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1. Introduction

The notion of alternating or zigzag permutation devised by Désiré
André, back in 1881 [An1881], for interpreting the coefficients E(n)
(n ≥ 0) of the Taylor expansion of tanu+ sec u, the so-called tangent and
secant numbers, has remained some sort of a curiosity for a long time, until
it was realized that the geometry of these alternating permutations could
be exploited to obtain further arithmetic refinements of these numbers.
Classifying alternating permutations according to the number of inversions
directly leads to the constructions of their q-analogs (see [AF80, AG78,
St76]). Sorting them according to their first letters led Entringer [En66]
to obtain a fruitful refinement En =

∑
mEn(m) that has been described

under several forms [OEIS, GHZ11, KPP94, MSY96, St10], the entries
En(m) satisfying a simple finite difference equation (see (1.1) below).

In fact, these numbers En(m), called Entringer numbers in the sequel,
appear in other contexts, in particular when dealing with analytical
properties of the André permutations, of the two kinds I and II, introduced
by Schützenberger and the first author ([FSch73, FSch71]). For each n ≥ 1
let AndIn (respectively AndIIn ) be the set of all André permutations of
12 · · ·n (see §1.2). It was shown that #AndIn = #AndIIn = En. The first
purpose of this paper is to show that there are several natural statistics
“stat,” defined on AndIn (respectively AndIIn ), whose distributions are
Entringerian, that is, integer-valued mappings “stat,” satisfying

#{w ∈ AndIn (respectively AndIIn ) : stat(w) = m} = En(m).

The second purpose is to work out a matrix refinement En =∑
m,k an(m, k) of the tangent and secant numbers, whose row and col-

umn sums
∑

k an(m, k) and
∑

m an(m, k) are themselves refinements of
the Entringer numbers. This will be achieved, first by inductively defining
the so-called twin Seidel matrix sequence (An, Bn) (n ≥ 2) (see §1.5), then
by proving that the entries of these matrices provide the joint distributions
of pairs of Entringerian statistics defined on André permutations of each
kind (Theorem 1.2). See §1.6 for the plan of action.

The third purpose is to obtain analytical expressions for the joint
exponential generating functions for pairs of these Entringerian statistics.
See §1.7 and the contents of Section 7 and 8. Let us give more details on
the notions introduced so far.

1.1. Entringer numbers. According to Désiré André [An1879, An1881]
each permutation w = x1x2 · · ·xn of 12 · · ·n is said to be (increasing)
alternating if x1 < x2, x2 > x3, x3 < x4, etc. in an alternating way. Let
Altn be the set of all alternating permutations of 12 · · ·n. He then proved
that #Altn = En, where En is the tangent number (respectively secant
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number) when n is odd (respectively even), these numbers appearing in
the Taylor expansions of secu and tanu:

tanu =
∑

n≥1

u2n−1

(2n− 1)!
E2n−1 =

u

1!
1+

u3

3!
2+

u5

5!
16+

u7

7!
272+

u9

9!
7936+· · · ,

secu =
∑

n≥0

u2n

(2n)!
E2n = 1+

u2

2!
1+

u4

4!
5+

u6

6!
61+

u8

8!
1385+

u10

10!
50521+· · · .

(See, e.g., [Ni23, pp. 177–178], [Co74, pp. 258–259]).
Let Fw := x1 be the first letter of a permutation w = x1x2 · · ·xn

of 12 · · ·n. For each m = 1, . . . , n, the Entringer numbers are defined by
En(m) := #{w ∈ Altn : Fw = m}, as was introduced by Entringer
[En66]. In particular, En(n) = 0 for n ≥ 2. He showed that these numbers
satisfy the recurrence

E1(1) := 1; En(n) := 0 for all n ≥ 2;(1.1)

∆En(m) +En−1(n−m) = 0 (n ≥ 2;m = n− 1, . . . , 2, 1);

where ∆ stands for the classical finite difference operator (see, e.g. [Jo39])
∆En(m) := En(m + 1) − En(m). See Fig. 1.1 for the table of their first
values. These numbers are registered as the sequence A008282 in Sloane’s
On-Line Encyclopedia of Integer Sequences, together with an abundant
bibliography [OEIS]. They naturally constitute a refinement of the tangent
and secant numbers:

(1.2)
∑

m

En(m) = En =

{
tangent number, if n is odd;
secant number, if n is even.

m = 1 2 3 4 5 6 7 8 9 Sum
n = 1 1 1

2 1 0 1
3 1 1 0 2
4 2 2 1 0 5
5 5 5 4 2 0 16
6 16 16 14 10 5 0 61
7 61 61 56 46 32 16 0 272
8 272 272 256 224 178 122 61 0 1385
9 1385 1385 1324 1202 1024 800 544 272 0 7936

Fig. 1.1. The Entringer Numbers En(m)

Now, let Lw := xn denote the last letter of a permutation w =
x1x2 · · ·xn of 12 · · ·n. In our previous paper [FH14] we made a full study
of the so-called Bi-Entringer numbers defined by

En(m, k) := #{w ∈ Altn : Fw = m, Lw = k},
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and showed that the sequence of the matrices (En(m, k)1≤m,k≤n) (n≥1)
was fully determined by a partial difference equation system and the
three-variable exponential generating function for these matrices could be
calculated. As the latter analytical derivation essentially depends on the
geometry of alternating permutations, it is natural to ask whether other
combinatorial models, counted by tangent and secant numbers, are likely
to have a parallel development.

Let E(u) := tanu + sec u =
∑

n≥0(u
n/n!)En. Then the first and

second derivatives of E(u) are equal to E′(u) = E(u) secu and E′′(u) =
E(u)E′(u), two identities equivalent to the two recurrence relations

(*) En+1 =
∑

0≤2j≤n

(
n

2j

)
En−2jE2j (n ≥ 0), E0 = 1;

(**) En+2 =
∑

0≤j≤n

(
n

j

)
Ej En+1−j (n ≥ 0), E0 = E1 = 1.

