Nonnesting partitions and the cluster complex

Marko Thiel
Universität Wien

Catalan objects

The Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ count many different objects in combinatorics, such as:

Catalan objects

The Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ count many different objects in combinatorics, such as:
Triangulations of a convex $(n+2)$-gon.

Catalan objects

The Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ count many different objects in combinatorics, such as:
Triangulations of a convex $(n+2)$-gon.

Catalan objects

The Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ count many different objects in combinatorics, such as:
Triangulations of a convex $(n+2)$-gon.

Nonnesting partitions of $[n]=\{1,2, \ldots, n\}$.

Catalan objects

The Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ count many different objects in combinatorics, such as:
Triangulations of a convex $(n+2)$-gon.

Nonnesting partitions of $[n]=\{1,2, \ldots, n\}$. $14|2| 35$

Catalan objects

The Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ count many different objects in combinatorics, such as:
Triangulations of a convex $(n+2)$-gon.

Nonnesting partitions of $[n]=\{1,2, \ldots, n\}$. $14|2| 35$

Coxeter-Catalan objects

We have a generalisation of these for every crystallographic root system Φ :

Coxeter-Catalan objects

We have a generalisation of these for every crystallographic root system Φ :
The cluster complex $\Delta(\Phi)$

Coxeter-Catalan objects

We have a generalisation of these for every crystallographic root system Φ :
The cluster complex $\Delta(\Phi)$ and the set of nonnesting partitions $N N(\Phi)$.

Coxeter-Catalan objects

We have a generalisation of these for every crystallographic root system Φ :
The cluster complex $\Delta(\Phi)$ and the set of nonnesting partitions $N N(\Phi)$.
We recover the classical objects by specialising to the root system of type A_{n-1}.

Coxeter-Catalan objects

We have a generalisation of these for every crystallographic root system Φ :
The cluster complex $\Delta(\Phi)$ and the set of nonnesting partitions $N N(\Phi)$.
We recover the classical objects by specialising to the root system of type A_{n-1}.
The F-triangle is a generating function encoding refined enumerative information about $\Delta(\Phi)$.

Coxeter-Catalan objects

We have a generalisation of these for every crystallographic root system Φ :
The cluster complex $\Delta(\Phi)$ and the set of nonnesting partitions $N N(\Phi)$.
We recover the classical objects by specialising to the root system of type A_{n-1}.
The F-triangle is a generating function encoding refined enumerative information about $\Delta(\Phi)$.
The H-triangle is a generating function encoding refined enumerative information about $N N(\Phi)$.

Coxeter-Catalan objects

We have a generalisation of these for every crystallographic root system Φ :
The cluster complex $\Delta(\Phi)$ and the set of nonnesting partitions $N N(\Phi)$.
We recover the classical objects by specialising to the root system of type A_{n-1}.
The F-triangle is a generating function encoding refined enumerative information about $\Delta(\Phi)$.
The H-triangle is a generating function encoding refined enumerative information about $N N(\Phi)$.
We will prove a relationship between them, the $\mathrm{H}=\mathrm{F}$ conjecture.

Root systems

A (crystallographic) root system is a finite subset Φ of a Euclidean space V such that:

Root systems

A (crystallographic) root system is a finite subset Φ of a Euclidean space V such that:
$-\langle\Phi\rangle_{\mathbb{R}}=V$,

Root systems

A (crystallographic) root system is a finite subset Φ of a Euclidean space V such that:
$-\langle\Phi\rangle_{\mathbb{R}}=V$,
$-\langle\alpha\rangle_{\mathbb{R}} \cap \Phi=\{\alpha,-\alpha\}$ for $\alpha \in \Phi$,

Root systems

A (crystallographic) root system is a finite subset Φ of a Euclidean space V such that:
$-\langle\Phi\rangle_{\mathbb{R}}=V$,
$-\langle\alpha\rangle_{\mathbb{R}} \cap \Phi=\{\alpha,-\alpha\}$ for $\alpha \in \Phi$,
$-s_{\alpha}(\beta)=\beta-\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha \in \Phi$ for $\alpha, \beta \in \Phi$,

