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OKOUNKOV’S BC-TYPE INTERPOLATION MACDONALD
POLYNOMIALS AND THEIR q = 1 LIMIT

TOM H. KOORNWINDER

Abstract. This paper surveys eight classes of polynomials associated with A-type
and BC-type root systems: Jack, Jacobi, Macdonald and Koornwinder polynomials
and interpolation (or shifted) Jack and Macdonald polynomials and their BC-type
extensions. Among these the BC-type interpolation Jack polynomials were probably
unobserved until now. Much emphasis is put on combinatorial formulas and binomial
formulas for (most of) these polynomials. Possibly new results derived from these
formulas are a limit from Koornwinder to Macdonald polynomials, an explicit formula
for Koornwinder polynomials in two variables, and a combinatorial expression for
the coefficients of the expansion of BC-type Jacobi polynomials in terms of Jack
polynomials which is different from Macdonald’s combinatorial expression. For these
last coefficients in the two-variable case the explicit expression of Koornwinder and
Sprinkhuizen [SIAM J. Math. Anal. 9 (1978), 457–483] is now obtained in a quite
different way.

1. Introduction

In the past half century special functions associated with root systems became an
active area of research with many interconnections and applications. The early results
were strongly motivated by the notion of spherical functions on Riemannian symmetric
spaces. An ambitious program, which still has not come to an end, started to do
“zonal spherical analysis” without underlying group and for a wider parameter range
than the discrete set of parameter values for which a group theoretic interpretation is
possible. Another motivation came from applications in multivariate statistics. By the
end of the eighties of the past century Heckman and Opdam consolidated the theory
of Jacobi polynomials associated with root systems. In the same period Macdonald,
in his annus mirabilis 1987, introduced the q-analogues of these Jacobi polynomials
in several manuscripts which were circulated and eventually published: Macdonald
polynomials Pλ(x; q, t) (associated with A-type root systems) in [17] and [18, Ch. VI],
Macdonald polynomials associated with root systems in [19], and scratch notes about
hypergeometric functions (associated with BC-type root systems) in [21]. Again in the
same period Dunkl introduced his Dunkl operators, which inspired Heckman, Opdam
and in particular Cherednik to consider the Weyl group invariant (W -invariant) special
functions as part of a more general theory of non-symmetric special functions which are
eigenfunctions of operators having a reflection term. Special representations of graded

E-mail: T.H.Koornwinder@uva.nl.



2 TOM H. KOORNWINDER

and double affine Hecke algebras (DAHA’s) were an important tool. This approach
not only introduced new interesting special functions, but also greatly simplified the
W -invariant theory.

The author [13] introduced a 5-parameter class of q-polynomials, on the one hand
extending the 3-parameter class of Macdonald polynomials associated with root system
BCn [19] and on the other hand providing the n-variable analogue of the Askey-Wilson
polynomials [1]. These polynomials became known in the literature as Macdonald-
Koornwinder or Koornwinder polynomials. Cherednik’s DAHA approach could also be
used for these polynomials, see Sahi [34], [35] and Macdonald’s monograph [20]. A
different approach started by work of Sahi, Knop, Okounkov and Olshanski ([32], [12],
[11], [27], [24], [25], [26]). It used the so-called shifted or interpolation versions of Jack
and Macdonald polynomials. These could be characterized very briefly by their vanish-
ing property at a finite part of a (q-)lattice, they could be represented by combinatorial
formulas (tableau sums) generalizing those for Jack and Macdonald polynomials, and
they occurred in generalized binomial formulas. In particular, Okounkov’s [26] BCn
type interpolation Macdonald polynomials inspired Rains [29] to use these in the defini-
tion of Koornwinder polynomials, thus building the theory of these latter polynomials
in a completely new way. An analogous approach then enabled Rains to develop a
theory of elliptic analogues of Koornwinder polynomials, as surveyed in [30].

Jack and Macdonald polynomials in n variables play a double role, on the one hand as
homogeneous orthogonal polynomials associated with root system An−1, on the other
hand as generalized “monomials” (in the one-variable case ordinary monomials) in
terms of which orthogonal polynomials associated with root system BCn can be nat-
urally expanded. This second role is emphasized in the approach using interpolation
polynomials, in particular where it concerns binomial formulas.

The present paper surveys, mainly in Sections 4 and 5 and after some preliminaries in
Section 3, the definition and properties of eight classes of polynomials: four associated
with root system BCn and four with root system An−1. Also four of these classes are for
general q and four are for q = 1. Four of these classes can be considered as orthogonal
polynomials while the other four (interpolation) classes only play a role as generalized
monomials. There are many limit connections between these eight classes. For six of
them (however, see [6] and Remark 6.1) combinatorial formulas are known, see such
formulas mainly in Section 6. In a sense these combinatorial formulas are generalized
hypergeometric series.

One of the eight classes, the BCn-type interpolation Jack polynomials, seems to
have been overlooked in the literature, although it occurs very naturally in the scheme
formed by the limit connections. It will be defined in Section 7. All its properties
will be obtained here as limit cases of properties of BCn-type interpolation Macdonald
polynomials, including the combinatorial formula for polynomials of this latter class.

Binomial formulas as they were already known for three classes of polynomials are
surveyed in Section 8. The probably new binomial formula for BCn-type interpolation
Jack polynomials is given in Section 9. It gives a new approach to coefficients of
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the expansion of BCn-type Jacobi polynomials in terms of Jack polynomials. As a
consequence of the binomial formulas a new limit formula (8.4) and a new proof of an
already known limit formula (9.2) will follow.

All classes of polynomials and formulas for them become much more elementary and
explicit in the one-variable case. This is the subject of the Prelude in Section 2. The
two-variable case is already more challenging, but explicit formulas are feasible. This
is the topic of Sections 10 and 11. In particular, in Subsection 11.2 we arrive at an
explicit expression for BC2-type Jacobi polynomials which was earlier obtained in a
very different way by the author together with Sprinkhuizen in [14].

Acknowledgement The material of this paper was first presented in lectures given at
the 72nd Séminaire Lotharingien de Combinatoire, Lyon, France, 24–26 March 2014. I
thank the organizers for the invitation. I thank Siddhartha Sahi, Ole Warnaar, Genkai
Zhang and an anonymous referee for helpful remarks. Thanks also to Masatoshi Noumi
for making available to me his unpublished slides on interpolation functions of type
BC.

Notation See [8]. Throughout we assume 0 < q < 1. (q)-shifted factorials are given
by

(a)k := a(a+ 1) · · · (a+ k − 1), (a)0 := 1, (a1, . . . , ar)k

:= (a1)k · · · (ar)k ;

(a; q)k := (1− a)(1− aq) · · · (1− aqk−1), (a; q)0 := 1, (a1, . . . , ar; q)k

:= (a1; q)k · · · (ar; q)k .
For n a nonnegative integer we have terminating (q-)hypergeometric series

rFs

(
−n, a2, . . . , ar
b1, . . . , bs

; z

)
:=

n∑
k=0

(−n)k
k!

(a2, . . . , ar)k
(b1, . . . , bs)k

zk,

rφs

(
−n, a2, . . . , ar
b1, . . . , bs

; q, z

)
:=

n∑
k=0

(q−n; q)k
(q; q)k

(a2, . . . , ar; q)k
(b1, . . . , bs); qk

(
(−1)kq

1
2
k(k−1))r−s+1

zk.

2. Prelude: the one-variable case

Let us explicitly consider the most simple situation, for polynomials in one variable
(in this section n will denote the degree rather than the number of variables). Then
both Jack and Macdonald polynomials are simple monomials xn. Put

Pn(x) := xn, Pn(x; q) := xn, P ip
k (x) := x(x− 1) · · · (x− k + 1) = (−1)k(−x)k.

P ip
k (x) is the unique monic polynomial of degree k which vanishes at 0, 1, . . . , k − 1. A

binomial formula is given by

(x+ 1)n =
n∑
k=0

(
n

k

)
xk, or Pn(x+ 1) =

n∑
k=0

P ip
k (n)

P ip
k (k)

Pk(x). (2.1)
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In the q-case put

P ip
k (x; q) := (x− 1)(x− q) · · · (x− qk−1) = xk(x−1; q)k.

P ip
k (x; q) is the unique monic polynomial of degree k which vanishes at 1, q, . . . , qk−1. A
q-binomial formula (see [8, Exercise 1.6(iii)]) is given by

xn = 2φ0

(
q−n, x−1

−
; q, qnx

)
=

n∑
k=0

(q−n, x−1; q)k

(−1)kq
1
2
k(k−1)(q; q)k

(qnx)k, or

Pn(x; q) =
n∑
k=0

P ip
k (qn; q)

P ip
k (qk; q)

P ip
k (x; q). (2.2)

Identity (2.1) is the limit case for q ↑ 1 of (2.2). The polynomials P ip
k (x) and P ip

k (x; q)
are the one-variable cases of the interpolation Jack and the interpolation Macdonald
polynomials, respectively.