The first of these relations can be readily interpreted in terms of alternating
permutations, or in terms of the so-called Jacobi permutations introduced
by Viennot [Vi80]. The second one leads naturally to the model of André
permutations, whose geometry will appear to be rich and involves several
analytic developments.

1.2. André permutations. These permutations were introduced in
[FSch73, FSch71], and further studied in [Str74, FSt74, FSt76]. Other
properties have been developed in work by Purtill [Pu93], Hetyei [He96],
Hetyei and Reiner [HR98], the present authors [FH01], Stanley [St94], in
particular in the study of the cd-index in a Boolean algebra. More re-
cently, Disanto [Di14] has been able to calculate the joint distribution of
the right-to-left minima and left-to-right minima in these permutations.

In the sequel, permutations of a finite set Y = {y1 < y2 < · · · < yn}
of positive integers will be written as words w = x1x2 · · ·xn, where the
letters xi are the elements of Y in some order. The minimum (respectively
maximum) letter of w, in fact, y1 (respectively yn), will be denoted by
min(w) (respectively max(w)). When writing w = v min(w) v′ it is meant
that the word w is the juxtaposition product of the left factor v, followed
by the letter min(w), then by the right factor v′.

Definition. Say that the empty word e and each one-letter word
are both André I and André II permutations. Next, if w = x1x2 · · ·xn
(n ≥ 2) is a permutation of a set of positive integers Y = {y1 < y2 <
· · · < yn}, write w = v min(w) v′. Then, w is said to be an André I
(respectively André II) permutation if both v and v′ are themselves
André I (respectively André II) permutations, and furthermore if max(vv′)
(respectively min(vv′)) is a letter of v′.
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The set of all André I (respectively André II) permutations of Y is
denoted by AndIY (respectively AndIIY ), and simply by AndIn (respectively
AndIIn ) when Y = {1, 2, . . . , n}. In the sequel, an André I (respectively
André II) permutation, with no reference to a set Y , is meant to be an
element of AndIn (respectively AndIIn ).

Using such an inductive definition, we can immediately see that En =
#AndIn = #AndIIn , the term

(
n
j

)
Ej En+1−j in (∗∗) being the number of all

André I (respectively André II) permutations of x1x2 · · ·xn+2 such that
xj = 1. Further equivalent definitions will be given in the beginning of

Section 2. The first André permutations from AndIn and AndIIn are listed
in Table 1.2.

André permutations of the first kind:
n = 1: 1; n = 2: 12; n = 3: 123, 213;
n = 4: 1234, 1324, 2314, 2134, 3124;
n = 5: 12345, 12435, 13425, 23415, 13245, 14235, 34125, 24135,

23145, 21345, 41235, 31245, 21435, 32415, 41325, 31425.

André permutations of the second kind:
n = 1: 1; n = 2: 12; n = 3: 123, 312;
n = 4: 1234, 1423, 3412, 4123, 3124;
n = 5: 12345, 12534, 14523, 34512, 15234, 14235, 34125, 45123,

35124, 51234, 41235, 31245, 51423, 53412, 41523, 31524.

Table 1.2: the first André permutations of both kinds

1.3. Statistics on André permutations. The statistics “F ” and “L ”
have been previously introduced. Two further ones are now defined: the
next-to-last (or the penultimate) letter “NL” and greater neighbor of the
maximum “grn”: for w = x1x2 · · ·xn and n ≥ 2 letNLw := xn−1; next, let
xi = n for a certain i (1 ≤ i ≤ n) with the convention that x0 = xn+1 := 0.
Then, grnw := max{xi−1, xi+1}.

Let (Ensn) (n ≥ 1) be a sequence of non-empty finite sets and
“stat” an integer-valued mapping w 7→ stat(w) defined on each Ensn.
The pair (Ensn, stat) is said to be Entringerian, if #Ensn = En and
#{w ∈ Ensn : stat(w) = m} = En(m) holds for each m = 0, 1, . . . , n.
We also say that “stat” is an Entringerian statistic. The pair (Altn,F ) is
Entringerian, par excellence, for all n ≥ 1.

Theorem 1.1. For each n ≥ 2 the mappings
(i) F defined on AndIn,
(ii) n−NL defined on AndIn,
(iii) (n+ 1)− L defined on AndIIn ,
(iv) n− grn defined on AndIIn ,

are all Entringerian statistics.
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Statements (i) and (ii) will be proved in Section 2 by constructing two
bijections η and θ having the property

(1.3)
Altn

η−→ AndIn
θ−→ AndIn

w 7→ w′ 7→ w′′

Fw = Fw′ = (n−NL)w′′

For proving (iii) and (iv) we use the properties of two new bijections
φ : AndIn → AndIIn and g : AndIn → AndIn, whose constructions are
described in Sections 3 and 4. By means of these two bijections, as well as
the bijection θ mentioned in (1.3), it will be shown in Section 5 that the
following properties hold:

(1.4)
AndIn

φ ◦ g
−→ AndIIn

w 7→ w′

Fw = (n+ 1− L )w′

and

(1.5)
AndIn

φ ◦ θ
−→ AndIIn

w 7→ w′′

Fw = (n− grn)w′′

thereby completing the proof of Theorem 1.1.

1.4. The fundamental bijection φ. For proving (1.4) and (1.5) and also
the next Theorem 1.2, two new statistics are to be introduced, the spike
“spi” and the pit “pit”, related to the left minimum records for the former
one, and the right minimum records for the latter one. In Section 3 the
bijection φ between AndIn and AndIIn will be shown to have the further
property:

(1.6) (F , spi,NL)w = (pit,L , grn)φ(w).