Root systems

A (crystallographic) root system is a finite subset Φ of a Euclidean space V such that:

$$
\begin{aligned}
& -\langle\Phi\rangle_{\mathbb{R}}=V, \\
& -\langle\alpha\rangle_{\mathbb{R}} \cap \Phi=\{\alpha,-\alpha\} \text { for } \alpha \in \Phi, \\
& -s_{\alpha}(\beta)=\beta-\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha \in \Phi \text { for } \alpha, \beta \in \Phi, \\
& -\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z} \text { for } \alpha, \beta \in \Phi .
\end{aligned}
$$

Root systems

A (crystallographic) root system is a finite subset Φ of a Euclidean space V such that:

$$
\begin{aligned}
& -\langle\Phi\rangle_{\mathbb{R}}=V \\
& -\langle\alpha\rangle_{\mathbb{R}} \cap \Phi=\{\alpha,-\alpha\} \text { for } \alpha \in \Phi \\
& -s_{\alpha}(\beta)=\beta-\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha \in \Phi \text { for } \alpha, \beta \in \Phi \\
& -\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z} \text { for } \alpha, \beta \in \Phi . \\
& A_{1} \times A_{1}
\end{aligned}
$$

Root systems

Root systems

Root systems

B_{2}

Set of postive roots Φ^{+}such that $\Phi=\Phi^{+} \sqcup-\Phi^{+}$.

Root systems

Set of postive roots Φ^{+}such that $\Phi=\Phi^{+} \sqcup-\Phi^{+}$. Set of simple roots S

Root systems

Set of postive roots Φ^{+}such that $\Phi=\Phi^{+} \sqcup-\Phi^{+}$. Set of simple roots S such that S is a basis of V and $\Phi^{+} \subset\langle S\rangle_{\mathbb{N}}$.

Root systems

Set of postive roots Φ^{+}such that $\Phi=\Phi^{+} \sqcup-\Phi^{+}$. Set of simple roots S such that S is a basis of V and $\Phi^{+} \subset\langle S\rangle_{\mathbb{N}}$. A root system is determined up to isomorphism by its Dynkin diagram,

Root systems

Set of postive roots Φ^{+}such that $\Phi=\Phi^{+} \sqcup-\Phi^{+}$. Set of simple roots S such that S is a basis of V and $\Phi^{+} \subset\langle S\rangle_{\mathbb{N}}$. A root system is determined up to isomorphism by its Dynkin diagram, a (multi)graph with vertex set S,

Root systems

Set of postive roots Φ^{+}such that $\Phi=\Phi^{+} \sqcup-\Phi^{+}$. Set of simple roots S such that S is a basis of V and $\Phi^{+} \subset\langle S\rangle_{\mathbb{N}}$. A root system is determined up to isomorphism by its Dynkin diagram, a (multi)graph with vertex set S, and $\frac{4\langle\alpha, \beta\rangle^{2}}{\langle\alpha, \alpha\rangle\langle\beta, \beta\rangle}$ edges between α and β, for $\alpha \neq \beta$.

Root systems

Set of postive roots Φ^{+}such that $\Phi=\Phi^{+} \sqcup-\Phi^{+}$. Set of simple roots S such that S is a basis of V and $\Phi^{+} \subset\langle S\rangle_{\mathbb{N}}$. A root system is determined up to isomorphism by its Dynkin diagram, a (multi)graph with vertex set S, and $\frac{4\langle\alpha, \beta\rangle^{2}}{\langle\alpha, \alpha\rangle\langle\beta, \beta\rangle}$ edges between α and β, for $\alpha \neq \beta$.
Define the rank of Φ as $\operatorname{dim}(V)=|S|$.

Root systems

The Dynkin diagram of type A_{n-1} is a path of $n-1$ vertices, connected by simple edges.

Root systems

The Dynkin diagram of type A_{n-1} is a path of $n-1$ vertices, connected by simple edges.

Root systems

The Dynkin diagram of type A_{n-1} is a path of $n-1$ vertices, connected by simple edges.

The simple roots are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}$,

Root systems

The Dynkin diagram of type A_{n-1} is a path of $n-1$ vertices, connected by simple edges.

The simple roots are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}$, and the positive roots are all sums $\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j}$ for $1 \leq i \leq j \leq n-1$.

The cluster complex

Take a convex $(n+2)$-gon.

The cluster complex

Take a convex $(n+2)$-gon.

Label the diagonals in a snake by the negative simple roots of Φ, a root system of type A_{n-1}.