In the one-variable case BCn-type Jacobi polynomials become classical Jacobi polyno-
mials and Koornwinder polynomials become Askey-Wilson polynomials. Their standard
expressions as (q-)hypergeometric series are:

P
(α,β)
n (1− 2x)

P
(α,β)
n (1)

=
n∑
k=0

(−n)k(n+ α + β + 1)k
(α + 1)k k!

xk = 2F1

(
−n, n+ α + β + 1

α + 1
;x

)
(2.3)

and

pn(1
2
(x+ x−1); a1, a2, a3, a4 | q)

pn(1
2
(a1 + a−11 ); a1, a2, a3, a4 | q)

=
n∑
k=0

(q−n, qn−1a1a2a3a4, a1x, a1x
−1; q)k

(a1a2, a1a3, a1a4, q; q)k
qk

= 4φ3

(
q−n, qn−1a1a2a3a4, a1x, a1x

−1

a1a2, a1a3, a1a4
; q, q

)
. (2.4)

Note that (2.3) gives an expansion in terms of monomials Pk(x) = xk (Jack polynomials
in one variable), while (2.4) gives an expansion in terms of monic symmetric Laurent
polynomials

P ip
k (x; q, a1) :=

k−1∏
j=0

(x+ x−1 − a1qj − a−11 q−j) =
(a1x, a1x

−1; q)k

(−1)k q
1
2
k(k−1) ak1

. (2.5)

The monic symmetric Laurent polynomial (2.5) is characterized by its vanishing at
a1, a1q, . . ., a1q

k−1. It is the one-variable case of Okounkov’s BC-type interpolation
Macdonald polynomial. If we consider (2.4) as an expansion of its left-hand side as

a function of n, then we see that it is expanded in terms of functions P ip
k (qna′1; q, a

′
1)

(using the definition in (2.5)), where a′1 := (q−1a1a2a3a4)
1
2 . Furthermore, if we replace

x by a1x in (2.5), divide by ak1, and let a1 →∞, then we obtain the q-binomial formula
(2.2). Therefore, Okounkov [26] calls (2.5), as well as its multi-variable analogue, also
a binomial formula.
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If we replace in (2.4) the parameters a1, a2, a3, a4 by qα+1,−qβ+1, 1,−1 and let q ↑ 1,
then we arrive at (2.3), which therefore might also be called a binomial formula. If we
consider (2.3) as an expansion of its left-hand side as a function of n, then we see that

it is expanded in terms of functions P ip
k (n+ α′;α′), where α′ := 1

2
(α + β + 1) and

P ip
k (x;α) :=

k−1∏
j=0

(
x2 − (α + j)

)2
= (−1)k (α− x)k (α + x)k , (2.6)

a monic even polynomial of degree 2k in x which is characterized by its vanishing at α,
α + 1, . . ., α + k − 1. This is the one-variable case of the BC-type interpolation Jack
polynomial, which (possibly for the first time) will be defined in the present paper.

3. Preliminaries

3.1. Partitions. We recapitulate some notions about partitions, diagrams and tab-
leaux from Macdonald [18, § I.1]. However, in contrast to [18], we fix an integer n ≥ 1
and always understand a partition λ to be of length ≤ n, i.e., λ = (λ1, . . . , λn) ∈ Zn
with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Write `(λ) := |{j | λj > 0}| for the length of λ and
|λ| := λ1 + · · ·+ λn for its weight. Also put

n(λ) :=
n∑
i=1

(i− 1)λi. (3.1)

We may abbreviate k parts of λ equal to m by mk and we may omit 0k at the end. For
instance, (2, 2, 1, 0, 0, 0) = (22, 1, 03) = (22, 1). There is the special partition

δ := (n− 1, n− 2, . . . , 1, 0). (3.2)

A partition λ can be displayed by a Young diagram, also notated by λ, which consists
of boxes (i, j) with i = 1, . . . , `(λ) and j = 1, . . . , λi for a given i. The conjugate partition
λ′ has diagram such that (j, i) ∈ λ′ if and only if (i, j) ∈ λ The example below of the
diagram of λ = (7, 5, 5, 2, 2) and its conjugate λ′ = (5, 5, 3, 3, 3, 1, 1) will make clear how
a diagram is drawn:

For (i, j) a box of a partition λ, the arm-length aλ(i, j) and leg-length lλ(i, j) are
defined by

aλ(i, j) := λi − j, lλ(i, j) := |{k > i | λk ≥ j}|.
Also the arm-colength a′λ(i, j) and leg-colength l′λ(i, j) are defined by

a′λ(i, j) := j − 1, l′λ(i, j) := i− 1.
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The dominance partial ordering ≤ and the inclusion partial ordering ⊆ are defined
by

µ ≤ λ if and only if µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi (i = 1, . . . , n);

µ ⊆ λ if and only if µi ≤ λi (i = 1, . . . , n).

Clearly, if µ ⊆ λ then µ ≤ λ, while µ < λ implies that µ is less than λ in the
lexicographic ordering. If µ ⊆ λ then we say that λ contains µ. Note that, for the
dominance partial ordering, we do not make the usual requirement that |λ| = |µ|.

For µ ⊆ λ define the skew diagram λ − µ as the set of boxes {s ∈ λ | s /∈ µ}. A
horizontal strip is a skew diagram with at most one box in each column.

For a horizontal strip λ−µ define (R\C)λ/µ as the set of boxes which are in a row of
λ intersecting with λ−µ but not in a column of λ intersecting with λ−µ. Then clearly
(R\C)λ/µ is completely contained in µ. For an example consider again λ = (7, 5, 5, 2, 2)
and take µ = (5, 5, 3, 2, 1). In the following diagram the cells of λ−µ have black squares
and the cells of (R\C)λ/µ have black diamonds.

� � � �

� � � �

� �

3.2. Tableaux. For λ a partition (of length ≤ n) we can fill the boxes s of λ by
numbers T (s) ∈ {1, 2, . . . , n}. Then T is called a reverse tableau of shape λ with entries
in {1, . . . , n} if T (i, j) is weakly decreasing in j and strongly decreasing in i. (Clearly,
the number of different entries has to be ≥ `(λ). In [18, § I.1] tableaux rather than
reverse tableaux are defined.) For an example consider again λ = (7, 5, 5, 2, 2), so
`(λ) = 5. Let us take n = 6. Then an example of a reverse tableau T of shape λ is
given by

6 6 6 4 3 1 1
5 5 5 2 2
4 4 2 1 1
3 2
2 1

For T of shape λ and for k = 0, 1, . . . , n let λ(k) be the partition of which the Young
tableau consists of all s ∈ λ such that T (s) > k. Thus

0n = λ(n) ⊆ λn−1 ⊆ · · · ⊆ λ(1) ⊆ λ(0) = λ. (3.3)

Then the skew diagram λ(k−1) − λ(k) is actually a horizontal strip and it consists of all
boxes s with T (s) = k. We call the sequence (µ1, . . . , µn) with µk := |λ(k−1) − λ(k| =
|T−1({k}) the weight of T . For λ and T as in the example the inclusion sequence (3.3)
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becomes

() ⊆ (3) ⊆ (3, 3) ⊆ (4, 3, 2) ⊆ (5, 3, 2, 1) ⊆ (5, 5, 3, 2, 1) ⊆ (7, 5, 5, 2, 2).

and T has weight (5, 5, 2, 3, 3, 3).
For a skew diagram λ− µ a standard tableau T of shape λ− µ puts T (s) in box s of

λ − µ such that each number in {1, . . . , |λ − µ|} occurs and T (s) is strictly increasing
in each row and in each column.

3.3. Symmetrized monomials. Write xµ := xµ11 · · · xµnn for µ ∈ Zn. We say that xµ

has degree |µ| := µ1 + · · · + µn. By the degree of a Laurent polynomial p(x) we mean
the highest degree of a monomial occurring in the Laurent expansion of p(x).

Let Sn be the symmetric group in n letters and Wn := Sn n (Z2)
n. For λ a partition

and x = (x1, . . . , xn) ∈ Cn put

mλ(x) :=
∑
µ∈Snλ

xµ, m̃λ(x) :=
∑

µ∈Wnλ

xµ. (3.4)

They form a basis of the space of Sn-invariant polynomials (respectively, Wn-invariant
Laurent polynomials) in x1, . . . , xn. Call an Sn-invariant polynomial (respectively, Wn-
invariant Laurent polynomial) of degree |λ| λ-monic if its coefficient of mλ (respectively,
of m̃λ) is equal to 1.

