h_{\lambda}(x)}
$$

How many SYT are there?

The hook-length formula (Frame, Robinson, Thrall)
For any partition λ we have

$$
\# \operatorname{SYT}(\lambda)=\frac{n!}{\prod_{x \in \lambda} h_{\lambda}(x)}
$$

A bijective proof is due to Novelli, Pak and Stoyanovskii.

How many SYT are there?

The hook-length formula (Frame, Robinson, Thrall)
For any partition λ we have

$$
\# \operatorname{SYT}(\lambda)=\frac{n!}{\prod_{x \in \lambda} h_{\lambda}(x)} .
$$

A bijective proof is due to Novelli, Pak and Stoyanovskii.
They show that

$$
n!=\# \operatorname{SYT}(\lambda) \cdot \prod_{x \in \lambda} h_{\lambda}(x)
$$

by assigning to each tabloid $T \in T(\lambda)$ a pair of a SYT W and a hook function H.

$$
T \mapsto(W, H)
$$

Ordering the cells

We define an order $\prec U$ on the cells of λ where $U \in \operatorname{SYT}(\lambda)$ as

$$
x \prec U y: \Leftrightarrow U(x)<U(y) .
$$

Ordering the cells

We define an order $\prec U$ on the cells of λ where $U \in \operatorname{SYT}(\lambda)$ as

$$
x \prec U y: \Leftrightarrow U(x)<U(y)
$$

The column-wise order.

Ordering the cells

We define an order $\prec U$ on the cells of λ where $U \in \operatorname{SYT}(\lambda)$ as

$$
x \prec U y: \Leftrightarrow U(x)<U(y)
$$

The column-wise order.

The row-wise order.

How to sort a tabloid?

The tabloid is not sorted at

$$
x=(1,2) .
$$

How to sort a tabloid?

Fix an order \prec_{U}, and let $T \in T(\lambda)$ be a tabloid.

The tabloid is not sorted at

$$
x=(1,2)
$$

How to sort a tabloid?

The tabloid is not sorted at

$$
x=(1,2)
$$

Fix an order \prec_{U}, and let $T \in T(\lambda)$ be a tabloid.

Choose $x \in \lambda$ maximal with respect to $\prec u$ with an entry larger than its right or bottom neighbour.

How to sort a tabloid?

The tabloid is not sorted at

$$
x=(1,2)
$$

Fix an order \prec_{U}, and let $T \in T(\lambda)$ be a tabloid.

Choose $x \in \lambda$ maximal with respect to $\prec u$ with an entry larger than its right or bottom neighbour.

How to sort a tabloid?

We sort by exchanging entries.

Let $s=T(x)$. Exchange s with the least entry among its right or bottom neighbours.

How to sort a tabloid?

We sort by exchanging entries.

Let $s=T(x)$. Exchange s with the least entry among its right or bottom neighbours.

There are two cases.

How to sort a tabloid?

We sort by exchanging entries.

Let $s=T(x)$. Exchange s with the least entry among its right or bottom neighbours.

There are two cases.

How to sort a tabloid?

We sort by exchanging entries.

Let $s=T(x)$. Exchange s with the least entry among its right or bottom neighbours.

There are two cases.

How to sort a tabloid?

We sort by exchanging entries.

Let $s=T(x)$. Exchange s with the least entry among its right or bottom neighbours.

There are two cases.

An example

We need five exchanges.

Table of contents

(1) The Novelli-Pak-Stoyanovskii-algorithm

(2) Complexity

Complexity

Definition

Complexity

Definition

We define the complexity of the Novelli-Pak-Stoyanovskii-algorithm with respect to the order $\prec u$ as the average number of exchanges, i.e.,

$$
C(U):=\frac{1}{n!} \sum_{T \in \mathrm{~T}(\lambda)} N_{U}(T)
$$

where $N_{U}(T)$ is the number of exchanges needed to sort the tabloid T.

A conjecture

Conjecture (Krattenthaler, Müller)

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V) .
$$

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V)
$$

However, $N_{U}(T) \neq N_{V}(T)$ for some tabloids.