The cluster complex

Take a convex $(n+2)$-gon.

Label the diagonals in a snake by the negative simple roots of Φ, a root system of type A_{n-1}.
Label the other diagonals by minus the sum of the labels of the snake diagonials they cross.

The cluster complex

This gives a bijection between the set of diagonals of the $(n+2)$-gon and $\Phi_{\geq-1}=\Phi^{+} \sqcup-S$, the set of almost positive roots of Φ.

The cluster complex

This gives a bijection between the set of diagonals of the $(n+2)$-gon and $\Phi_{\geq-1}=\Phi^{+} \sqcup-S$, the set of almost positive roots of Φ.
Call two diagonals (almost positive roots) compatible if they do not cross.

The cluster complex

Call two diagonals (almost positive roots) compatible if they do not cross.
There is a rotation R on $\Phi_{\geq-1}$ such that α and β are compatible if and only if $R(\alpha)$ and $R(\beta)$ are compatible.

The cluster complex

This generalises:

The cluster complex

This generalises:
Theorem (S. Fomin, A. Zelevinsky '01)
For every root system Φ, there is a binary relation called compatibility and a rotation R on $\Phi_{\geq-1}$ such that:

The cluster complex

This generalises:

Theorem (S. Fomin, A. Zelevinsky '01)

For every root system Φ, there is a binary relation called compatibility and a rotation R on $\Phi_{\geq-1}$ such that:

- For $-\alpha \in-S$ and $\beta \in \Phi_{\geq-1},-\alpha$ and β are compatible if and only if, when β is written as a linear combination of simple roots, α does not occur.

The cluster complex

This generalises:

Theorem (S. Fomin, A. Zelevinsky '01)

For every root system Φ, there is a binary relation called compatibility and a rotation R on $\Phi_{\geq-1}$ such that:

- For $-\alpha \in-S$ and $\beta \in \Phi_{\geq-1},-\alpha$ and β are compatible if and only if, when β is written as a linear combination of simple roots, α does not occur.
- α and β are compatible if and only if $R(\alpha)$ and $R(\beta)$ are compatible.

The cluster complex

This generalises:

The cluster complex

Define the cluster complex $\Delta(\Phi)$ as the set of all pairwise compatible subsets of $\Phi_{\geq-1}$.

The cluster complex

Define the cluster complex $\Delta(\Phi)$ as the set of all pairwise compatible subsets of $\Phi_{\geq-1}$.
This is a simplicial complex, that is, if $A \in \Delta(\Phi)$ and $B \subset A$, then $B \in \Delta(\Phi)$.

The cluster complex

Define the cluster complex $\Delta(\Phi)$ as the set of all pairwise compatible subsets of $\Phi_{\geq-1}$.
This is a simplicial complex, that is, if $A \in \Delta(\Phi)$ and $B \subset A$, then $B \in \Delta(\Phi)$.
Its elements are called faces,

The cluster complex

Define the cluster complex $\Delta(\Phi)$ as the set of all pairwise compatible subsets of $\Phi_{\geq-1}$.
This is a simplicial complex, that is, if $A \in \Delta(\Phi)$ and $B \subset A$, then $B \in \Delta(\Phi)$.
Its elements are called faces, faces of cardinality one are called vertices

The cluster complex

Define the cluster complex $\Delta(\Phi)$ as the set of all pairwise compatible subsets of $\Phi_{\geq-1}$.
This is a simplicial complex, that is, if $A \in \Delta(\Phi)$ and $B \subset A$, then $B \in \Delta(\Phi)$.
Its elements are called faces, faces of cardinality one are called vertices and maximal faces are called facets or clusters.

The cluster complex

Define the cluster complex $\Delta(\Phi)$ as the set of all pairwise compatible subsets of $\Phi_{\geq-1}$.
This is a simplicial complex, that is, if $A \in \Delta(\Phi)$ and $B \subset A$, then $B \in \Delta(\Phi)$.
Its elements are called faces, faces of cardinality one are called vertices and maximal faces are called facets or clusters. In type A_{n-1}, the cluster complex is called the simplicial associahedron.