4. Macdonald and Koornwinder polynomials and q = 1 limits

From now on n will be the number of variables and we will assume n > 1.

4.1. Macdonald polynomials. See Eqs. (4.7), (9.3), (9.5) and the Remark on p. 372
in Ch. VI in Macdonald [18].

Let 0 < t < 1. If x = (x1, . . . , xn) with xj 6= 0 for all j then write x−1 :=
(x−11 , . . . , x−1n ). Put

∆+(x) = ∆+(x; q, t) :=
∏

1≤i<j≤n

(xix
−1
j ; q)∞

(txix
−1
j ; q)∞

, ∆(x) := ∆+(x)∆+(x−1).

Macdonald polynomials (for root system An−1) are λ-monic Sn-invariant polynomials

Pλ(x; q, t) = Pλ(x) =
∑
µ≤λ

uλ,µmµ(x) (4.1)

such that (with q, t-dependence of Pλ and ∆ understood)∫
Tn
Pλ(x)mµ(x−1) ∆(x)

dx1
x1
· · · dxn

xn
= 0 if µ < λ. (4.2)

Here Tn is the n-torus in Cn. It follows from (4.2) that∫
Tn
Pλ(x)Pµ(x−1) ∆(x)

dx1
x1
· · · dxn

xn
= 0 (4.3)
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if µ < λ, and that Pλ is homogeneous of degree |λ|. In fact, it can be shown that the
orthogonality (4.3) holds for λ 6= µ. This deeper and very important result will also be
met for the three other orthogonal families discussed below.

Macdonald polynomials can be explicitly evaluated in a special point (see [18, Ch. VI,
Eq. (6.11)]):

Pλ(t
δ; q, t) = tn(λ)

∆+(qλtδ; q, t)

∆+(tδ; q, t)
= tn(λ)

∏
1≤i<j≤n

(tj−i+1; q)λi−λj
(tj−i; q)λi−λj

. (4.4)

There is also the duality result (see [18, Ch. VI, Eq. (6.6)]):

Pλ(q
νtδ; q, t)

Pλ(tδ; q, t)
=
Pν(q

λtδ; q, t)

Pν(tδ; q, t)
. (4.5)

4.2. Jack polynomials. See Eqs. (10.13), (10.14), (10.35) and (10.36) in Ch. VI in
Macdonald [18], and see Stanley [36].

Let τ > 0. Put

∆+(x) = ∆+(x; τ) :=
∏

1≤i<j≤n

(1− xix−1j )τ , ∆(x) := ∆+(x)∆+(x−1). (4.6)

Jack polynomials are λ-monic Sn-invariant polynomials

Pλ(x; τ) = Pλ(x) =
∑
µ≤λ

uλ,µmµ(x)

satisfying (4.2) with ∆ given by (4.6). Hence they satisfy (4.3) if µ < λ, and Pλ is
homogeneous of degree |λ|. In fact, it can be shown that they satisfy (4.3) for λ 6= µ.

Jack polynomials are limits of Macdonald polynomials:

lim
q↑1

Pλ(x; q, qτ ) = Pλ(x; τ). (4.7)

Our notation of Jack polynomials relates to Macdonald’s notation by Pλ(x; τ) =

P
(τ−1)
λ (x). Alternatively, [18, Ch. VI, Eq. (10.22)] and [36, Theorem 1.1] work with

J
(α)
λ (x) = Jλ(x;α), respectively. Then (Eqs. (10.22) and (10.21) in [18, Ch. VI])

J
(α)
λ = cλ(α)P

(α)
λ , cλ(α) =

∏
s∈λ

(αa(s) + l(s) + 1).

We have the evaluation (see [36, Theorem 5.4])

Pλ(1
n; τ) =

∏
1≤i<j≤n

((j − i+ 1)τ)λi−λj
((j − i)τ)λi−λj

. (4.8)

The following limit is formally suggested by (4.7):

lim
q↑1

Pλ(q
τδ; q, qτ ) = Pλ(1

n; τ). (4.9)

It follows rigorously by comparing (4.4) and (4.8).
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4.3. Koornwinder polynomials. See Koornwinder [13].
Let |a1|, |a2|, |a3|, |a4| ≤ 1 such that aiaj 6= 1 if i 6= j, and such that non-real aj occur

in complex conjugate pairs. Let 0 < t < 1. Put

∆+(x) = ∆+(x; q, t; a1, a2, a3, a4)

:=
n∏
j=1

(x2j ; q)∞

(a1xj, a2xj, a3xj, a4xj; q)∞

∏
1≤i<j≤n

(xixj, xix
−1
j ; q)∞

(txixj, txix
−1
j ; q)∞

.

Put ∆(x) := ∆+(x)∆+(x−1). Koornwinder polynomials are λ-monic Wn-invariant Lau-
rent polynomials

Pλ(x; q, t; a1, a2, a3, a4) = Pλ(x) =
∑
µ≤λ

uλ,µm̃µ(x) (4.10)

such that ∫
Tn
Pλ(x) m̃µ(x) ∆(x)

dx1
x1
· · · dxn

xn
= 0 if µ < λ. (4.11)

It follows from (4.11) that∫
Tn
Pλ(x)Pµ(x) ∆(x)

dx1
x1
· · · dxn

xn
= 0 (4.12)

if µ < λ, and that Pλ is symmetric in a1, a2, a3, a4. In fact, it can be shown that the
orthogonality (4.12) holds for λ 6= µ. Koornwinder polynomials are a 5-parameter gen-
eralization of Macdonald’s [19] 3-parameter q-polynomials associated with root system
BCn.

Van Diejen [3, § 5.2] showed that the Macdonald polynomial Pλ(x; q, t) is the term
of highest degree |λ| of Pλ(x; q, t; a1, a2, a3, a4):

lim
r→∞

r−|λ|Pλ(rx; q, t; a1, a2, a3, a4) = Pλ(x; q, t). (4.13)

For the following result we will need dual parameters a′1, a
′
2, a
′
3, a
′
4:

a′1 := (q−1a1a2a3a4)
1
2 , a′1a

′
2 = a1a2, a′1a

′
3 = a1a3, a′1a

′
4 = a1a4. (4.14)

Below the ambiguity in taking a square root will cause no harm because ∆+ is invariant
under the transformation (x, a1, a2, a3, a4) → (−x1,−a1,−a2,−a3,−a4), by which Pλ
will also have this invariance, up to a factor (−1)|λ|.
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An evaluation formula for Koornwinder polynomials was conjectured by Macdonald
(1991, unpublished; see [4, Eq. (5.5)]). It reads

Pλ(t
δa1; q, t; a1,a2, a3, a4) = t−〈λ,δ〉a

−|λ|
1

∆+(qλtδa′1; q, t; a
′
1, a
′
2, a
′
3, a
′
4)

∆+(tδa′1; q, t; a
′
1, a
′
2, a
′
3, a
′
4)

= t−〈λ,δ〉a
−|λ|
1

n∏
j=1

(tn−ja′21 ; q)λj
(t2n−2ja′21 ; q)2λj

(tn−ja1a2, t
n−ja1a3, t

n−ja1a4; q)λj

∏
1≤i<j≤n

(t2n−i−j+1a′21 ; q)λi+λj
(t2n−i−ja′21 ; q)λi+λj

(tj−i+1; q)λi−λj
(tj−i; q)λi−λj

. (4.15)

It was proved by van Diejen [4, Eq. (5.5)] in the self-dual case a1 = a′1. In that case he
also proved [4, Eq. (5.4)] Macdonald’s duality conjecture (1991):

Pλ(q
νtδa1; q, t; a1, a2, a3, a4)

Pλ(tδa1; q, t; a1, a2, a3, a4)
=
Pν(q

λtδa′1; q, t; a
′
1, a
′
2, a
′
3, a
′
4)

Pν(tδa′1; q, t; a
′
1, a
′
2, a
′
3, a
′
4)

. (4.16)

Sahi [34] proved (4.16) in the general case. As pointed out in [4, Section 7.2], this also
implies (4.15) in the general case. Macdonald independently proved his conjectures in
his book [20], see Eqs. (5.3.12) and (5.3.5), respectively, there.

4.4. BCn-type Jacobi polynomials. See [10] and [37, Definition 3.5 and (3.18)].
Let α, β > −1 and τ > 0. Put

∆(x) = ∆(x; τ ;α, β) :=
n∏
j=1

xαj (1− xj)β
∏

1≤i<j≤n

|xi − xj|2τ .

BCn-type Jacobi polynomials are λ-monic Sn-invariant polynomials

Pλ(x; τ ;α, β) = Pλ(x) =
∑
µ≤λ

aλ,µmµ(x)

such that ∫
[0,1]n

Pλ(x)mµ(x) ∆(x) dx1 · · · dxn = 0 if µ < λ. (4.17)

It follows from (4.17) that∫
[0,1]n

Pλ(x)Pµ(x) ∆(x) dx1 · · · dxn = 0 (4.18)

if µ < λ. It can be shown, see [10, Corollary 3.12], that (4.18) holds more generally if
λ 6= µ.

