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Catalan objects

The Catalan numbers Cn = 1
n+1

(2n
n

)
count many different objects

in combinatorics, such as:

Triangulations of a convex (n + 2)-gon.

Nonnesting partitions of [n] = {1, 2, . . . , n}.
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Coxeter-Catalan objects

We have a generalisation of these for every crystallographic root
system Φ:

The cluster complex ∆(Φ) and the set of nonnesting partitions
NN(Φ).
We recover the classical objects by specialising to the root system
of type An−1.
The F -triangle is a generating function encoding refined
enumerative information about ∆(Φ).
The H-triangle is a generating function encoding refined
enumerative information about NN(Φ).
We will prove a relationship between them, the H = F conjecture.
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Root systems

A (crystallographic) root system is a finite subset Φ of a Euclidean
space V such that:

– 〈Φ〉R = V ,

– 〈α〉R ∩ Φ = {α,−α} for α ∈ Φ,

– sα(β) = β − 2〈β,α〉
〈α,α〉 α ∈ Φ for α, β ∈ Φ,

– 2〈β,α〉
〈α,α〉 ∈ Z for α, β ∈ Φ.

A1 × A1 A2 B2
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Root systems

A1 × A1 A2 B2

Φ+

−Φ+

Φ+
Φ+

−Φ+ −Φ+

Set of postive roots Φ+ such that Φ = Φ+ t −Φ+.
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A1 × A1 A2 B2

Φ+

−Φ+

Φ+
Φ+

−Φ+ −Φ+

α1

α2

α1

α2

α1

α2

Set of postive roots Φ+ such that Φ = Φ+ t −Φ+.
Set of simple roots S

such that S is a basis of V and Φ+ ⊂ 〈S〉N.
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Root systems

A1 × A1 A2 B2

Φ+

−Φ+

Φ+
Φ+

−Φ+ −Φ+

α1

α2

α1 α1 + α2

α2

α1 α1 + α2 α1 + 2α2

α2

Set of postive roots Φ+ such that Φ = Φ+ t −Φ+.
Set of simple roots S such that S is a basis of V and Φ+ ⊂ 〈S〉N.

A root system is determined up to isomorphism by its Dynkin

diagram, a (multi)graph with vertex set S , and 4〈α,β〉2
〈α,α〉〈β,β〉 edges

between α and β, for α 6= β.
Define the rank of Φ as dim(V ) = |S |.
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Root systems

The Dynkin diagram of type An−1 is a path of n − 1 vertices,
connected by simple edges.

A4
α1 α2 α3 α4

The simple roots are α1, α2, . . . , αn−1, and the positive roots are
all sums αi + αi+1 + · · ·+ αj for 1 ≤ i ≤ j ≤ n − 1.
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The cluster complex

Take a convex (n + 2)-gon.
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The cluster complex

Take a convex (n + 2)-gon.

−α4

−α1

−α2

−α3

Label the diagonals in a snake by the negative simple roots of Φ, a
root system of type An−1.
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The cluster complex

Take a convex (n + 2)-gon.

−α4

−α1

−α2

−α3α2

α2 + α3

Label the diagonals in a snake by the negative simple roots of Φ, a
root system of type An−1.
Label the other diagonals by minus the sum of the labels of the
snake diagonials they cross.
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The cluster complex

−α4

−α1

−α2

−α3α2

α2 + α3

This gives a bijection between the set of diagonals of the
(n + 2)-gon and Φ≥−1 = Φ+ t−S , the set of almost positive roots
of Φ.

Call two diagonals (almost positive roots) compatible if they do
not cross.
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The cluster complex

−α4

−α1

−α2

−α3α2

α2 + α3

R

Call two diagonals (almost positive roots) compatible if they do
not cross.
There is a rotation R on Φ≥−1 such that α and β are compatible if
and only if R(α) and R(β) are compatible.
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The cluster complex

This generalises:

Theorem (S. Fomin, A. Zelevinsky ’01)

For every root system Φ, there is a binary relation called
compatibility and a rotation R on Φ≥−1 such that:

– For −α ∈ −S and β ∈ Φ≥−1, −α and β are compatible if and
only if, when β is written as a linear combination of simple
roots, α does not occur.

– α and β are compatible if and only if R(α) and R(β) are
compatible.
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The cluster complex

Define the cluster complex ∆(Φ) as the set of all pairwise
compatible subsets of Φ≥−1.

This is a simplicial complex, that is, if A ∈ ∆(Φ) and B ⊂ A, then
B ∈ ∆(Φ).
Its elements are called faces, faces of cardinality one are called
vertices and maximal faces are called facets or clusters.
In type An−1, the cluster complex is called the simplicial
associahedron. Its vertices are diagonals and its facets
triangulations.
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The simplicial associahedron

Marko Thiel Nonnesting partitions and the cluster complex



The cluster complex

If A ∈ ∆(Φ) and −α ∈ A ∩ −S ,

then all other elements of A are
compatible with −α, so when they are written as a linear
combination of simple roots, α does not occur. That is,
A\{−α} ⊂ Φ ∩ 〈S\{α}〉R = Φ(S\{α}).
So we have a bijection A↔ A\{−α} between the set of faces of
∆(Φ(S)) containing −α and the set of faces of ∆(Φ(S\{α})).
Let fl ,m(Φ) be the number of faces of ∆(Φ) containing exactly l
positive roots and exactly m negative simple roots.
Then

mfl ,m(Φ(S)) =
∑
α∈S

fl ,m−1(Φ(S\{α})).
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Nonnesting partitions

Define the root order on Φ+ by β ≥ α if and only if β − α ∈ 〈S〉N.