The cluster complex

Define the cluster complex $\Delta(\Phi)$ as the set of all pairwise compatible subsets of $\Phi_{\geq-1}$.
This is a simplicial complex, that is, if $A \in \Delta(\Phi)$ and $B \subset A$, then $B \in \Delta(\Phi)$.
Its elements are called faces, faces of cardinality one are called vertices and maximal faces are called facets or clusters. In type A_{n-1}, the cluster complex is called the simplicial associahedron. Its vertices are diagonals and its facets triangulations.

The simplicial associahedron

The cluster complex

If $A \in \Delta(\Phi)$ and $-\alpha \in A \cap-S$,

The cluster complex

If $A \in \Delta(\Phi)$ and $-\alpha \in A \cap-S$, then all other elements of A are compatible with $-\alpha$,

The cluster complex

If $A \in \Delta(\Phi)$ and $-\alpha \in A \cap-S$, then all other elements of A are compatible with $-\alpha$, so when they are written as a linear combination of simple roots, α does not occur.

The cluster complex

If $A \in \Delta(\Phi)$ and $-\alpha \in A \cap-S$, then all other elements of A are compatible with $-\alpha$, so when they are written as a linear combination of simple roots, α does not occur. That is, $A \backslash\{-\alpha\} \subset \Phi \cap\langle S \backslash\{\alpha\}\rangle_{\mathbb{R}}$

The cluster complex

If $A \in \Delta(\Phi)$ and $-\alpha \in A \cap-S$, then all other elements of A are compatible with $-\alpha$, so when they are written as a linear combination of simple roots, α does not occur. That is, $A \backslash\{-\alpha\} \subset \Phi \cap\langle S \backslash\{\alpha\}\rangle_{\mathbb{R}}=\Phi(S \backslash\{\alpha\})$.

The cluster complex

If $A \in \Delta(\Phi)$ and $-\alpha \in A \cap-S$, then all other elements of A are compatible with $-\alpha$, so when they are written as a linear combination of simple roots, α does not occur. That is, $A \backslash\{-\alpha\} \subset \Phi \cap\langle S \backslash\{\alpha\}\rangle_{\mathbb{R}}=\Phi(S \backslash\{\alpha\})$.
So we have a bijection $A \leftrightarrow A \backslash\{-\alpha\}$ between the set of faces of $\Delta(\Phi(S))$ containing $-\alpha$ and the set of faces of $\Delta(\Phi(S \backslash\{\alpha\}))$.

The cluster complex

If $A \in \Delta(\Phi)$ and $-\alpha \in A \cap-S$, then all other elements of A are compatible with $-\alpha$, so when they are written as a linear combination of simple roots, α does not occur. That is, $A \backslash\{-\alpha\} \subset \Phi \cap\langle S \backslash\{\alpha\}\rangle_{\mathbb{R}}=\Phi(S \backslash\{\alpha\})$.
So we have a bijection $A \leftrightarrow A \backslash\{-\alpha\}$ between the set of faces of $\Delta(\Phi(S))$ containing $-\alpha$ and the set of faces of $\Delta(\Phi(S \backslash\{\alpha\}))$. Let $f_{l, m}(\Phi)$ be the number of faces of $\Delta(\Phi)$ containing exactly l positive roots and exactly m negative simple roots.

The cluster complex

If $A \in \Delta(\Phi)$ and $-\alpha \in A \cap-S$, then all other elements of A are compatible with $-\alpha$, so when they are written as a linear combination of simple roots, α does not occur. That is, $A \backslash\{-\alpha\} \subset \Phi \cap\langle S \backslash\{\alpha\}\rangle_{\mathbb{R}}=\Phi(S \backslash\{\alpha\})$.
So we have a bijection $A \leftrightarrow A \backslash\{-\alpha\}$ between the set of faces of $\Delta(\Phi(S))$ containing $-\alpha$ and the set of faces of $\Delta(\Phi(S \backslash\{\alpha\}))$. Let $f_{l, m}(\Phi)$ be the number of faces of $\Delta(\Phi)$ containing exactly $/$ positive roots and exactly m negative simple roots.
Then

$$
m f_{l, m}(\Phi(S))=\sum_{\alpha \in S} f_{l, m-1}(\Phi(S \backslash\{\alpha\}))
$$

The cluster complex

Let $f_{l, m}(\Phi)$ be the number of faces of $\Delta(\Phi)$ containing exactly $/$ positive roots and exactly m negative simple roots.
Then

$$
m f_{l, m}(\Phi(S))=\sum_{\alpha \in S} f_{l, m-1}(\Phi(S \backslash\{\alpha\}))
$$

Let $F_{\Phi}(x, y)=\sum_{l, m} f_{l, m}(\Phi) x^{l} y^{m}=\sum_{A \in \Delta(\Phi)} x^{\left|A \cap \Phi^{+}\right|} y|A \cap-S|$ be the F-triangle.