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V) .
$$

However, $N_{U}(T) \neq N_{V}(T)$ for some tabloids.

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V) .
$$

However, $N_{U}(T) \neq N_{V}(T)$ for some tabloids.

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V)
$$

However, $N_{U}(T) \neq N_{V}(T)$ for some tabloids.

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V)
$$

However, $N_{U}(T) \neq N_{V}(T)$ for some tabloids.

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V)
$$

However, $N_{U}(T) \neq N_{V}(T)$ for some tabloids.

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V) .
$$

However, $N_{U}(T) \neq N_{V}(T)$ for some tabloids.

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V)
$$

However, $N_{U}(T) \neq N_{V}(T)$ for some tabloids.

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V)
$$

However, $N_{U}(T) \neq N_{V}(T)$ for some tabloids.

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V)
$$

However, $N_{U}(T) \neq N_{V}(T)$ for some tabloids.

A conjecture

Conjecture (Krattenthaler, Müller)
Let \prec_{U} be the row-wise and \prec_{v} be the column-wise order on λ. Then we have

$$
C(U)=C(V)
$$

However, $N_{U}(T) \neq N_{V}(T)$ for some tabloids.

Table of contents

(1) The Novelli-Pak-Stoyanovskii-algorithm

(2) Complexity

(3) The theorem

Exchange numbers

Definition (Exchange numbers)

Exchange numbers

Definition (Exchange numbers)
Let $a<b$ be entries. Denote by $m_{U}(a, b)$ the number of times a and b are exchanged while sorting all tabloids in $\mathrm{T}(\lambda)$ with respect to the order $\prec u$.

Exchange numbers

Definition (Exchange numbers)
Let $a<b$ be entries. Denote by $m_{U}(a, b)$ the number of times a and b are exchanged while sorting all tabloids in $\mathrm{T}(\lambda)$ with respect to the order $\prec u$.

Lemma

Exchange numbers

Definition (Exchange numbers)
Let $a<b$ be entries. Denote by $m_{U}(a, b)$ the number of times a and b are exchanged while sorting all tabloids in $\mathrm{T}(\lambda)$ with respect to the order $\prec u$.

Lemma
Let a, b, c be entries such that $a<b<c$. Then

$$
m_{U}(a, b)=m_{U}(a, c) .
$$

Exchange numbers

Definition (Exchange numbers)
Let $a<b$ be entries. Denote by $m_{U}(a, b)$ the number of times a and b are exchanged while sorting all tabloids in $\mathrm{T}(\lambda)$ with respect to the order $\prec u$.

Lemma
Let a, b, c be entries such that $a<b<c$. Then

$$
m_{U}(a, b)=m_{U}(a, c) .
$$

Therefore, we just write $m_{U}(a)$.

Proof of lemma

Proof (Sketch).

Proof of lemma

Proof (Sketch). It suffices the show $m_{U}(a, b)=m_{U}(a, b+1)$.

Proof of lemma

Proof (Sketch). It suffices the show $m_{U}(a, b)=m_{U}(a, b+1)$.
Let T^{\prime} arise from T by exchanging the entries b and $b+1$. Then $T \mapsto T^{\prime}$ is an involution on $T(\lambda)$.

Proof of lemma

Proof (Sketch). It suffices the show $m_{U}(a, b)=m_{U}(a, b+1)$.
Let T^{\prime} arise from T by exchanging the entries b and $b+1$. Then $T \mapsto T^{\prime}$ is an involution on $T(\lambda)$.

All entries $s \notin\{b, b+1\}$ are less than both b and $b+1$ or larger than both. Thus, b and $b+1$ behave similarly during sorting.

Proof of lemma

Proof (Sketch). It suffices the show $m_{U}(a, b)=m_{U}(a, b+1)$.
Let T^{\prime} arise from T by exchanging the entries b and $b+1$. Then $T \mapsto T^{\prime}$ is an involution on $T(\lambda)$.