This implies that

(1.7) for each pair (m, k) the two sets {w ∈ AndIn : (spi,NL)w = (m, k)}
and {w ∈ AndIIn : (L , grn)w = (m, k)} are equipotent.

It also follows from Theorem 1.1 that “(n + 1) − spi” on AndIn and
“pit” on AndIIn are two further Entringerian statistics.

1.5. The twin Seidel matrix sequence. The next step is to say some-
thing about the joint distributions of the pairs (F ,NL) on AndIn and
(L , grn) on AndIIn , whose marginal distributions are Entringerian, as an-
nounced in Theorem 1.1. We shall proceed in the following way: first, the
notion of twin Seidel matrix sequence (An, Bn) (n ≥ 2) will be introduced
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(see Definition below), then the entry in cell (m, k) of An (respectively
Bn) will be shown to be the number of André I (respectively II) permu-
tations w, whose values (F ,NL)w (respectively (L , grn)w) are equal to
(m, k). The definition involves the partial difference operator ∆

(1)
acting on

sequences (an(m, k)) (n ≥ 2) by

∆
(1)
an(m, k) := an(m+ 1, k)− an(m, k).

The subscript (1) indicates that the difference operator is to be applied
to the variable occurring at the first position, which is ‘m’ in the previous
equation.

Definition. The twin Seidel matrix sequence (An, Bn) (n ≥ 2) is a
sequence of finite square matrices that obey the following five rules (TS1)–
(TS5) (see Diagram 1.3 for the values of the first matrices, where zero
entries are replaced by dots):

(TS1) each matrix An = (an(m, k)) (respectively Bn = bn(m, k))
(1 ≤ m, k ≤ n) is a square matrix of dimension n (n ≥ 2) with nonnegative
entries, and zero entries along its diagonal, except for a2(1, 1) = 1; let
an(m, •) =

∑
k an(m, k) (respectively an(•, k) =

∑
m an(m, k)) be the m-

th row sum (respectively k-th column sum) of the matrix An with an
analogous notation for Bn;

(TS2) for n ≥ 3 the entries along the rightmost column in both An and
Bn are zero, as well as the entries in the bottom row of An and the top
row of Bn, i.e., an(•, n) = bn(•, n) = an(n, •) = bn(1, •) = 0, as all the
entries are supposed to be nonnegative; furthermore, bn(n, 1) = 0;

(TS3) the first two matrices of the sequence are supposed to be:

A2 =
1 ·
· · , B2 =

· ·
1 · ;

(TS4) for each n ≥ 3 the matrix Bn is derived from the matrix An−1

by means of a transformation Ψ : (an−1(m, k)) → (bn(m, k)) defined as
follows

bn(n, k) := an−1(•, k − 1) (2 ≤ k ≤ n− 1);(TS4.1)

bn(n− 1, k) := an−1(•, k) (2 ≤ k ≤ n− 2);(TS4.2)

and, by induction,

∆
(1)
bn(m, k)− an−1(m, k) = 0 (2 ≤ k + 1 ≤ m ≤ n− 2);(TS4.3)

∆
(1)
bn(m, k)− an−1(m, k − 1) = 0 (3 ≤ m+ 2 ≤ k ≤ n− 1);(TS4.4)
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(TS5) for each n ≥ 3 the matrix An is derived from the matrix Bn−1

by means of a transformation Φ : (bn−1(m, k)) → (an(m, k)) defined as
follows

an(1, k) := bn−1(•, k − 1) (2 ≤ k ≤ n− 1);(TS5.1)

and, by induction,

∆
(1)
an(m, k) + bn−1(m, k − 1) = 0 (3 ≤ m+ 2 ≤ k ≤ n− 1);(TS5.2)

∆
(1)
an(m, k) + bn−1(m, k) = 0 (2 ≤ k + 1 ≤ m ≤ n− 1).(TS5.3)