The cluster complex

Let $f_{l, m}(\Phi)$ be the number of faces of $\Delta(\Phi)$ containing exactly $/$ positive roots and exactly m negative simple roots.
Then

$$
m f_{l, m}(\Phi(S))=\sum_{\alpha \in S} f_{l, m-1}(\Phi(S \backslash\{\alpha\}))
$$

Let $F_{\Phi}(x, y)=\sum_{l, m} f_{l, m}(\Phi) x^{l} y^{m}=\sum_{A \in \Delta(\Phi)} x^{\left|A \cap \Phi^{+}\right|} y|A \cap-S|$ be the F-triangle.
Theorem (F. Chapoton '04)
$\frac{\partial}{\partial y} F_{\Phi(S)}(x, y)=\sum_{\alpha \in S} F_{\Phi(S \backslash\{\alpha\})}(x, y)$.

Nonnesting partitions

Define the root order on Φ^{+}by $\beta \geq \alpha$ if and only if $\beta-\alpha \in\langle S\rangle_{\mathbb{N}}$.

Nonnesting partitions

Define the root order on Φ^{+}by $\beta \geq \alpha$ if and only if $\beta-\alpha \in\langle S\rangle_{\mathbb{N}}$. The set of positive roots Φ^{+}with this partial order is called the root poset.

Nonnesting partitions

Define the root order on Φ^{+}by $\beta \geq \alpha$ if and only if $\beta-\alpha \in\langle S\rangle_{\mathbb{N}}$. The set of positive roots Φ^{+}with this partial order is called the root poset.

Nonnesting partitions

Define the root order on Φ^{+}by $\beta \geq \alpha$ if and only if $\beta-\alpha \in\langle S\rangle_{\mathbb{N}}$. The set of positive roots Φ^{+}with this partial order is called the root poset.

The set of nonnesting partitions $N N(\Phi)$ of Φ is the set of antichains in the root poset.

Nonnesting partitions

Define the root order on Φ^{+}by $\beta \geq \alpha$ if and only if $\beta-\alpha \in\langle S\rangle_{\mathbb{N}}$. The set of positive roots Φ^{+}with this partial order is called the root poset.

The set of nonnesting partitions $N N(\Phi)$ of Φ is the set of antichains in the root poset.

Nonnesting partitions

If $A \in N N(\Phi)$ and $\alpha \in A \cap S$,

Nonnesting partitions

If $A \in N N(\Phi)$ and $\alpha \in A \cap S$, all other elements of A are not greater than α,

Nonnesting partitions

If $A \in N N(\Phi)$ and $\alpha \in A \cap S$, all other elements of A are not greater than α, so when they are written as a linear combination of simple roots, α does not occur.

Nonnesting partitions

If $A \in N N(\Phi)$ and $\alpha \in A \cap S$, all other elements of A are not greater than α, so when they are written as a linear combination of simple roots, α does not occur.
That is, $A \backslash\{\alpha\} \subset \Phi \cap\langle S \backslash\{\alpha\}\rangle_{\mathbb{R}}$

Nonnesting partitions

If $A \in N N(\Phi)$ and $\alpha \in A \cap S$, all other elements of A are not greater than α, so when they are written as a linear combination of simple roots, α does not occur.
That is, $A \backslash\{\alpha\} \subset \Phi \cap\langle S \backslash\{\alpha\}\rangle_{\mathbb{R}}=\Phi(S \backslash\{\alpha\})$.

Nonnesting partitions

If $A \in N N(\Phi)$ and $\alpha \in A \cap S$, all other elements of A are not greater than α, so when they are written as a linear combination of simple roots, α does not occur.
That is, $A \backslash\{\alpha\} \subset \Phi \cap\langle S \backslash\{\alpha\}\rangle_{\mathbb{R}}=\Phi(S \backslash\{\alpha\})$.
So we have a bijection $A \leftrightarrow A \backslash\{\alpha\}$ between nonnesting partitions of $\Phi(S)$ containing α and nonnesting partitions of $\Phi(S \backslash\{\alpha\})$.

