
A complexity theorem for the
Novelli–Pak–Stoyanovskii-algorithm

Robin Sulzgruber
joint work with Christoph Neumann

Universität Wien

September 2013

Robin Sulzgruber (Universität Wien) The NPS-algorithm September 2013 1 / 38



Outline

1 The Novelli–Pak–Stoyanovskii-algorithm

2 Complexity

3 The theorem

Robin Sulzgruber (Universität Wien) The NPS-algorithm September 2013 2 / 38



The Novelli–Pak–Stoyanovskii-algorithm

Table of contents

1 The Novelli–Pak–Stoyanovskii-algorithm

2 Complexity

3 The theorem

Robin Sulzgruber (Universität Wien) The NPS-algorithm September 2013 3 / 38



The Novelli–Pak–Stoyanovskii-algorithm Definitions

Partitions

The partition 4 + 3 + 2 + 2.

A partition λ of n is a
left-justified array of cells with λi
cells in the i-th row, where
λ1 ≥ λ2 ≥ . . . and

∑
λi = n.
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The Novelli–Pak–Stoyanovskii-algorithm Definitions

Tabloids

108

2
1
7

4
9 5 6

3
11

A tabloid.

A tabloid of shape λ is a bijection
T : λ→ {1, . . . , n}.

Let T(λ) denote the set of all
tabloids of shape lambda.
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The Novelli–Pak–Stoyanovskii-algorithm Definitions

Standard Young tableaux
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A standard Young tableau.

A tabloid T ∈ T(λ) is called
standard Young tableau if T
increases from left to right and
from top to bottom.

Let SYT(λ) denote the set of all
standard young tableaux of shape
lambda.
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The Novelli–Pak–Stoyanovskii-algorithm The hook-lengths formula

Hooks

x

We have hλ(x) = 6.

The hook-length hλ(x) of a cell
x ∈ λ is the number of cells
directly below or to right of x plus
one.
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The Novelli–Pak–Stoyanovskii-algorithm The hook-lengths formula

How many SYT are there?

The hook-length formula (Frame, Robinson, Thrall)

For any partition λ we have

# SYT(λ) =
n!∏

x∈λ hλ(x)
.

A bijective proof is due to Novelli, Pak and Stoyanovskii.

They show that

n! = # SYT(λ) ·
∏
x∈λ

hλ(x)

by assigning to each tabloid T ∈ T(λ) a pair of a SYT W and a hook
function H.

T 7→ (W ,H)
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The Novelli–Pak–Stoyanovskii-algorithm The sorting algorithm

Ordering the cells

We define an order ≺U on the cells of λ where U ∈ SYT(λ) as

x ≺U y :⇔ U(x) < U(y).
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The column-wise order.
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The row-wise order.
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The Novelli–Pak–Stoyanovskii-algorithm The sorting algorithm

How to sort a tabloid?
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The tabloid is not sorted at

x = (1, 2).

Fix an order ≺U , and let
T ∈ T (λ) be a tabloid.

Choose x ∈ λ maximal with
respect to ≺U with an entry
larger than its right or bottom
neighbour.
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The Novelli–Pak–Stoyanovskii-algorithm The sorting algorithm

How to sort a tabloid?

10
8

2
1
7

4
9

5
63

11
We sort by exchanging entries.

Let s = T (x). Exchange s with
the least entry among its right or
bottom neighbours.

as
b

a s
b

a
s
b

a < b

b < a
There are two cases.
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The Novelli–Pak–Stoyanovskii-algorithm The sorting algorithm

An example
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We need five exchanges.
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Complexity

Complexity

Definition

We define the complexity of the Novelli–Pak–Stoyanovskii-algorithm with
respect to the order ≺U as the average number of exchanges, i.e.,

C (U) :=
1

n!

∑
T∈T(λ)

NU(T ),

where NU(T ) is the number of exchanges needed to sort the tabloid T .
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Complexity

A conjecture

Conjecture (Krattenthaler, Müller)

Let ≺U be the row-wise and ≺V be the column-wise order on λ. Then we
have

C (U) = C (V ).

8 2
1 7 4 5 63

However, NU(T ) 6= NV (T ) for some tabloids.
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The theorem A lemma

Exchange numbers

Definition (Exchange numbers)

Let a < b be entries. Denote by mU(a, b) the number of times a and b are
exchanged while sorting all tabloids in T(λ) with respect to the order ≺U .

Lemma

Let a, b, c be entries such that a < b < c. Then

mU(a, b) = mU(a, c).

Therefore, we just write mU(a).
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The theorem A lemma

Proof of lemma

Proof (Sketch).

It suffices the show mU(a, b) = mU(a, b + 1).

Let T ′ arise from T by exchanging the entries b and b + 1. Then T 7→ T ′

is an involution on T(λ).

All entries s /∈ {b, b + 1} are less than both b and b + 1 or larger than
both. Thus, b and b + 1 behave similarly during sorting.

bb+1

b+1

s b

Both situations may appear only after b and b + 1 have dropped.
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The theorem A recursion

Distribution

Definition (Distribution vector)

Let U,W ∈ SYT(λ). Denote by zU(W ) the number of tabloids T ∈ T(λ)
such that sorting with respect to ≺U transforms T into W . We call

zU := (zU(W ))W∈SYT(λ)

the distribution vector of U.
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The theorem A recursion

Height

108
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We have h′(5,T ) = 2 while
h′(3,T ) = 3.

Let x = (i , j) be a cell in λ. We
define its height as
h′(x) := i + j − 2.

Let T ∈ T(λ) be a tabloid and a
an entry, then we write
h′(a,T ) := h′(T−1(a)).

Suppose during sorting we
exchange a and b where a < b.
Then h′(a,Ti ) = h′(a,Ti−1)− 1
and h′(b,Ti ) = h′(b,Ti−1) + 1.
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h′(x) := i + j − 2.

Let T ∈ T(λ) be a tabloid and a
an entry, then we write
h′(a,T ) := h′(T−1(a)).

Suppose during sorting we
exchange a and b where a < b.
Then h′(a,Ti ) = h′(a,Ti−1)− 1
and h′(b,Ti ) = h′(b,Ti−1) + 1.
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The theorem A recursion

Initial and terminal height

Fix an entry 1 ≤ b ≤ n.

Consider the total initial height of
this entry

add the number moves away from
the top left corner

and subtract the number moves
towards the top left corner

We obtain the total terminal
height

∑
T∈T(λ)

h′(b,T ),

b−1∑
a=1

mU(a),

n∑
c=b+1

mU(b) = (n − b)mU(b).

∑
W∈SYT(λ)

zU(W )h′(b,W ).
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The theorem A recursion

The recursion

Theorem

Let ≺U be given by U ∈ SYT(λ). For all 1 ≤ b ≤ n we have

(n−b)mU(b) = (n−1)!
∑
x∈λ

h′(x)+
b−1∑
a=1

mU(a)−
∑

W∈SYT(λ)

zU(W )h′(b,W ).

Corollary

The exchange numbers mU(a) only depend on the distribution vector zU .
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The theorem A recursion

The conjecture follows

We have C (U) = 1
n!

∑n
a=1(n − a)mU(a).

Corollary

The complexity only depends on the distribution vector.

Let ≺U be the column-wise order. Due to the bijection of Novelli, Pak and
Stoyanovskii we have

zU(W ) =
∏
x∈λ

hλ(x).

Let ≺V be the row-wise order, then zU = zV . The conjecture follows.
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The end

Thanks for your attention!
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