The case c = 1, d = −1 of [37, Eq. (5.5)] says that

lim
q↑1

Pλ(x; q, qτ ; qα+1,−qβ+1, 1,−1) = (−4)|λ| Pλ(
1
4
(2− x− x−1); τ ;α, β). (4.19)



OKOUNKOV’S BC-TYPE INTERPOLATION MACDONALD POLYNOMIALS 11

Furthermore, it was pointed out in [31, Eq. (4.8)] that the Jack polynomial Pλ(x; τ) is
the term of highest degree |λ| of the BCn-type Jacobi polynomial Pλ(x; τ ;α, β):

lim
r→∞

r−|λ|Pλ(rx; τ ;α, β) = Pλ(x; τ). (4.20)

This is the q = 1 analogue of the limit (4.13).
An evaluation formula for Jacobi polynomials associated with root systems, including

BCn, was given by Opdam [28, Corollary 5.2]. See reformulations of this result in the
BCn case by van Diejen [5, Eq. (6.43d)] and by Hallnäs [9, p. 1594]. The formula can
be given very explicitly as follows:

Pλ(0; τ ;α, β) = (−1)|λ|
n∏
j=1

((n− j)τ + 2α′)λj ((n− j)τ + α + 1)λj
((2n− 2j)τ + 2α′)2λj

×
∏

1≤i<j≤n

((2n− i− j + 1)τ + 2α′)λi+λj
((2n− i− j)τ + 2α′)λi+λj

((j − i+ 1)τ)λi−λj
((j − i)τ)λi−λj

. (4.21)

Here
α′ := 1

2
(α + β + 1). (4.22)

The following limit is formally suggested by (4.19):

lim
q↑1

Pλ(q
τδ+α+1; q, qτ ; qα+1,−qβ+1, 1,−1) = (−4)|λ| Pλ(0; τ ;α, β). (4.23)

It follows rigorously by comparing (4.15) and (4.21).

5. Interpolation polynomials

5.1. Interpolation Macdonald polynomials. See Sahi [33, Theorem 1.1], Knop [11,
Theorem 2.4(b)], and Okounkov [25, Eqs. (4.2), (4.3)].

Let 0 < t < 1. The interpolation Macdonald polynomial (or shifted Macdonald

polynomial) P ip
λ (x; q, t) is the unique λ-monic Sn-invariant polynomial of degree |λ|

such that P ip
λ (qµtδ; q, t) = 0 for each partition µ 6= λ with |µ| ≤ |λ|. Here qµtδ =

(qµ1tn−1, qµ2tn−2, . . . , qµn).

Our P ip
λ is related to Sahi’s Rλ, Knop’s Pλ (use [11, Theorem 3.11]) and Okounkov’s

P ∗λ (use [25, Eq. (4.11)]), respectively, as follows:

P ip
λ (x; q, t) = Rλ(x; q−1, t−1) = t(n−1)|λ| Pλ(t

−(n−1)x) = t(n−1)|λ| P ∗λ (xt−δ).

Okounkov [25] speaks about shifted polynomials because in his notation the polynomials
are only symmetric after a (multiplicative) shift.

P ip
λ has the extra vanishing property (see [11, p. 93] or [25, Eq. (4.12)])

P ip
λ (qµtδ; q, t) = 0 if µ is a partition not containing λ.

By [25, Eq. (4.11)], P ip
λ can be expanded in terms of Macdonald polynomials as

follows:
P ip
λ (x; q, t) =

∑
µ⊆λ

bλ,µ Pµ(x; q, t) (5.1)
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for certain coefficients bλ,µ, where bλ,λ = 1 by λ-monicity. This has several consequences.
By combination with (4.1) we see that

P ip
λ (x; q, t) =

∑
µ≤λ

cλ,µmµ(x) (5.2)

for certain coefficients cλ,µ, and cλ,λ = 1. Furthermore, by (5.1), Pλ(x; q, t) is the term

of highest degree |λ| of the polynomial P ip
λ (x; q, t):

lim
r→∞

r−|λ|P ip
λ (rx; q, t)) = Pλ(x; q, t). (5.3)

Although Knop [11] did not give (5.1), he did give (5.2) and (5.3), proved differently
(see Theorem 3.11 and Theorem 3.9 in [11]). The result (5.3) is also proved by Sahi
[33, Theorem 1.1].

5.2. Interpolation Jack polynomials. See Sahi [32, Theorem 1], Knop and Sahi [12,
pp. 475, 478], Okounkov and Olshanski [27, p. 70], and Okounkov [25, Section 7].

Let τ > 0. The interpolation Jack polynomial (or shifted Jack polynomial) P ip
λ (x; τ)

is the unique λ-monic Sn-invariant polynomial of degree |λ| such that P ip
λ (µ+τδ; τ) = 0

for each partition µ 6= λ with |µ| ≤ |λ|. It can be expressed in terms of P τδ
λ from [12]

and in terms of P ∗λ ( . ; τ) from [27], [25] as follows:

P ip
λ (x; τ) = P τδ

λ (x) = P ∗λ (x− τδ; τ).

It has the extra vanishing property (see [12, Theorem 5.2])

P ip
λ (µ+ τδ; τ) = 0 if µ is a partition not containing λ.

It has an expansion of the form

P ip
λ (x; τ) =

∑
µ≤λ

cλ,µmµ(x)

for certain coefficients cλ,µ, and cλ,λ = 1 (see [12, Corollary 4.6]). The term of highest

degree |λ| of the polynomial P ip
λ (x; τ) is the Jack polynomial Pλ(x; τ) (see [12, Corol-

lary 4.7]):

lim
r→∞

r−|λ|P ip
λ (rx; τ) = Pλ(x; τ). (5.4)

Interpolation Jack polynomials are a limit case of interpolation Macdonald polyno-
mials (see [25, Eq. (7.1)]):

lim
q↑1

(q − 1)−|λ|P ip
λ (qx; q, qτ ) = P ip

λ (x; τ). (5.5)
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5.3. BCn-type interpolation Macdonald polynomials.

Definition 5.1 (BCn-type interpolation (orBCn-type shifted) Macdonald polynomials).

Let 0 < t < 1 and let a ∈ C be generic. P ip
λ (x; q, t, a) is the unique Wn-invariant λ-monic

Laurent polynomial of degree |λ| such that

P ip
λ (qµtδa; q, t, a) = 0 if µ does not contain λ. (5.6)

(In particular, P ip
λ (qµtδa; q, t, a) = 0 if |µ| ≤ |λ|, µ 6= λ.)

These polynomials were first introduced by Okounkov [26] in a different notation and
normalization. Okounkov [26, p. 185, Section 1] specifies the genericity of the parameter
a (in his notation s) by the condition qitjak 6= 1 for i, j, k ∈ Z>0. However, this may be
too strong on the one hand and too weak on the other hand. Certainly the right-hand
side of (5.10) (equivalently the normalization constant in [26, Definition 1.2]) should be
nonzero. A requirement for this is that qitja2 6= 1 for i ∈ Z>0, j ∈ Z≥0.

Different approaches were given by Rains [29], and later by Noumi in unpublished
slides of a lecture given in 2013 at a conference at Kyushu University. Our normalization

follows Rains [29]. In terms of Rains’ P̄
∗(n)
λ and Okounkov’s P ∗λ , we have (cf. [29, p. 76,

Remark 1])

P ip
λ (x; q, t, a) = P̄

∗(n)
λ (x; q, t, a) = (tn−1a)|λ|P ∗λ (xt−δa−1; q, t, a). (5.7)

Note that Okounkov’s P ∗λ (x; q, t, s) is Wn-symmetric in the variables xit
n−is (i = 1, 2,

. . . , n).

Just as for P ip
λ (x; q, t), the top homogeneous term of P ip

λ (x; q, t, a) equals the Mac-
donald polynomial Pλ(x; q, t) (see [26, Section 4]):

lim
r→∞

r−|λ|P ip
λ (rx; q, t, a)) = Pλ(x; q, t). (5.8)

There is also a limit from P ip
λ (x; q, t, a) to P ip

λ (x; q, t) (see [29, p. 75]):

lim
a→∞

a−|λ|P ip
λ (ax; q, t, a) = P ip

λ (x; q, t). (5.9)

By combination of (5.7) with [26, Definitions 1.1 and 1.2], we get the following
evaluation formula (with 〈 . , . 〉 denoting the standard inner product on Rn):

P ip
λ (qλtδa; q, t, a) = q−〈λ,λ〉t−〈λ,δ〉 a−|λ|

∏
(i,j)∈λ

(1− qλi−j+1tλ
′
j−i)(1− a2qλi+j−1tλ′j−i+2(n−λ′j)).