Nonnesting partitions

If $A \in N N(\Phi)$ and $\alpha \in A \cap S$, all other elements of A are not greater than α, so when they are written as a linear combination of simple roots, α does not occur.
That is, $A \backslash\{\alpha\} \subset \Phi \cap\langle S \backslash\{\alpha\}\rangle_{\mathbb{R}}=\Phi(S \backslash\{\alpha\})$.
So we have a bijection $A \leftrightarrow A \backslash\{\alpha\}$ between nonnesting partitions of $\Phi(S)$ containing α and nonnesting partitions of $\Phi(S \backslash\{\alpha\})$. Let $H_{\Phi}(x, y)=\sum_{A \in N N(\Phi)} x^{|A|} y^{|A \cap S|}$ be the H-triangle of Φ.

Nonnesting partitions

If $A \in N N(\Phi)$ and $\alpha \in A \cap S$, all other elements of A are not greater than α, so when they are written as a linear combination of simple roots, α does not occur.
That is, $A \backslash\{\alpha\} \subset \Phi \cap\langle S \backslash\{\alpha\}\rangle_{\mathbb{R}}=\Phi(S \backslash\{\alpha\})$.
So we have a bijection $A \leftrightarrow A \backslash\{\alpha\}$ between nonnesting partitions of $\Phi(S)$ containing α and nonnesting partitions of $\Phi(S \backslash\{\alpha\})$. Let $H_{\Phi}(x, y)=\sum_{A \in N N(\Phi)} x^{|A|} y^{|A \cap S|}$ be the H-triangle of Φ.

$$
\begin{aligned}
& \text { Theorem (M. T. '13) } \\
& \frac{\partial}{\partial y} H_{\Phi(S)}(x, y)=x \sum_{\alpha \in S} H_{\Phi(S \backslash\{\alpha\})}(x, y) .
\end{aligned}
$$

The $\mathbf{H}=\mathrm{F}$ conjecture

Theorem (C. Athanasiadis, V. Reiner, J. McCammond '04) If the rank of Φ is $n, H_{\Phi}(x, 1)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1}{x-1}\right)$.

The $\mathbf{H}=\mathrm{F}$ conjecture

Theorem (C. Athanasiadis, V. Reiner, J. McCammond '04) If the rank of Φ is $n, H_{\Phi}(x, 1)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1}{x-1}\right)$.

Proof.

Case by case check, using the classification of irreducible crystallographic root systems.

The $\mathbf{H}=\mathrm{F}$ conjecture

Theorem (M. T. '13, conjectured in F. Chapoton '04)
If the rank of Φ is $n, H_{\Phi}(x, y)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

The $\mathbf{H}=\mathrm{F}$ conjecture

Theorem (M. T. '13, conjectured in F. Chapoton '04)
If the rank of Φ is $n, H_{\Phi}(x, y)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

Proof.

Induction on n.

The $\mathbf{H}=\mathrm{F}$ conjecture

Theorem (M. T. '13, conjectured in F. Chapoton '04)
If the rank of Φ is $n, H_{\Phi}(x, y)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

Proof.

Induction on n. True for $n=0$.

The $\mathrm{H}=\mathrm{F}$ conjecture

Theorem (M. T. '13, conjectured in F. Chapoton '04)
If the rank of Φ is $n, H_{\Phi}(x, y)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

Proof.

Induction on n. True for $n=0$. For $n>0$,

The $\mathrm{H}=\mathrm{F}$ conjecture

Theorem (M. T. '13, conjectured in F. Chapoton '04)
If the rank of Φ is $n, H_{\Phi}(x, y)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

Proof.

Induction on n. True for $n=0$. For $n>0$, $\frac{\partial}{\partial y} H_{\Phi(S)}(x, y)$

The $\mathbf{H}=\mathrm{F}$ conjecture

Theorem (M. T. '13, conjectured in F. Chapoton '04)

If the rank of Φ is $n, H_{\Phi}(x, y)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

Proof.