All entries $s \notin\{b, b+1\}$ are less than both b and $b+1$ or larger than both. Thus, b and $b+1$ behave similarly during sorting.

Both situations may appear only after b and $b+1$ have dropped.

Distribution

Definition (Distribution vector)

Distribution

Definition (Distribution vector)
Let $U, W \in \operatorname{SYT}(\lambda)$. Denote by $z_{U}(W)$ the number of tabloids $T \in T(\lambda)$ such that sorting with respect to $\prec U$ transforms T into W. We call

$$
\mathbf{z}_{U}:=\left(z_{U}(W)\right)_{W \in \operatorname{SYT}(\lambda)}
$$

the distribution vector of U.

Height

We have $h^{\prime}(5, T)=2$ while

$$
h^{\prime}(3, T)=3
$$

Height

Let $x=(i, j)$ be a cell in λ. We define its height as $h^{\prime}(x):=i+j-2$.

We have $h^{\prime}(5, T)=2$ while

$$
h^{\prime}(3, T)=3
$$

Height

Let $x=(i, j)$ be a cell in λ. We define its height as $h^{\prime}(x):=i+j-2$.

Let $T \in T(\lambda)$ be a tabloid and a an entry, then we write $h^{\prime}(a, T):=h^{\prime}\left(T^{-1}(a)\right)$.

We have $h^{\prime}(5, T)=2$ while

$$
h^{\prime}(3, T)=3
$$

Height

We have $h^{\prime}(5, T)=2$ while $h^{\prime}(3, T)=3$.

Let $x=(i, j)$ be a cell in λ. We define its height as $h^{\prime}(x):=i+j-2$.

Let $T \in T(\lambda)$ be a tabloid and a an entry, then we write $h^{\prime}(a, T):=h^{\prime}\left(T^{-1}(a)\right)$.

Suppose during sorting we exchange a and b where $a<b$. Then $h^{\prime}\left(a, T_{i}\right)=h^{\prime}\left(a, T_{i-1}\right)-1$ and $h^{\prime}\left(b, T_{i}\right)=h^{\prime}\left(b, T_{i-1}\right)+1$.

Initial and terminal height

Fix an entry $1 \leq b \leq n$.

Initial and terminal height

Fix an entry $1 \leq b \leq n$.

Consider the total initial height of this entry

Initial and terminal height

Fix an entry $1 \leq b \leq n$.

Consider the total initial height of this entry

$$
\sum_{T \in T(\lambda)} h^{\prime}(b, T),
$$

Initial and terminal height

Fix an entry $1 \leq b \leq n$.

Consider the total initial height of this entry

$$
\sum_{T \in \mathrm{~T}(\lambda)} h^{\prime}(b, T)
$$

add the number moves away from the top left corner

Initial and terminal height

Fix an entry $1 \leq b \leq n$.

Consider the total initial height of this entry
add the number moves away from the top left corner

$$
\begin{aligned}
& \sum_{T \in \mathrm{~T}(\lambda)} h^{\prime}(b, T), \\
& \sum_{a=1}^{b-1} m_{U}(a),
\end{aligned}
$$

Initial and terminal height

Fix an entry $1 \leq b \leq n$.

Consider the total initial height of this entry
add the number moves away from the top left corner

$$
\begin{aligned}
& \sum_{T \in \mathrm{~T}(\lambda)} h^{\prime}(b, T), \\
& \sum_{a=1}^{b-1} m_{U}(a),
\end{aligned}
$$

and subtract the number moves towards the top left corner

Initial and terminal height

Fix an entry $1 \leq b \leq n$.

Consider the total initial height of this entry
add the number moves away from the top left corner
and subtract the number moves towards the top left corner

$$
\sum_{T \in \mathrm{~T}(\lambda)} h^{\prime}(b, T)
$$

$$
\sum_{a=1}^{b-1} m_{U}(a)
$$

$$
\sum_{c=b+1}^{n} m_{U}(b)=(n-b) m_{U}(b)
$$

Initial and terminal height

Fix an entry $1 \leq b \leq n$.