The set of positive roots Φ+ with this partial order is called the
root poset.

α1 α2 α3 α4

A4

The set of nonnesting partitions NN(Φ) of Φ is the set of
antichains in the root poset.
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Nonnesting partitions

Define the root order on Φ+ by β ≥ α if and only if β − α ∈ 〈S〉N.
The set of positive roots Φ+ with this partial order is called the
root poset.

α1 α2 α3 α4

α1 + α2

α2 + α3 + α4A4

The set of nonnesting partitions NN(Φ) of Φ is the set of
antichains in the root poset.
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Nonnesting partitions

If A ∈ NN(Φ) and α ∈ A ∩ S ,

all other elements of A are not
greater than α, so when they are written as a linear combination of
simple roots, α does not occur.
That is, A\{α} ⊂ Φ ∩ 〈S\{α}〉R = Φ(S\{α}).
So we have a bijection A↔ A\{α} between nonnesting partitions
of Φ(S) containing α and nonnesting partitions of Φ(S\{α}).
Let HΦ(x , y) =

∑
A∈NN(Φ) x

|A|y |A∩S | be the H-triangle of Φ.

Theorem (M. T. ’13)

∂
∂yHΦ(S)(x , y) = x

∑
α∈S HΦ(S\{α})(x , y).
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The H = F conjecture

Theorem (C. Athanasiadis, V. Reiner, J. McCammond ’04)

If the rank of Φ is n, HΦ(x , 1) = (x − 1)nFΦ( 1
x−1 ,

1
x−1 ).

Proof.

Case by case check, using the classification of irreducible
crystallographic root systems.
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The H = F conjecture

Theorem (M. T. ’13, conjectured in F. Chapoton ’04)

If the rank of Φ is n, HΦ(x , y) = (x − 1)nFΦ( 1
x−1 ,

1+(y−1)x
x−1 ).

Proof.

Induction on n. True for n = 0. For n > 0,
∂
∂yHΦ(S)(x , y)
= x

∑
α∈S HΦ(S\{α})(x , y)

= x
∑

α∈S(x − 1)n−1FΦ(S\{α})( 1
x−1 ,

1+(y−1)x
x−1 )

= ∂
∂y (x − 1)nFΦ(S)( 1

x−1 ,
1+(y−1)x

x−1 ).

y = 1: HΦ(x , 1) = (x − 1)nFΦ( 1
x−1 ,

1
x−1 ).
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Generalisations

For each positive integer k , there are generalisations of the Catalan
objects ∆(Φ) and NN(Φ) to Fuß-Catalan objects:

The generalised cluster complex ∆(k)(Φ)
(S. Fomin, N. Reading ’06)
The set of generalised nonnesting partitions NN(k)(Φ)
(C. Athanasiadis ’04).
They reduce to the corresponding Coxeter-Catalan objects when
k = 1.
They also have F -triangles and H-triangles.
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Generalisations

They also have F -triangles and H-triangles.

Theorem (S. Fomin, N. Reading ’06)

∂
∂y F

k
Φ(S)(x , y) =

∑
α∈S F

k
Φ(S\{α})(x , y).

Theorem (M. T. ’13)

∂
∂yH

k
Φ(S)(x , y) = x

∑
α∈S H

k
Φ(S\{α})(x , y).

Conjecture (S. Fomin, N. Reading ’06)

If the rank of Φ is n, Hk
Φ(x , 1) = (x − 1)nF k

Φ( 1
x−1 ,

1
x−1 ).
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Generalisations

They also have F -triangles and H-triangles.
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Generalisations

Conjecture (D. Armstrong ’06)

If the rank of Φ is n, Hk
Φ(x , y) = (x − 1)nF k

Φ( 1
x−1 ,

1+(y−1)x
x−1 ).

Theorem (S. Fomin, N. Reading ’06)

If Φ is a classical root system and the rank of Φ is n,
Hk

Φ(x , 1) = (x − 1)nF k
Φ( 1

x−1 ,
1

x−1 ).

Theorem (M. T. ’13)

If Φ is a classical root system and the rank of Φ is n,
Hk

Φ(x , y) = (x − 1)nF k
Φ( 1

x−1 ,
1+(y−1)x

x−1 ).
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Thanks for your attention!
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Generalisations

Theorem (M. T. ’13)

If Φ is of type G2 or F4 and the rank of Φ is n,
Hk

Φ(x , 1) = (x − 1)nF k
Φ( 1

x−1 ,
1

x−1 ).

Theorem (M. T. ’13)

If Φ does not contain an irreducible component of type E6, E7 or
E8 and the rank of Φ is n,

Hk
Φ(x , y) = (x − 1)nF k

Φ

(
1

x − 1
,

1 + (y − 1)x

x − 1

)
.

Verifying the statement for types E6, E7 and E8 is a finite
computation.
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