A2 =
1 ·

· ·

Ψ
−→ B3 =

· · ·

1 · ·

· 1 ·

Φ
−→ A4 =

· 1 1 ·

1 · 1 ·

· 1 · ·

· · · ·

Ψ
−→ B5 =

· · · · ·

· · 1 1 ·

1 1 · 2 ·

1 2 2 · ·

· 1 2 2 ·

Φ
−→

Φ
−→ A6 =

· 2 4 5 5 ·

2 · 4 5 5 ·

2 4 · 4 4 ·

1 3 4 · 2 ·

· 1 2 2 · ·

· · · · · ·

Ψ
−→ B7 =

· · · · · · ·

· · 2 4 5 5 ·

2 2 · 8 10 10 ·

4 6 8 · 14 14 ·

5 9 12 14 · 16 ·

5 10 14 16 16 · ·

· 5 10 14 16 16 ·

Φ
−→ A8 =

· 16 32 46 56 61 61 ·

16 · 32 46 56 61 61 ·

16 32 · 44 52 56 56 ·

14 30 44 · 44 46 46 ·

10 24 36 44 · 32 32 ·

5 15 24 30 32 · 16 ·

· 5 10 14 16 16 · ·

· · · · · · · ·

B2 =
· ·

1 ·

Φ
−→ A3 =

· 1 ·

1 · ·

· · ·

Ψ
−→ B4 =

· · · ·

· · 1 ·

1 1 · ·

· 1 1 ·

Φ
−→ A5 =

· 1 2 2 ·

1 · 2 2 ·

1 2 · 1 ·

· 1 1 · ·

· · · · ·

Ψ
−→

Ψ
−→ B6 =

· · · · · ·

· · 1 2 2 ·

1 1 · 4 4 ·

2 3 4 · 5 ·

2 4 5 5 · ·

· 2 4 5 5 ·

Φ
−→ A7 =

· 5 10 14 16 16 ·

5 · 10 14 16 16 ·

5 10 · 13 14 14 ·

4 9 13 · 10 10 ·

2 6 9 10 · 5 ·

· 2 4 5 5 · ·

· · · · · · ·

Ψ
−→ B8 =

· · · · · · · ·

· · 5 10 14 16 16 ·

5 5 · 20 28 32 32 ·

10 15 20 · 41 46 46 ·

14 24 33 41 · 56 56 ·

16 30 42 51 56 · 61 ·

16 32 46 56 61 61 · ·

· 16 32 46 56 61 61 ·

Diagram 1.3: First values of the twin Seidel matrices

It is worth noting that the twin Seidel matrix sequence involves two
infinite subsequences: Twin(1) = (A2, B3, A4, B5, A6, . . . ) and Twin(2) =
(B2, A3, B4, A5, B6, . . . ). They are independent in the sense that the
matrices A2n (respectively B2n) depend only on the matrices B2m+1 and
A2m (respectively A2m+1 and B2m) with m < n, with an analogous
statement for the matrices A2n+1 (respectively B2n+1).

As is easily verified, Rules (TS1)–(TS5) define the twin Seidel matrix
sequence by induction in a unique manner. At each step Rules (TS1) and
(TS2) furnish all the zero entries indicated by dots, and Rules (TS4.1),
(TS4.2), (TS5.1) the initial values. It remains to use the finite difference
equations (TS4.3), (TS4.4), (TS5.2), (TS5.3) to calculate the other entries.
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Theorem 1.2. The twin Seidel matrix sequence (An = (an(m, k)), Bn =
(bn(m, k))) (n ≥ 2, 1 ≤ m, k ≤ n) defined by relations (TS1)–(TS5)
provides the joint distributions of the pairs (F ,NL) on AndIn and (L , grn)
on AndIIn in the sense that for n ≥ 2 the following relations hold:

an(m, k) = #{w ∈ AndIn : (F ,NL)w = (m, k)};(1.8)

bn(m, k) = #{w ∈ AndIIn : (L , grn)w = (m, k)}.(1.9)

By Theorems 1.1 and 1.2, the row and column sums of the matrices An

and Bn have the following interpretations:

an(m, •) = En(m), bn(m, •) = En(n+ 1−m), (1 ≤ m ≤ n);(1.10)

an(•, k) = bn(•, k) = En(n− k) (1 ≤ k ≤ n);(1.11)

and furthermore the matrix-analog of the refinement of En holds:∑

m,k

an(m, k) =
∑

m,k

bn(m, k) = En.(1.12)

1.6. Tight and hooked permutations. For proving Theorem 1.2, the
crucial point is to show that the an(m, k)’s and bn(m, k)’s satisfy the
partial difference equations (TS4.3), (TS4.4), (TS5.2), (TS5.3), when these
numbers are defined by the right-hand sides of (1.8) and (1.9). For each
pair (m, k) let

An(m, k) := {w ∈ AndIn : (F ,NL)w = (m, k)};
Bn(m, k) := {w ∈ AndIn : (spi, grn)w = (m, k)}.

As the latter set is equinumerous with the set {w ∈ AndIIn : (L , grn)w =
(m, k)} by (1.7), we also have an(m, k) = #An(m, k) and bn(m, k) =
#Bn(m, k), by (1.8) and (1.9).

For the partial difference equation (TS5.2) (respectively (TS5.3)) the
plan of action may be described by the diagram

(1.13)

Bn−1(m, k − 1) (respectively Bn−1(m, k) )yφ
An(m, k) = Tn(m, k) ⊎ NTn(m, k)yf

An(m+ 1, k)

This means that the set An(m, k) is to be split into two disjoint subsets,
An(m, k) = Tn(m, k)⊎NTn(m, k), in such a way that the first component
is in bijection with Bn−1(m, k − 1) (respectively Bn−1(m, k)) by using
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the bijection φ defined in (6.6), and the second one with An(m+ 1, k) by
means of the bijection f defined in (6.5). If this plan is realized, the above
partial difference equations are satisfied, as

∆
(1)
an(m, k) = #An(m+ 1, k)−#An(m, k)

= #NTn(m, k)−#An(m, k)

= −#Tn(m, k)
= −#Bn−1(m, k − 1) (respectively −#Bn−1(m, k)

= −bn−1(m, k − 1) (respectively − bn−1(m, k)).

For the partial difference equation (TS4.3) (respectively (TS4.4)) the
corresponding diagram is the following

(1.14)

An−1(m, k) (respectively An−1(m, k − 1 )yΘ
Bn(m+ 1, k) = Hn(m+ 1, k) ⊎ NHn(m+ 1, k)xβ

Bn(m, k)

where Θ and β are two explicit bijections, defined in (6.8) and (6.13),
(6.14), respectively. The elements in Tn(m, k) from (1.13) (respectively
in Hn(m+ 1, k) from (1.14)) are the so-called tight (respectively hooked)
permutations. All details will be given in Section 6 and constitute the bulk
of the proof of Theorem 1.2.

1.7. Trivariate generating functions. The final step is to show that
the partial difference equation systems (TS4.3), (TS4.4), (TS5.2), (TS5.3)
satisfied by the twin Seidel matrix sequence (An, Bn) (n ≥ 2) make it
possible to derive closed expressions for the trivariate generating functions
for the sequences (A2n), (A2n+1), (B2n), (B2n+1). We list them all in the
following theorems. See Section 8 for the detailed proofs.

The calculations are all based on the Seidel triangle sequence technique
developed in our previous paper [FH14]. Note that the next generating
functions for the matrices An do not involve the entries of the rightmost
columns and bottom rows, which are all zero; they do not involve the
entries of the rightmost columns of the matrices Bn either, since these are
also equal to zero, as assumed in (TS2). Finally, the generating functions
for the bottom rows of the matrices Bn are calculated separately: see (1.23)
and (1.24).