(5.10)
By [29, Lemma 2.1] (see also [29, Corollary 3.7]) this can be rewritten as

P ip
λ (qλtδa; q, t, a) = q−〈λ,λ〉t−〈λ,δ〉 a−|λ|

n∏
j=1

(qtn−j; q)λj(t
2n−2ja2; q)2λj

(tn−ja2; q)λj

×
∏

1≤i<j≤n

(t2n−i−ja2; q)λi+λj
(t2n−i−j+1a2; q)λi+λj

(qtj−i−1; q)λi−λj
(qtj−i; q)λi−λj

. (5.11)
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An elementary consequence of the definition of P ip
λ (x; q, t, a) is a reduction formula

(see [26, Proposition 2.1]):

P ip
µ (x; q, t, a) = (−a)nµnq−

1
2
nµn(µn−1)

n∏
j=1

(
(xja; q)µn(x−1j a; q)µn

)
P ∗µ−µn1n(x; q, t, qµna).

(5.12)

6. Combinatorial formulas

6.1. Combinatorial formula for Macdonald polynomials. The combinatorial for-
mula for Macdonald polynomials which we will use is a special case of [18, Ch. VI,
Eq. (7.13′)]:

Pλ(x; q, t) =
∑
T

ψT (q, t)
∏
s∈λ

xT (s), (6.1)

where the sum is over all tableaux T of shape λ with entries in {1, . . . , n} and with
ψT (q, t) defined in [18, Ch. VI] by formula (7.11′), by formula (ii) on p. 341 with Cλ/µ
and Sλ/µ given after (6.22), and by formula (6.20). See [15, Section 1] for a summary
of these results. Since the Macdonald polynomial is symmetric, we may as well sum
over reverse tableaux instead of tableaux, with the definition of ψT (q, t) accordingly
adapted. We will now give ψT (q, t) explicitly. See Subsections 3.1 and 3.2 for notation.

Recall that for a reverse tableaux T of shape λ with entries in {1, . . . , n} we write
0n = λ(n) ⊆ λ(n−1) ⊆ · · · ⊆ λ(0) = λ with T (s) = i for s in the horizontal strip
λ(i−1) − λ(i). Now

ψT (q, t) :=
n∏
i=1

ψλ(i−1)/λ(i)(q, t), ψµ/ν(q, t) =
∏

s∈(R\C)µ/ν

bν(s; q, t)

bµ(s; q, t)
, (6.2)

where

bµ(s; q, t) :=
1− qaµ(s)tlµ(s)+1

1− qaµ(s)+1tlµ(s)
. (6.3)

By (3.4) and (4.1) we obtain that

Pλ(x; q, t) =
∑
µ≤λ

uλ,µ(q, t)mµ(x) with uλ,µ(q, t) =
∑
T

ψT (q, t), (6.4)

where the T -sum is over all reverse tableaux T of shape λ and weight µ, see [18, p. 378].
Let Tλ be the tableau of shape λ for which T (i, j) = n + 1 − i. This is the unique

tableau of shape λ which has weight (λn, λn−1, . . . , λ1). Since Pλ(x; q, t) is λ-monic, it
follows from (6.1) that

ψTλ(q, t) = 1. (6.5)
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6.2. Combinatorial formulas for (BCn) interpolation Macdonald polynomi-

als. For interpolation Macdonald polynomials P ip
λ (x; q, t) and BCn-type interpolation

Macdonald polynomials P ip
λ (x; q, t, a) there are combinatorial formulas similar to (6.1)

and also involving ψT (q, t) given by (6.2):

P ip
λ (x; q, t) =

∑
T

ψT (q, t)
∏
s∈λ

(
xT (s) − qa

′
λ(s)tn−T (s)−l

′
λ(s)
)
, (6.6)

P ip
λ (x; q, t, a) =

∑
T

ψT (q, t)
∏
s∈λ

(
xT (s) − qa

′
λ(s)tn−T (s)−l

′
λ(s)a

)
·
(

1−
(
qa
′
λ(s)tn−T (s)−l

′
λ(s)a

)−1
x−1T (s)

)
. (6.7)

See [25, Eq. (1.4)] for (6.6) and [26, Eq. (5.3)] for (6.7). The sums are over all reverse
tableaux T of shape λ with entries in {1, . . . , n}. Note that the limits (5.3), (5.8) and
(5.9) also follow by comparing (6.1), (6.6) and (6.7).

6.3. Combinatorial formulas for (interpolation) Jack polynomials. The com-
binatorial formula for Jack polynomials can be obtained as a limit case of the com-
binatorial formula (6.1) for Macdonald polynomials by using the limit (4.7) (see [18,
p. 379]), but it can also be obtained independently, as was first done by Stanley [36,
Theorem 6.3]:

Pλ(x; τ) =
∑
T

ψT (τ)
∏
s∈λ

xT (s), (6.8)

where the sum is over all reverse tableaux T of shape λ with entries in {1, . . . , n}. For
the definition of ψT (τ) take 0n = λ(n) ⊆ λ(n−1) ⊆ · · · ⊆ λ(0) = λ as before and put

ψT (τ) :=
n∏
i=1

∏
s∈(R\C)

λ(i−1)/λ(i)

bλ(i)(s; τ)

bλ(i−1)(s; τ)
(6.9)

with

bµ(s; τ) :=
aµ(s) + τ(lµ(s) + 1)

aµ(s) + τ lµ(s) + 1
.

Note that

lim
q↑1

bµ(s; q, qτ ) = bµ(s, τ) and lim
q↑1

ψT (q, qτ ) = ψT (τ).

Hence, by (6.5) we have

ψTλ(τ) = 1. (6.10)

Similarly as for (6.4) we derive immediately that

Pλ(x; τ) =
∑
µ≤λ

uλ,µ(τ)mµ(x) with uλ,µ(τ) =
∑
T

ψT (τ),

where the T -sum is over all reverse tableaux T of shape λ and weight µ.
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The combinatorial formula for interpolation Jack polynomials (see [27, Eq. (2.4)])
was obtained in [25, Section 7] as a limit case of the combinatorial formula (6.6) for
interpolation Macdonald polynomials by using the limit (5.5):

P ip
λ (x; τ) =

∑
T

ψT (τ)
∏
s∈λ

(
xT (s) − a′λ(s)− τ(n− T (s)− l′λ(s))

)
, (6.11)

with the sum over all tableaux T of shape λ with entries in {1, . . . , n} and ψT (τ) given
by (6.9). The limit (5.4) also follows by comparing (6.11) and (6.8). Furthermore, by
comparing (6.7) and (6.8) we obtain the limit

lim
q↑1

P ip
λ (x; q, qτ , qα) = Pλ(x+ x−1 − 2; τ), (6.12)

and from (6.6) and (6.8) we obtain

lim
q↑1

P ip
λ (x; q, qτ ) = Pλ(x− 1n; τ). (6.13)

Remark 6.1. When we compare combinatorial formulas in the case of n and of n − 1
variables, we see that, in general, a combinatorial formula is equivalent to a branch-
ing formula, which expands a polynomial Pλ in x1, . . . , xn in terms of polynomials Pµ
in x1, . . . , xn−1 with the expansion coefficients depending on xn. In particular, the
branching formula for Macdonald polynomials is (see [15, Eqs. (1.9), (1.8)])

Pλ(x1, . . . , xn−1, xn; q, t)) =
∑
µ

Pλ/µ(xn; q, t)Pµ(x1, . . . , xn−1; q, t), (6.14)

where the sum runs over all partitions µ ⊆ λ of length < n such that λ−µ is a horizontal
strip, and where, in notation (6.2),

Pλ/µ(z; q, t) = ψλ/µ(q, t) z|λ|−|µ|. (6.15)

The coefficients ψλ/µ(q, t) can be expressed in terms of Pieri coefficients for Macdonald
polynomials by interchanging q and t and by passing to conjugate partitions λ′, µ′:
ψλ/µ(q, t) = ψ′λ′/µ′(t, q), see [18, Ch. VI, Eq. (6.24)].

Van Diejen and Emsiz [6] recently obtained a branching formula for Koornwinder
polynomials. It has the same structure as (6.14), but the analogue of (6.15) becomes a
sum of terms in the right-hand side. Each term is similar to the right-hand side of (6.15),
with the monomial being replaced by a quadratic q-factorial, also depending on the
parameter a1. The analogues of the coefficients ψλ/µ can be expressed in terms of (earlier
known) Pieri-type coefficients for Koornwinder polynomials. By taking highest degree
parts in both sides of the new branching formula and by using (4.13), we are reduced
to (6.15). However, the combinatorial formula (6.7) and its corresponding branching
formula for BCn-type interpolation Macdonald polynomials are quite different from the
results in [6].
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7. BCn-type interpolation Jack polynomials

In view of the results surveyed until now, the following definition is quite natural.