Consider the total initial height of this entry
add the number moves away from the top left corner

$$
\sum_{a=1}^{b-1} m_{U}(a)
$$

and subtract the number moves towards the top left corner

$$
\sum_{T \in \mathrm{~T}(\lambda)} h^{\prime}(b, T)
$$

$$
\sum_{c=b+1}^{n} m_{U}(b)=(n-b) m_{U}(b)
$$

We obtain the total terminal height

Initial and terminal height

Fix an entry $1 \leq b \leq n$.

Consider the total initial height of this entry
add the number moves away from the top left corner
and subtract the number moves towards the top left corner

We obtain the total terminal height

$$
\begin{gathered}
\sum_{T \in T(\lambda)} h^{\prime}(b, T) \\
\sum_{a=1}^{b-1} m_{U}(a) \\
\sum_{c=b+1}^{n} m_{U}(b)=(n-b) m_{U}(b)
\end{gathered}
$$

$$
\sum_{W \in \operatorname{SYT}(\lambda)} z_{U}(W) h^{\prime}(b, W)
$$

The recursion

Theorem

The recursion

Theorem
Let $\prec u$ be given by $U \in \operatorname{SYT}(\lambda)$. For all $1 \leq b \leq n$ we have

$$
(n-b) m_{U}(b)=(n-1)!\sum_{x \in \lambda} h^{\prime}(x)+\sum_{a=1}^{b-1} m_{U}(a)-\sum_{W \in \operatorname{SYT}(\lambda)} z_{U}(W) h^{\prime}(b, W)
$$

The recursion

Theorem
Let $\prec u$ be given by $U \in \operatorname{SYT}(\lambda)$. For all $1 \leq b \leq n$ we have
$(n-b) m_{U}(b)=(n-1)!\sum_{x \in \lambda} h^{\prime}(x)+\sum_{a=1}^{b-1} m_{U}(a)-\sum_{W \in \operatorname{SYT}(\lambda)} z_{U}(W) h^{\prime}(b, W)$.

Corollary

The recursion

Theorem
Let $\prec u$ be given by $U \in \operatorname{SYT}(\lambda)$. For all $1 \leq b \leq n$ we have
$(n-b) m_{U}(b)=(n-1)!\sum_{x \in \lambda} h^{\prime}(x)+\sum_{a=1}^{b-1} m_{U}(a)-\sum_{W \in \operatorname{SYT}(\lambda)} z_{U}(W) h^{\prime}(b, W)$.

Corollary
The exchange numbers $m_{U}(a)$ only depend on the distribution vector z_{U}.

The conjecture follows

We have $C(U)=\frac{1}{n!} \sum_{a=1}^{n}(n-a) m_{U}(a)$.

The conjecture follows

We have $C(U)=\frac{1}{n!} \sum_{a=1}^{n}(n-a) m_{U}(a)$.

Corollary

The conjecture follows

We have $C(U)=\frac{1}{n!} \sum_{a=1}^{n}(n-a) m_{U}(a)$.

Corollary

The complexity only depends on the distribution vector.

The conjecture follows

We have $C(U)=\frac{1}{n!} \sum_{a=1}^{n}(n-a) m_{U}(a)$.

Corollary

The complexity only depends on the distribution vector.

Let $\prec U$ be the column-wise order. Due to the bijection of Novelli, Pak and Stoyanovskii we have

$$
z_{U}(W)=\prod_{x \in \lambda} h_{\lambda}(x)
$$

The conjecture follows

We have $C(U)=\frac{1}{n!} \sum_{a=1}^{n}(n-a) m_{U}(a)$.

Corollary

The complexity only depends on the distribution vector.

Let $\prec u$ be the column-wise order. Due to the bijection of Novelli, Pak and Stoyanovskii we have

$$
z_{U}(W)=\prod_{x \in \lambda} h_{\lambda}(x)
$$

Let $\prec v$ be the row-wise order, then $\mathbf{z}_{U}=\mathbf{z}_{V}$. The conjecture follows.

The end

Thanks for your attention!