Also, note that the right-hand sides of identities (1.15)–(1.18) are all
symmetric with respect to x and z, in agreement with their combinatorial
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interpretation stated in Theorem 2.4. The property is less obvious for
(1.16), but an easy exercise on trigonometry shows that the right-hand

side is equal to the fraction
cosx cos z sin(x+ y + z) − sin y

cos2(x+ y + z)
. Finally, the

summations below are taken over triples {(m, k, n)} or pairs {(k, n)} for
the last two ones; only the ranges of the summations have been written.

Theorem 1.3 [The sequence (A2n) (n ≥ 1)]. The generating function for
the upper triangles is given by

(1.15)
∑

2≤m+1≤k≤2n−1

a2n(m, k)
xm−1

(m− 1)!

yk−m−1

(k −m− 1)!

z2n−k−1

(2n− k − 1)!

=
cosx cos z sin(x+ y + z)

cos2(x+ y + z)
,

and for the lower triangles by

(1.16)
∑

2≤k+1≤m≤2n−1

a2n(m, k)
x2n−m−1

(2n−m− 1)!

ym−k−1

(m− k − 1)!

zk−1

(k − 1)!

=
cosx sin z

cos(x+ y + z)
+

sinx cos(x+ y)

cos2(x+ y + z)
.

Theorem 1.4 [The sequence (A2n+1) (n ≥ 1)]. The generating function
for the upper triangles is given by

(1.17)
∑

2≤m+1≤k≤2n

a2n+1(m, k)
xm−1

(m− 1)!

yk−m−1

(k −m− 1)!

z2n−k

(2n− k)!

=
cosx cos z

cos2(x+ y + z)
,

and for the lower triangles by

(1.18)
∑

2≤k+1≤m≤2n

a2n+1(m, k)
x2n−m

(2n−m)!

ym−k−1

(m− k − 1)!

zk−1

(k − 1)!

=
cos(x+ y) cos(y + z)

cos2(x+ y + z)
.

Theorem 1.5 [The sequence (B2n) (n ≥ 1)]. The generating function for
the upper triangles is given by

(1.19)
∑

2≤m+1≤k≤2n−1

b2n(m, k)
xm−1

(m− 1)!

yk−m−1

(k −m− 1)!

z2n−1−k

(2n− 1− k)!

=
sinx cos z

cos2(x+ y + z)
,

and for the lower triangles by
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(1.20)
∑

2≤k+1≤m≤2n−1

b2n(m, k)
x2n−m−1

(2n−m− 1)!

ym−k−1

(m− k1)!
zk−1

(k − 1)!

=
cos(x+ y) sin(y + z)

cos2(x+ y + z)
.

Theorem 1.6 [The sequence (B2n+1) (n ≥ 1)]. The generating function
for the upper triangles is given by

(1.21)
∑

2≤m+1≤k≤2n

b2n+1(m, k)
xm−1

(m− 1)!

yk−m−1

(k −m− 1)!

z2n−k

(2n− k)!

=
sinx cos z sin(x+ y + z)

cos2(x+ y + z)
,

and for the lower triangles by

(1.22)
∑

2≤k+1≤m≤2n

b2n+1(m, k)
x2n−m

(2n−m)!

ym−k−1

(m− k − 1)!

zk−1

(k − 1)!

= − sinx sin z

cos(x+ y + z)
+

cosx cos(x+ y)

cos2(x+ y + z)
.

The bivariate generating functions for the bottom rows bn(n, k) (k =
1, 2, . . . ) are computed as follows:

∑

1≤k≤2n−1

b2n(2n, k)
x2n−k−1

(2n− k − 1)!

yk−1

(k − 1)!
=

cosx

cos(x+ y)
;(1.23)

∑

1≤k≤2n

b2n+1(2n+ 1, k)
xk−1

(k − 1)!

y2n−k

(2n− k)! =
sinx

cos(x+ y)
.(1.24)

The previous generating functions for the matrices An, Bn will be
derived analytically in Section 8, from the sole definition of twin Seidel
matrix sequence given in § 1.5, without reference to any combinatorial
interpretation. It will be shown in Section 9 that, conversely, the closed
expressions thereby obtained provide an analytical proof of identity (1.12)
by means of the formal Laplace transform, that is, the fact that the entries
of these matrices furnish a refinement of the tangent and secant numbers.

2. From alternating to André permutations of the first kind

Two further equivalent definitions of André permutations of the two
kinds will be given (see Definitions 2.1 and 2.2). They were actually
introduced in [Str74, FSt74, FSt76]. First, let x be a letter of a permutation
w = x1x2 · · ·xn of a set of positive integers Y = {y1 < y2 < · · · < yn}.
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The x-factorization of w is defined to be the sequence (w1, w2, x, w4, w5),
where

(1) the juxtaposition product w1w2xw4w5 is equal to w;
(2) w2 is the longest right factor of x1x2 · · ·xi−1, all letters of which

are greater than x;
(3) w4 is the longest left factor of xi+1xi+2 · · ·xn, all letters of which

are greater than x.

Next, say that x is of type I (respectively of type II ) in w, if, whenever
the juxtaposition product w2w4 is non-empty, its maximum (respectively
minimum) letter belongs to w4. Also, say that x is of type I and II, if w2

and w4 are both empty.

Definition 2.1. A permutation w = x1x2 · · ·xn of Y = {y1 < y2 <
· · · < yn} is said to be an André permutation of the first kind (respectively
of the second kind) [in short, “w is André I” (respectively “André II ”)],
if xi is of type I (respectively of type II) in w for every i = 1, 2, . . . , n.