Definition 7.1. Let τ > 0 and let α ∈ C be generic. The BCn-type interpolation
Jack polynomial P ip

λ (x; τ, α) is given as a limit of BCn-type interpolation Macdonald
polynomials,

P ip
λ (x; τ, α) := lim

q↑1
(1− q)−2|λ|P ip

λ (qx; q, qτ , qα). (7.1)

Concerning the genericity of α ∈ C we should have at least that the evaluation (7.5)
is nonzero, i.e., i + jτ + 2α 6= 0 for i ∈ Z>0 and j ∈ Z≥0. That the limit (7.1) exists
can be seen by substituting (6.7) in the right-hand side of (7.1). We obtain

P ip
λ (x; τ, α) =

∑
T

ψT (τ)
∏
s∈λ

(
x2T (s) −

(
a′λ(s) + τ(n− T (s)− l′λ(s)) + α

)2)
(7.2)

with the sum over all reverse tableaux T of shape λ with entries in {1, . . . , n} and

ψT (τ) given by (6.9). From (7.1), (7.2) and the properties of P ip
λ (x; q, t) we see that

P ip
λ (x; τ, α) is a Wn-invariant polynomial of degree 2|λ| in x, where (Z2)

n now acts on
the polynomial by sending some of the variables xi to −xi rather than to x−1i . By (6.10)

it follows from (7.2) that P ip
λ (x; τ, α) is (2λ)-monic.

It follows from (5.6) and (7.1) that

P ip
λ (µ+ τδ + α; τ, α) = 0 if µ does not contain λ.

By comparing (7.2), (6.11) and (6.8) we obtain the limits

lim
r→∞

r−2|λ|P ip
λ (rx; τ, α) = Pλ(x

2; τ), (7.3)

lim
α→∞

(2α)−|λ|P ip
λ (x+ α; τ, α) = P ip

λ (x; τ). (7.4)

From (5.10) and (5.11) together with (7.1), we obtain the evaluation formula

P ip
λ (λ+ τδ + α; τ, α)

=
∏

(i,j)∈λ

(
λi − j + 1 + τ(λ′j − i)

)(
2α + λi + j − 1 + τ(λ′j − i+ 2(n− λ′j)

)
=

n∏
j=1

((n− j)τ + 1)λj(2(n− j)τ + 2α)2λj
((n− j)τ + 2α)λj

×
∏

1≤i<j≤n

((2n− i− j)τ + 2α)λi+λj
((2n− i− j + 1)τ + 2α)λi+λj

((j − i− 1)τ + 1)λi−λj
((j − i)τ + 1)λi−λj

. (7.5)

By (5.12) and (7.1) we get a reduction formula

P ip
λ (x; τ, α) = (−1)nλn

n∏
j=1

(
(α + xj)λn(α− xj)λn

)
P ip
λ−λn1n(x; τ, λn + α). (7.6)
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8. Binomial formulas

8.1. Binomial formula for Koornwinder polynomials. Okounkov [26, Theorem 7.1]
obtained the binomial formula for Koornwinder polynomials:

Pλ(x; q, t; a1, a2, a3, a4)

Pλ(tδa1; q, t; a1, a2, a3, a4)
=
∑
µ⊆λ

P ip
µ (qλtδa′1; q, t, a

′
1)

P ip
µ (qµtδa′1; q, t, a

′
1)

P ip
µ (x; q, t, a1)

Pµ(tδa1; q, t; a1, a2, a3, a4)
. (8.1)

As pointed out in [26], the duality (4.16) immediately follows from (8.1) in the self-dual
case a1 = a′1. In the general case (4.16) will follow from (8.1) together with the identity

Pµ(tδa1; q, t; a1, a2, a3, a4)

P ip
µ (qµtδa1; q, t, a1)

=
Pµ(tδa′1; q, t; a

′
1, a
′
2, a
′
3, a
′
4)

P ip
µ (qµtδa′1; q, t, a

′
1)

,

which is a consequence of the evaluation formulas (4.15) and (5.11).
Rains [29, Section 5] gives an alternative definition of Koornwinder polynomials in-

volving triangularity and evaluation symmetry by which a version of (8.1) is an imme-
diate consequence.

Because the inclusion partial ordering is compatible with the lexicographic ordering,
we can use induction in λ with respect to the lexicographic ordering in order to show
from (8.1) that

P ip
λ (x; q, t, a1) =

∑
µ⊆λ

bλ,µ Pµ(x; q, t; a1, a2, a3, a4)

for certain coefficients bλ,µ (more explicitly given in [29, Theorem 5.12]). Together with
(4.10) this implies that

P ip
λ (x; q, t, a1) =

∑
µ≤λ

cλ,µ m̃µ(x) (8.2)

for certain coefficients cλ,µ.

8.2. Binomial formula for Macdonald polynomials. Okounkov [24, Eq. (1.11)]
gave the binomial formula for Macdonald polynomials:

Pλ(x; q, t)

Pλ(tδ; q, t)
=
∑
µ⊆λ

P ip
µ (qλtδ; q, t)

P ip
µ (qµtδ; q, t

P ip
µ (x; q, t)

Pµ(tδ; q, t)
. (8.3)

The binomial formula (8.3) immediately implies the duality formula (4.5) for Macdonald
polynomials.

By comparing the binomial formulas (8.1) and (8.3) we can obtain a new limit for-
mula.

Theorem 8.1. There is the limit

lim
a1→∞

a
−|λ|
1 Pλ(a1x; q, t; a1, a2, a3, a4) = Pλ(x; q, t). (8.4)
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Proof. Rewrite (8.1) as

a
−|λ|
1 Pλ(a1x; q, t; a1, a2, a3, a4)

a
−|λ|
1 Pλ(tδa1; q, t; a1, a2, a3, a4)

=
∑
µ⊆λ

a
−|µ|
1 P ip

µ (qλtδa′1; q, t, a
′
1)

a
−|µ|
1 P ip

µ (qµtδa′1; q, t, a
′
1)

a
−|µ|
1 P ip

µ (a1x; q, t, a1)

a
−|µ|
1 Pµ(tδa1; q, t; a1, a2, a3, a4)

.

Now let a1 →∞. The result follows by (5.9) and (8.3) if we can show that (8.4) holds
for x = tδ. This, in its turn, follows by comparing (4.15) and (4.4). �

As pointed out to me by Ole Warnaar, the limit (8.4) also follows from the limit (4.13)
(yielding Macdonald polynomials as highest degree part of Koornwinder polynomials)
together with the known fact (although not in the literature) that the coefficients uλ,µ
(|µ| < |λ|) in (4.10) are bounded as a1 →∞.

8.3. Binomial formula for Jack polynomials. The binomial formula for Jack poly-
nomials was given by Okounkov and Olshanski [27, p. 72]:

Pλ(1 + x, τ)

Pλ(1; τ)
=
∑
µ⊆λ

P ip
µ (λ+ τδ; τ)

P ip
µ (µ+ τδ; τ)

Pµ(x; τ)

Pµ(1; τ)
. (8.5)

It is a limit case of (8.3) because of the limits (4.7), (4.9) (twice), (5.5) (twice) and
(6.13). If we compare (8.5) with Macdonald [21, Eqs. (6.15), (6.24)], Lassalle [16, § 3]
or Yan [38, Eq. (10)], we see that P ip

µ (λ + τδ; τ)/P ip
µ (µ + τδ; τ) equals the generalized

binomial coefficient
(
λ
µ

)
defined in these references.

9. Binomial formula for BCn-type Jacobi polynomials

Let α′ be given by (4.22).

Theorem 9.1. For BCn-type Jacobi polynomials we have the binomial formula

Pλ(x; τ ;α, β)

Pλ(0; τ ;α, β)
=
∑
µ⊆λ

P ip
µ (λ+ τδ + α′; τ, α′)

P ip
µ (µ+ τδ + α′; τ, α′)

Pµ(x; τ)

Pµ(0; τ ;α, β)
. (9.1)

Proof. From (8.1) we obtain

Pλ(x; q, qτ ; qα+1,−qβ+1, 1,−1)

Pλ(qτδ+α+1; q, qτ ; qα+1,−qβ+1, 1,−1)

=
∑
µ⊆λ

P ip
µ (qλ+τδ+α

′
; q, qτ , qα

′
)

P ip
µ (qµ+τδ+α′ ; q, qτ , qα′)

P ip
µ (x; q, qτ , qα+1)

Pµ(qτδ+α+1; q, qτ ; qα+1,−qβ+1, 1,−1)
.