Induction on n. True for $n=0$. For $n>0$,
$\frac{\partial}{\partial y} H_{\Phi(S)}(x, y)$
$=x \sum_{\alpha \in S} H_{\Phi(S \backslash\{\alpha\})}(x, y)$

The $\mathbf{H}=\mathrm{F}$ conjecture

Theorem (M. T. '13, conjectured in F. Chapoton '04)

If the rank of Φ is $n, H_{\Phi}(x, y)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

Proof.

Induction on n. True for $n=0$. For $n>0$,
$\frac{\partial}{\partial y} H_{\Phi(S)}(x, y)$
$=x \sum_{\alpha \in S} H_{\Phi(S \backslash\{\alpha\})}(x, y)$
$=x \sum_{\alpha \in S}(x-1)^{n-1} F_{\Phi(S \backslash\{\alpha\})}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$

The $\mathbf{H}=\mathrm{F}$ conjecture

Theorem (M. T. '13, conjectured in F. Chapoton '04)

If the rank of Φ is $n, H_{\Phi}(x, y)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

Proof.

Induction on n. True for $n=0$. For $n>0$,
$\frac{\partial}{\partial y} H_{\Phi(S)}(x, y)$
$=x \sum_{\alpha \in S} H_{\Phi(S \backslash\{\alpha\})}(x, y)$
$=x \sum_{\alpha \in S}(x-1)^{n-1} F_{\Phi(S \backslash\{\alpha\})}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$
$=\frac{\partial}{\partial y}(x-1)^{n} F_{\Phi(S)}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

The $\mathbf{H}=\mathrm{F}$ conjecture

Theorem (M. T. '13, conjectured in F. Chapoton '04)

If the rank of Φ is $n, H_{\Phi}(x, y)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

Proof.

Induction on n. True for $n=0$. For $n>0$,
$\frac{\partial}{\partial y} H_{\Phi(S)}(x, y)$
$=x \sum_{\alpha \in S} H_{\Phi(S \backslash\{\alpha\})}(x, y)$
$=x \sum_{\alpha \in S}(x-1)^{n-1} F_{\Phi(S \backslash\{\alpha\})}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$
$=\frac{\partial}{\partial y}(x-1)^{n} F_{\Phi(S)}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.
$y=1$:

The $\mathbf{H}=\mathrm{F}$ conjecture

Theorem (M. T. '13, conjectured in F. Chapoton '04)

If the rank of Φ is $n, H_{\Phi}(x, y)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

Proof.

Induction on n. True for $n=0$. For $n>0$,
$\frac{\partial}{\partial y} H_{\Phi(S)}(x, y)$
$=x \sum_{\alpha \in S} H_{\Phi(S \backslash\{\alpha\})}(x, y)$
$=x \sum_{\alpha \in S}(x-1)^{n-1} F_{\Phi(S \backslash\{\alpha\})}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$
$=\frac{\partial}{\partial y}(x-1)^{n} F_{\Phi(S)}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.
$y=1: H_{\Phi}(x, 1)=(x-1)^{n} F_{\Phi}\left(\frac{1}{x-1}, \frac{1}{x-1}\right)$.

Generalisations

For each positive integer k, there are generalisations of the Catalan objects $\Delta(\Phi)$ and $N N(\Phi)$ to Fuß-Catalan objects:

Generalisations

For each positive integer k, there are generalisations of the Catalan objects $\Delta(\Phi)$ and $N N(\Phi)$ to Fuß-Catalan objects:
The generalised cluster complex $\Delta^{(k)}(\Phi)$
(S. Fomin, N. Reading '06)

Generalisations

For each positive integer k, there are generalisations of the Catalan objects $\Delta(\Phi)$ and $N N(\Phi)$ to Fuß-Catalan objects:
The generalised cluster complex $\Delta^{(k)}(\Phi)$
(S. Fomin, N. Reading '06)

The set of generalised nonnesting partitions $N N^{(k)}(\Phi)$
(C. Athanasiadis '04).

Generalisations

For each positive integer k, there are generalisations of the Catalan objects $\Delta(\Phi)$ and $N N(\Phi)$ to Fuß-Catalan objects:
The generalised cluster complex $\Delta^{(k)}(\Phi)$
(S. Fomin, N. Reading '06)

The set of generalised nonnesting partitions $N N^{(k)}(\Phi)$
(C. Athanasiadis '04).

They reduce to the corresponding Coxeter-Catalan objects when $k=1$.