Definition 2.2. A permutation w = x1x2 · · ·xn of Y = {y1 < y2 <
· · · < yn} is said to be an André permutation of the first kind (respectively
of the second kind), if it has no double descent (a factor of the form
xi−1 > xi > xi+1) and its troughs (factors xi−1xixi+1 satisfying xi−1 > xi
and xi < xi+1) are all of type I (respectively of type II). By convention,
xn+1 := 0.

The following notations are being used. If Y = {y1 < y2 < · · · < yn}
is a finite set of positive integers, let ρY be the increasing bijection
of Y onto {1, 2, . . . , n}. The inverse bijection of ρY is denoted by ρ−1

Y .
If v = yi1yi2 · · · yin is a permutation of Y , written as a word, let
ρY (v) := ρY (yi1)ρY (yi2) · · ·ρY (yin) = i1i2 · · · in be the reduction of the
word v, which is then a permutation of 1 2 · · ·n. When dealing with a given
word v, the subscript Y in ρY (v) may be omitted, so that ρ(v) = ρY (v).
In the same way, the subscript Y in each composition product ρ−1

Y αρY (v)
may be omitted, so that ρ−1αρ(v) = ρ−1

Y αρY (v).
Also, let c be the bijection i 7→ n+ 1− i from {1, 2, . . . , n} onto itself.

Furthermore, if v = yi1yi2 · · · yin is a permutation of Y , written as a word,
let C(v) := Y and the length of v be |v| = n. Finally, a left maximum
record (respectively left minimum record) of v is defined to be a letter of v
greater (respectively smaller) than all the letters to its left.

Proposition 2.1. Let n ≥ 2 and w = x1x2 · · ·xn be André I.

(1) In w = vmin(w)v′, both factors v and v′ are André I.
(2) If w is from AndIn, then both permutations 1 (x1+1) (x2+1) · · · (xn+1)

and x1x2 · · ·xn (n+1) belong toAndIn+1, and (x2−1)(x3−1) · · · (xn−1)
belongs to AndIn−1 whenever x1 = 1.
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(3) The last letter xn is the maximum letter.
(4) Let w = w′ y w′′xn with y being the second greatest letter of w. If

w′′ 6= e, then Fw′′ = min(w′′).
(5) For each left maximum record y of v, less than max(w), the two factors

uy and u′ in the factorization w = u y u′ are themselves André I.
(6) Let w = v y v′ be André I. If y is a left minimum record, then v is

André I.
(7) Let w = v y v′ be an arbitrary permutation with y a letter. If both

factors v and y v′ are André I and y is a left minimum record, then w
is André I.

Proof. (1) By the very definition given in Subsection 1.2.

(2) Clear.

(3) Write w = vmin(w)v′. By definition, max(v′) = max(vv′) =
max(w), and by induction the last letter of v′, which is also the last letter
of w, is equal to max(v′) = max(w).

(4) If w′′ 6= e, let x := Fw′′, and let (w1, w2, x, w4, w5) be the x-
factorization of w. As y is the maximum letter of w2, the maximum letter
of w4 must be equal to maxw to make x of type I. This can be achieved
only if x is the minimum of w′′.

(5) Let x := min(w) and y be a left maximum record less than max(w),
so that w = v x v′ = u y u′ for some factors v, v′ 6= e, u, u′ 6= e. Two
cases are to be considered: (i) x to the left of y so that w = v x v′′ y u′;
(ii) y to the left of x so that w = u y u′′ x v′ for some factors v′′, u′′. In
case (i) both factors v and v′′ y u′ are André I, following the definition in
§ 2.1. Now, the letter y is also a left maximum record of the word v′′ y u′.
By induction on the length, both v′′ y and u′ are André I, so that the two
factors v and v′′y of the word u y = v x v′′y are André I, making the latter
word also André I. Thus, both uy and u′ are André I. In case (ii), the
same argument applies: both factors u y u′′ and v′ are André I, then also
u y and u′′ by induction, as well as the juxtaposition product u′′ x v′.

(6) If y = minw, then v is André I by definition. Otherwise, y is to the
left of min(w) in {w : w = v y u min(w) u′}. But y is also a left minimum
record of v y u. By induction on the length, v is André I.

(7) If y = min(w), then v′ is André I by (2). Now, v and v′ being both
André I, the product w = v y v′ is André I by definition. If y > min(w),
then w = v y u min(w) u′. There is nothing to prove if v = e. Otherwise,
as y v′ is André I, both factors y u and u′ are André I. As y is also a left
minimum record of v y u, the juxtaposition product v y u is André I by
induction on the length. Finally, w itself is André I by definition, as u′ has
been proved to be also André I.

In [FSch71] a bijection between AndIn and Altn was constructed, but did
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not preserve the first letter. For proving Theorem 1.1(i), we need construct
a bijection

(2.1) η : w→ η(w), such that Fw = F η(w),

of AndIn onto the set Altn of all alternating permutations of length n. For
n = 1, 2, 3 it suffices to take: 1 7→ 1, 12 7→ 12, 123 7→ 132, 213 7→ 231.
When n ≥ 4, each w from AndIn can be written w = w′ 1w′′, where both
factors w′, w′′ (with w′ possibly empty) are André I.

If w′ = e, let v′ := 1 and v′′ := ρ−1 c η ρ(w′′);
if w′ 6= e, let

v′ := ρ−1 η ρ(w′);

v′′ :=

{
ρ−1 η ρ(1w′′), if |w′| is even;
ρ−1 c η ρ(1w′′), if |w′| is odd;

and

η(w) := v′ v′′.(2.2)

For instance, let w = 1234 ∈ AndI4. Then, w
′ = e, w′′ = 234; hence,

v′ = 1, ρ(w′′) = 123, η(123) = 132, c(132) = 312, ρ−1(312) = 423 = v′′

and η(1234) = 1423.
With w = 4361257 we get w′ = 436, w′′ = 257; hence, ρ(436) = 213,

η(213) = 231, ρ−1(231) = 463 = v′. Also, ρ(1257) = 1234, η(1324) = 1423,
c(1423) = 4132, ρ−1(4132) = 7152 = v′′ and η(4361257) = 4637152.