Now let q ↑ 1 and apply (4.19), (4.23) (twice), (7.1) (twice) and (6.12). �
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By comparing the binomial formulas (9.1) and (8.5) we arrive at the limit

lim
α→∞

Pλ(x; τ ;α, β) = Pλ(x− 1n; τ), (9.2)

where 1n is the n-vector with all coordinates equal to 1. The limit (9.2) was given
slightly more generally in [31, Theorem 4.2] and goes back to an unpublished result by
Beerends and the author. For the proof of (9.2) let α → ∞ in the right-hand side of
(9.1) and use (7.4). Then we will obtain the right-hand side of (8.5) if we can prove
that (9.2) is valid for x = 0. But in that case (9.2) follows by comparing (4.21) and
(4.8).

Remark 9.2. In (9.1) we have an expansion

Pλ(x; τ ;α, β) =
∑
µ⊆λ

bλ,µ Pµ(x; τ) (9.3)

with

bλ,µ =
Pλ(0; τ ;α, β)

Pµ(0; τ ;α, β)

P ip
µ (λ+ τδ + α′; τ, α′)

P ip
µ (µ+ τδ + α′; τ, α′)

, (9.4)

where, by (7.2),

P ip
µ (λ+τδ+α′; τ, α′) =

∑
T

ψT (τ)
∏
s∈µ

(
(λT (s)+τδT (s)+α

′)2−(τδT (s)+α
′+a′λ(s)−τ l′λ(s))2

)
.

(9.5)
On the other hand, Macdonald [21, p. 58] (also in Beerends and Opdam [2, Eq. (5.12)])
gives (9.3) with

bλ,µ = (−1)|λ|−|µ|
Pλ(1; τ)

Pµ(1; τ)
cλ/µ(2τ(n−1)+α′+1)

n∏
j=1

(µj+τ(n+j−2)+α+1)λj−µj . (9.6)

Here

cλ/µ(C) =
∑
T

fT (C) (9.7)

for a certain function fT , and the sum is over all standard tableaux T of shape λ/µ.
Macdonald derives (9.7) by solving a recurrence relation [21, Eq. (9.16)] for cλ/µ(C)
(C and λ fixed). Thus both in Macdonald’s formula (9.6) and in formula (9.4) the
expansion coefficients bλ,µ are essentially given combinatorially by tableau sums ((9.7)
and (9.5), respectively). However the tableau sums are quite different: over standard
tableaux of shape λ/µ in Macdonald’s case, and over reverse tableaux T of shape µ
with entries in {1, . . . , n} in the case of (9.5). I do not see how to match these tableau
sums with each other.
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10. Explicit expressions for n = 2

The combinatorial formulas (6.1), (6.6), (6.7) for Macdonald polynomials and their
(BCn-type) interpolation versions all have the form∑

T

ψT (q, t)
∏
s∈λ

f(xT (s)). (10.1)

Here ψT (q, t) is given by (6.2), while f is an elementary (Laurent) polynomial which
may also depend on s, T (s), t and a. The sum is over all reverse tableaux T of shape λ
with entries in {1, . . . , n}.

Now let n = 2 and λ := (m, 0). Then the possible reverse tableaux T of shape (m, 0)
with entries in {1, 2} are the tableaux Tk (k = 0, 1, . . . ,m) given by

Tk(1, j) = 2 if j = 1, . . . , k and = 1 if j = k + 1, . . . ,m. (10.2)

So we have to compute ψTk(q, t), which is given by (6.2) as a double product involving
(R\C)λ(0)/λ(1) = {(1, 1), . . . , (1, k)} and (R\C)λ(1)/λ(2) = ∅. Hence

ψTk(q, t) =
∏

s∈(R\C)
λ(0)/λ(1)

b(k)(s; q, t)

b(m)(s; q, t)
,

where bµ(s; q, t) is defined by (6.3). This yields for j = 1, . . . , k that

b(k)((1, j); q, t) =
1− qk−jt

1− qk−j+1
, b(m)((1, j); q, t) =

1− qm−jt
1− qm−j+1

.

Hence

ψTk(q, t) =
(qk−1t; q−1)k (qm; q−1)k
(qk; q−1)k (qm−1t; q−1)k

=
(t, q−m; q)k

(q, q1−mt−1; q)k
(qt−1)k. (10.3)

10.1. Explicit expression for BC2-type interpolation Macdonald polynomials.
Consider in (10.1)

∏m
j=1 f(xTk(1,j)) for the case of (6.1). By taking into account (10.2)

this product becomes

k∏
j=1

(
(x2 − qj−1a)(1− (qj−1a)−1x−12 )

) m∏
j=k+1

(
(x1 − qj−1ta)(1− (qj−1ta)−1x−11 )

)
= (−1)mq−

1
2
m(m−1)(ta)−m(tax1, tax

−1
1 ; q)m

(ax2, ax
−1
2 ; q)k

(tax1, tax
−1
1 ; q)k

tk. (10.4)

Then take (10.1), a single sum over T = Tk (k = 0, . . . ,m), with (10.3) and (10.4)
substituted. The result is

P ip
m,0(x1, x2; q, t, a) =

(tax1, tax
−1
1 ; q)m

q
1
2
m(m−1)(−ta)m

4φ3

(
q−m, t, ax2, ax

−1
2

q1−mt−1, tax1, tax
−1
1

; q, q

)
. (10.5)
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Next we want to obtain an explicit expression for P ip
m1,m2

by using the reduction
formula (5.12). In the present case, this takes the form

P ip
m1,m2

(x1, x2; q, t, a)

= a−2m2q−m2(m2−1)(ax1, ax
−1
1 , ax2, ax

−1
2 ; q)m2 P

ip
m1−m2,0

(x1, x2; q, t, q
m2a).

In combination with (10.5) this gives

P ip
m1,m2

(x1, x2; q, t, a) =
q−

1
2
m1(m1−1)− 1

2
m2(m2−1)

(−t)m1−m2am1+m2
(ax1, ax

−1
1 , ax2, ax

−1
2 ; q)m2

× (qm2tax1, q
m2tax−11 ; q)m1−m2 4φ3

(
q−m1+m2 , t, qm2ax2, q

m2ax−12

q1−m1+m2t−1, qm2tax1, qm2tax−11

; q, q

)
. (10.6)

In order to make the symmetry in x1, x2 in (10.6) obvious, we may expand the second
line of this formula as

m1−m2∑
k=0

(q−m1+m2 , t; q)k q
k

(q1−m1+m2t−1, q; q)k
(qm2+ktax1, q

m2+ktax−11 ; q)m1−m2−k (qm2ax2, q
m2ax−12 ; q)k.

Now substitute there a version of the q-Pfaff-Saalschütz formula [8, Eq. (II.12)]:

(qm2+ktax1, q
m2+ktax−11 ; q)m1−m2−k

(qkt, qk+2m2ta2; q)m1−m2−k
= 3φ2

(
q−m1+m2+k, qm2ax1, q

m2ax−11

q1−m1+m2t−1, q2m2+kta2
; q, q

)
and expand the 3φ2. Then (10.6) takes the form

P ip
m1,m2

(x1, x2; q, t, a) =
q−

1
2
m1(m1−1)− 1

2
m2(m2−1)

(−t)m1−m2am1+m2
(t, q2m2ta2; q)m1−m2

× (ax1, ax
−1
1 , ax2, ax

−1
2 ; q)m2

∑
j,k≥0

j+k≤m1+m2

(q−m1+m2 ; q)j
(q1−m1+m2t−1, q; q)j

(qm2ax1, q
m2ax−11 ; q)j

× (q−m1+m2 ; q)k
(q1−m1+m2t−1, q; q)k

(qm2ax1, q
m2ax−11 ; q)k

qj+k

(q2m2ta2; q)j+k
. (10.7)

10.2. (Interpolation) Macdonald polynomials for n = 2. For explicit formulas of
P ip
m1,m2

(x1, x2; q, t) and Pm1,m2(x1, x2; q, t) we may either give a derivation analogous to
the one for (10.6), now starting from (6.6) or (6.1), or apply, much quicker, the limits
(5.9) or (5.8) to (10.6). For P ip

m1,m2
(x1, x2; q, t) we obtain

P ip
m1,m2

(x1, x2; q, t) = xm1
1 xm2

2 (x−11 , x−12 ; q)m2(q
m2tx−11 ; q)m1−m2

× 3φ2

(
q−m1+m2 , t, qm2x−12

q1−m1+m2t−1, qm2tx−11

; q,
qx2
tx1

)
.
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By series inversion, this yields

P ip
m1,m2

(x1, x2; q, t) = xm2
1 xm1

2 (x−11 ; q)m2 (x−12 ; q)m1 3φ2

(
q−m1+m2 , t, q−m1+1t−1x1
q1−m1+m2t−1, q−m1+1x2

; q, q

)
.