Generalisations

For each positive integer k, there are generalisations of the Catalan objects $\Delta(\Phi)$ and $N N(\Phi)$ to Fuß-Catalan objects:
The generalised cluster complex $\Delta^{(k)}(\Phi)$
(S. Fomin, N. Reading '06)

The set of generalised nonnesting partitions $N N^{(k)}(\Phi)$
(C. Athanasiadis '04).

They reduce to the corresponding Coxeter-Catalan objects when $k=1$.
They also have F-triangles and H-triangles.

Generalisations

They also have F-triangles and H-triangles.
Theorem (S. Fomin, N. Reading '06)
$\frac{\partial}{\partial y} F_{\Phi(S)}^{k}(x, y)=\sum_{\alpha \in S} F_{\Phi(S \backslash\{\alpha\})}^{k}(x, y)$.

Generalisations

They also have F-triangles and H-triangles.
Theorem (S. Fomin, N. Reading '06)
$\frac{\partial}{\partial y} F_{\Phi(S)}^{k}(x, y)=\sum_{\alpha \in S} F_{\Phi(S \backslash\{\alpha\})}^{k}(x, y)$.
Theorem (M. T. '13)
$\frac{\partial}{\partial y} H_{\Phi(S)}^{k}(x, y)=x \sum_{\alpha \in S} H_{\Phi(S \backslash\{\alpha\})}^{k}(x, y)$.

Generalisations

They also have F-triangles and H-triangles.
Theorem (S. Fomin, N. Reading '06)
$\frac{\partial}{\partial y} F_{\Phi(S)}^{k}(x, y)=\sum_{\alpha \in S} F_{\Phi(S \backslash\{\alpha\})}^{k}(x, y)$.
Theorem (M. T. '13)
$\frac{\partial}{\partial y} H_{\Phi(S)}^{k}(x, y)=x \sum_{\alpha \in S} H_{\Phi(S \backslash\{\alpha\})}^{k}(x, y)$.

Conjecture (S. Fomin, N. Reading '06)

If the rank of Φ is $n, H_{\Phi}^{k}(x, 1)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1}{x-1}\right)$.

Generalisations

Conjecture (D. Armstrong '06)

 If the rank of Φ is $n, H_{\Phi}^{k}(x, y)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.
Generalisations

Conjecture (D. Armstrong '06)

If the rank of Φ is $n, H_{\Phi}^{k}(x, y)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.
Theorem (S. Fomin, N. Reading '06)
If Φ is a classical root system and the rank of Φ is n, $H_{\Phi}^{k}(x, 1)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1}{x-1}\right)$.

Generalisations

Conjecture (D. Armstrong '06)

If the rank of Φ is $n, H_{\Phi}^{k}(x, y)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

Theorem (S. Fomin, N. Reading '06)

If Φ is a classical root system and the rank of Φ is n, $H_{\Phi}^{k}(x, 1)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1}{x-1}\right)$.

Theorem (M. T. '13)

If Φ is a classical root system and the rank of Φ is n, $H_{\Phi}^{k}(x, y)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)$.

Thanks for your attention!

Generalisations

Theorem (M. T. '13)

If Φ is of type G_{2} or F_{4} and the rank of Φ is n, $H_{\Phi}^{k}(x, 1)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1}{x-1}\right)$.

Generalisations

Theorem (M. T. '13)

If Φ is of type G_{2} or F_{4} and the rank of Φ is n, $H_{\Phi}^{k}(x, 1)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1}{x-1}\right)$.

Theorem (M. T. '13)

If Φ does not contain an irreducible component of type E_{6}, E_{7} or E_{8} and the rank of Φ is n,

$$
H_{\Phi}^{k}(x, y)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)
$$

Generalisations

Theorem (M. T. '13)

If Φ is of type G_{2} or F_{4} and the rank of Φ is n, $H_{\Phi}^{k}(x, 1)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1}{x-1}\right)$.

Theorem (M. T. '13)

If Φ does not contain an irreducible component of type E_{6}, E_{7} or E_{8} and the rank of Φ is n,

$$
H_{\Phi}^{k}(x, y)=(x-1)^{n} F_{\Phi}^{k}\left(\frac{1}{x-1}, \frac{1+(y-1) x}{x-1}\right)
$$

Verifying the statement for types E_{6}, E_{7} and E_{8} is a finite computation.