Theorem 2.2. The mapping η defined by (2.2) is a bijection between
AndIn and Altn such that Fw = F η(w).

Proof. Again, factorize an André I permutation w in the form w =
x1x2 · · ·xn = w′1w′′. When w′ = e, then ρ(w′′) is an André I permutation
starting with ρ(x2). By induction, η ρ(w′′) is an increasing alternating
permutation if |w′′| ≥ 2. Then c η ρ(w′′) will be a falling alternating
permutation, as well as the permutation v′′ = ρ−1 c η ρ(w′′), which is
also a permutation of 23 · · ·n. Hence, η(v) = 1 v′′ will be an alternating
permutation starting with 1.

When w′ 6= e, then v′ is an alternating permutation of the set C(w′).
By induction, it starts with the same letter as the first letter of w, that
is, x1. If |w′| is even, v′′ = ρ−1 η ρ(1w′′) is an alternating permutation
starting with 1, by induction. The juxtaposition product v′v′′ will then
be an alternating permutation starting with x1, as the last letter of v′ is
necessarily greater than the first letter of v′′. If |w′| is odd, we just have
to verify that L v′ < F v′′. But w, being an André I permutation, ends
with its maximum letter n and so does w′′. By induction, η ρ(1w′′) starts
with 1, so that c η ρ(1w′′) starts with the maximum letter n. Therefore,
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v′′ is a falling alternating permutation starting with n and v′v′′ is an
alternating permutation starting with x1.

For each permutation w = x1x2 · · ·xn−1xn (n ≥ 2) the next-to-last
letter NLw of w has been defined as NLw := xn−1. The construction of
a bijection θ from AndIn onto itself having the property

(2.3) NL θ(w) + Fw = |w| = n

is quite simple. It suffices to define:

(2.4) θ(x1 · · ·xn−2xn−1 n) := (n− xn−1) (n− xn−2) · · · (n− x1)n.

Property (2.3) is readily seen. It remains to prove that, if w belongs to
AndIn, so does θ(w). This is the object of the next Proposition.

Proposition 2.3. Let Y = {y1 < y2 < · · · < yn} be a finite set of
positive integers and w = x1x2 · · ·xn be an André I permutation from the
set AndIY . Then θ(w) := (xn − xn−1)(xn − xn−2) · · · (xn − x1)xn is also
André I.

Proof. Proposition 2.3 is true for n = 2, as θ(y1y2) = (y2 − y1)y2.
For n = 3 we have θ(y1y2y3) = (y3 − y2)(y3 − y1)y3, θ(y2y1y3) =
(y3 − y1)(y3 − y2)y3, which are two André I permutations.

For n ≥ 4 let w = x1x2 . . . xn ∈ AndIY be written w = w′y1w
′′. If

w′ = e, let w′′− y1 := (x2− y1) · · · (xn−2− y1)(xn−1− y1)(yn− y1). Then,
w′′ is André I by Lemma 2.1 (b), as well as w′′−y1, since y1 is the smallest
element of Y . By induction,

θ(w′′ − y1) = (yn − y1 − (xn−1 − y1)) (yn − y1 − (xn−2 − y1))
· · · (yn − y1 − (x2 − y1))(yn − y1)

= (yn − xn−1) (yn − xn−2) · · · (yn − x2)(yn − y1)

is André I. Therefore,

(yn − xn−1) (yn − xn−2) · · · (yn − x2)(yn − y1)yn
= (xn − xn−1) (xn − xn−2) · · · (xn − x2)(xn − x1)yn

is André I a fortiori and is precisely the expression of θ(w) that was wanted.
Let |w′| = k ≥ 1. By induction, both

θ(w′yn) = (yn − xk) · · · (yn − x2)(yn − x1) yn

and
θ(y1w

′′) = (yn − xn−1) · · · (yn − xk+2) (yn − y1) yn
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are André I, and also

θ̌(y1w
′′) := (yn − xn−1) · · · (yn − xk+2) (yn − y1).

The juxtaposition product θ̌(y1w
′′) θn(w

′yn) reads

(yn − xn−1) · · · (yn − xk+2) (yn − y1)(yn − xk) · · · (yn − x2)(yn − x1) yn,

that is, precisely θ(w), since yn − y1 = yn − xk+1.
Now, note that xk is the greatest letter of w′ by Lemma 2.1 (3), so that

(yn − xk) is the smallest letter of the right factor

(yn − xk) · · · (yn − x2)(yn − x1) yn

of θ(w). On the other hand, (yn−y1) > (yn−xk). Thus, (yn−xk) is a trough
of θ(w); moreover, the (yn − xk)-factorization (w1, w2, (yn − xk), w4, w5)
of θ(w) is of type I, since w2 contains the letter (yn−y1) and w4 the letter
yn, which is greater than (yn − y1). Finally, the x-factorizations of the
other letters x from θ̌(y1w

′′) (respectively from θ(w′yn)) in each of these
two factors are identical with their x-factorizations in θ(w). They are then
all of type I, and θ(w) is André I.

By Proposition 2.3 and Identity (2.3) we obtain the following result.

Theorem 2.4. The statistics “F” and “(n−NL)” are both Entringerian
on AndIn. Moreover, the distribution of the bivariate statistic (F, n−NL)
on AndIn is symmetric.

3. The bijection φ between André I and André II permutations

For each permutation w = x1x2 · · ·xn of 12 · · ·n (n ≥ 2) make the
convention xn+1 := 0 and introduce the statistic spike of w, denoted by
“spiw,” to be equal to the letter xi (1 ≤ i ≤ n) having the properties

(3.1) x1 ≤ x1, x1 ≤ x2, . . . , x1 ≤ xi, and x1 > xi+1.