(10.8)
Different explicit expansions for interpolation Macdonald polynomials in the case where
n = 2 are given by Morse [22, Theorem 1.1], [23, Theorem 1].

For Pm1,m2(x1, x2; q, t) we obtain

Pm1,m2(x1, x2; q, t) = xm1
1 xm2

2 2φ1

(
q−m1+m2 , t

q1−m1+m2t−1
; q,

qx2
tx1

)
(10.9)

=
(q; q)m1−m2

(t; q)m1−m2

m1−m2∑
j=0

(t; q)j(t; q)m1−m2−j

(q; q)j(q; q)m1−m2−j
xm1−j
1 xm2+j

2 (10.10)

=
(q; q)m1−m2

(t; q)m1−m2

(x1x2)
1
2
(m1+m2)Cm1−m2

(
x1 + x2

2(x1x2)
1
2

; t | q

)
. (10.11)

Here we used the q-ultraspherical polynomial (see [1, Eq. (4.4)]):

Cm(cos θ; t | q) :=
m∑
j=0

(t; q)j(t; q)m−j
(q; q)j(q; q)m−j

ei(m−2j)θ. (10.12)

Formula (10.11) was earlier given by Morse [23, Theorem 2].

10.3. Jack polynomials and (BCn) interpolation Jack polynomials for n = 2.
We can get explicit formulas for the n = 2 cases of BCn-type interpolation Jack poly-
nomials, interpolation Jack polynomials and Jack polynomials by applying the limit
formulas (7.1), (5.5), (4.7) to (10.6), (10.8), (10.9), respectively. We obtain

P ip
m1,m2

(x1, x2; τ, α) = (−1)m1+m2 (α + x1, α− x1, α + x2, α− x2)m2

× (m2 + τ + α + x1,m2 + τ + α− x1)m1−m2

× 4F3

(
−m1 +m2, τ,m2 + α + x2,m2 + α− x2

1−m1 +m2 − τ,m2 + τ + α + x1,m2 + τ + α− x1
; 1

)
, (10.13)

P ip
m1,m2

(x1, x2; τ)

= (−1)m1+m2(−x1)m2(−x2)m1 3F2

(
−m1 +m2, t,−m1 + 1− τ + x1
1−m1 +m2 − τ,−m1 + 1 + x2

; 1

)
. (10.14)
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Pm1,m2(x1, x2; τ) = xm1
1 xm2

2 2F1

(
−m1 +m2, τ

1−m1 +m2 − τ
;
x2
x1

)
=

(m1 −m2)!

(τ)m1−m2

m1−m2∑
j=0

(τ)j(τ)m1−m2−j

j! (m1 −m2 − j)!
xm1−j
1 xm2+j

2

=
(m1 −m2)!

(τ)m1−m2

(x1x2)
1
2
(m1+m2)Cτ

m1−m2

(
x1 + x2

2(x1x2)
1
2

)
. (10.15)

Here we used the ultraspherical polynomial (see [7, Section 10.9]):

Cτ
m(cos θ) :=

m∑
j=0

(τ)j(τ)m−j
j! (m− j)!

ei(m−2j)θ. (10.16)

11. Binomial formulas for n = 2

In this section we will only discuss the n = 2 case of the binomial formulas for BC-
type polynomials (Koornwinder and Jacobi), because they lead to explicit expressions
of these polynomials. We will not discuss here the n = 2 cases of the binomial formulas
for the Macdonald and Jack polynomials, although they have interesting aspects from
the point of view of special functions.

11.1. Binomial formula for Koornwinder polynomials for n = 2. The binomial
formula (8.1) takes for n = 2 the form

Pm1,m2(x1, x2; q, t; a1, a2, a3, a4)

Pm1,m2(ta1, a1; q, t; a1, a2, a3, a4)
=

m2∑
k2=0

m1∑
k1=k2

P ip
k1,k2

(qm1ta′1, q
m2a′1; q, t, a

′
1)

P ip
k1,k2

(qk1ta′1, q
k2a′1; q, t, a

′
1)

×
P ip
k1,k2

(x1, x2; q, t, a1)

Pk1,k2(ta1, a1; q, t; a1, a2, a3, a4)
. (11.1)

This gives an explicit expression for Koornwinder polynomials for n = 2, since we have
explicit expressions for everything on the right-hand side. For the first quotient on the
right-hand side of (11.1) we get by (10.6):

P ip
k1,k2

(qm1ta′1, q
m2a′1; q, t, a

′
1)

P ip
k1,k2

(qk1ta′1, q
k2a′1; q, t, a

′
1)

=
(qm1ta′21 , q

−m1t−1, qm2a′21 , q
−m2 ; q)k2

(qk1ta′21 , q
−k1t−1, qk2a′21 , q

−k2 ; q)k2

× (qm1+k2t2a′21 , q
m2−k1 ; q)k1−k2

(qk1+k2t2a′21 , q
k2−k1 ; q)k1−k2

4φ3

(
q−k1+k2 , t, qm2+k2a′21 , q

m2−k2

q1−k1+k2t−1, qm2+k2t2a′21 , q
−m1+k2

; q, q

)
. (11.2)
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As for the second quotient on the right-hand side the numerator is obtained from (10.6),
i.e.,

P ip
k1,k2

(x1, x2; q, t, a1) =
q−

1
2
k1(k1−1)− 1

2
k2(k2−1)

(−t)k1−k2ak1+k21

(a1x1, a1x
−1
1 , a1x2, a2x

−1
2 ; q)k2

× (qk2ta1x1, q
k2ta1x

−1
1 ; q)k1−k2 4φ3

(
q−k1+k2 , t, qk2a1x2, q

k2a1x
−1
2

q1−k1+k2t−1, qk2ta1x1, qk2ta1x
−1
1

; q, q

)
, (11.3)

and the denominator is obtained from (4.15), i.e.,

Pk1,k2(ta1, a1; q, t; a1, a2, a3, a4) = t−k1a−k1+k21

(ta′21 ; q)k1 (a′21 ; q)k2
(t2a′21 ; q)2k1 (a′21 ; q)2k2

× (ta1a2, ta1a3, ta1a4; q)k1 (a1a2, a1a3, a1a4; q)k2
(t2a′21 ; q)k1+k2
(ta′21 ; q)k1+k2

(t2; q)k1−k2
(t; q)k1−k2

. (11.4)

11.2. Binomial formula for BC2-type Jacobi polynomials. We can specialize the
binomial formula (9.1) for BCn-type Jacobi polynomials to n = 2 and get everything
on the right-hand side explicitly:

Pm1,m2(x1, x2; τ ;α, β)

Pm1,m2(0, 0; τ ;α, β)

=

m2∑
k2=0

m1∑
k1=k2

P ip
k1,k2

(m1 + τ + α′,m2 + α′; τ, α′)

P ip
k1,k2

(k1 + τ + α′, k2 + α′; τ, α′)

Pk1,k2(x1, x2; τ)

Pk1,k2(0, 0; τ ;α, β)
. (11.5)

The first quotient on the right-hand side can be explicitly evaluated as a limit case of
(11.2) by using (7.1):

P ip
k1,k2

(m1 + τ + α′,m2 + α′; τ, α′)

P ip
k1,k2

(k1 + τ + α′, k2 + α′; τ, α′)
=

(m1 + τ + 2α′,−m1 − τ,m2 + 2α′,−m2)k2
(k1 + τ + 2α′,−k1 − τ, k2 + 2α′,−k2)k2

× (m2 + k2 + 2τ + 2α′,m2 − k2)k1−k2
(k1 + k2 + 2τ + 2α′, k2 − k1)k1−k2

× 4F3

(
−k1 + k2, τ,m2 + k2 + 2α′,m2 − k2

1− k1 + k2 − τ,m2 + k2 + 2τ + 2α′,−m1 + k2
; 1

)
. (11.6)

For the numerator of the second quotient we have (10.15):

Pk1,k2(x1, x2; τ) =
(q; q)k1−k2
(t; q)k1−k2

(x1x2)
1
2
(k1+k2)Cτ

k1−k2

(
x1 + x2

2(x1x2)
1
2

)
. (11.7)
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The denominator of the second quotient can be obtained by specializing (7.5):

Pk1,k2(0, 0; τ ;α, β) = (−1)k1+k2
(τ + 2α′, τ + α + 1)k1 (2α′, α + 1)k2

(2τ + 2α′)2k1 (2α′)2k2

× (2τ + 2α′)k1+k2
(τ + 2α′)k1+k2

(2τ)k1−k2
(τ)k1−k2

. (11.8)

The explicit formula for BC2-type Jacobi polynomials which is given by combination of
(11.5), (11.6), (11.7) and (11.8) was obtained in a very different way by Koornwinder
and Sprinkhuizen [14, Corollary 6.6].
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