The spike statistic may be regarded as the permutation analog of the
classical statistic that measures the time spent by a particle starting at
the origin and wandering in the y > 0 part of the xy-plane, before crossing
the x-axis for the first time. For instance, spi(253416) = 4, as all the letters
to the left of 4 are greater than or equal to 2, but the letter following 4 is
less than 2. Also, spi(425136) = 4 and spi(14235) = 5.

When w is an André I permutation and spiw = xi, then xi is a left
maximum record, i.e., greater than all the letters to its left. Otherwise, the
minimum trough between the maximum letter within x1x2 · · ·xi−1 would
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not be of type I. Accordingly, when w is an André I permutation, the
spike xi of w can also be defined as the smallest left maximum record (or
the leftmost one), whose successive letter xi+1 is less than x1.

For introducing the statistic “pit”, we restrict the definition to all
permutations w = x1x2 · · ·xn of 12 · · ·n such that n ≥ 2 and xn−1 < xn.
Let 1 = a1 < a2 < · · · < xn−1 = ak−1 < xn = ak be the increasing
sequence of the right minimum records of w, that is to say, the letters
which are smaller than all the letters to their right. With the assumption
xn−1 < xn, there are always two right minimum records to the right of
each letter greater than xn. If xn = n (= maxw), let pitw := 1 (= minw).
Otherwise, let xi be the rightmost letter greater than xn and aj < aj+1

be the closest pair of right minimum records to the right of xi. Define
pitw := aj+1.

For instance, pit(451236) = 1, as the word ends with the maximum
letter 6. In the permutation 614235, the letter 6 is the rightmost letter
greater than xn = 5, and 1 < 2 is the closest pair of right minimum
records to the right of 6, so that pit(614235) = 2.

An alternate definition for “pit” is the following: if w ends with
maxw, let pitw = minw. Otherwise, write w = w1(minw)w2 and
define pitw := pitw2. If w2 does not end with the maximum letter,
let w2 = w3(minw2)w4 and define pitw2 := pitw4, continue the process
until finding a right factor w2j ending with its maximum letter to obtain
pitw := pitw2 = · · · = pitw2j = minw2j . For instance, pit(614235) =
pit(4235) = 2.

Remember that we have introduced three other statistics, namely
“NL” (“next-to-last”), “L ” (“last”), and “grn” (“greater neighbor of
the maximum”), and that grnw = NLw whenever w is an André I
permutation. Our goal is to prove the next theorem.

Theorem 3.1. The triplets (F , spi,NL) on AndIn and (pit,L , grn) on
AndIIn are equidistributed.

Let X = {a1 < a2 < · · · < an} be a set of positive integers (or any
finite totally ordered set), and let AndIX (respectively AndIIX) denote the
set of all André I (respectively André II) permutations of X . To prove the
previous statement, a bijection

φ : AndIX → AndIIX(3.2)

will be constructed having the property

(F , spi,NL)w = (pit,L , grn)φ(w).(3.3)

When n = 0, let φ(e) := e with e the empty word. Let φ(a1) := a1 for
n = 1; φ(a1a2) := a1a2 for n = 2. For n ≥ 3 each permutation w from
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AndIX has one of the two forms:

(i) w = v0 a1 v1 a2 v2; (ii) w = v0 a2 v2 a1 v1.

Note that the three factors v0, v1, v2 and the product v0a2v2 are all André I
permutations, and v0 is possibly empty. In case (i), v1 may be empty, but
not v2 (which ends with an greater than a2); in case (ii), v2 may be empty,
but not v1 (which ends with an). For both cases (i) and (ii), define

(3.4) φ(w) := φ(v1) a1 φ(v0 a2 v2).

By induction, both factors φ(v1) and φ(v0a2v2) are André II, as well as
φ(w), since a2 is to the right of a1.

Example. Consider the André I permutation

w = 7 8 5

v0

6 9 2

a2

10

v2

1

a1

11 3 12

v1

4 13;

we then have:

φ(w)
(ii)
= φ(11 3 12 4 13) 1φ(7 8 5 6 9 2 10);

φ(11

v0

3

a1

12

v1

4

a2

13

v2

)
(i)
= 12 3 φ(11 4 13);

φ(11

a2

4

a1

13

v1

)
(ii)
= 13 4 11;

φ(7 8

v0

5

a2

6 9

v2

2

a1

10

v1

)
(ii)
= 10 2 φ(7 8 5 6 9);

φ(7 8

v0

5

a1

6

a2

9

v2

)
(i)
= 5 φ(7 9 6 9);

φ(7

a2

8

v2

6

a1

9

v1

)
(ii)
= 9 6 φ(7 8) = 9 6 7 8;

so that

φ(w) = 12 3 13 4 11 1 10 2 5 9 6 7 8.

We can verify that (F , spi,NL)w = (pit,L , grn)φ(w) = (7, 8, 4).

With the previous definition of φ, we see that the maximum letter an
of X occurs in φ(v0a2v2) (respectively in φ(v1)) when w is of form (i)
(respectively of form (ii)). For constructing the inverse φ−1 of φ, this
suggests that we start with the factorization

v = w0 a1w1
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of each permutation v from AndIIX with #X ≥ 3, after defining φ−1(e) :=
e; φ−1(a1) := a1 for n = 1; φ−1(a1a2) := a1a2 for n = 2. As both w0, w1

are André II permutations with fewer letters, the images φ−1(w0), φ
−1(w1)

are defined by induction. Let v1 := φ−1(w0). As the minimum letter of w1

is a2, define v0 and v2 to be the factors in φ−1(w1) := v0 a2 v2. Next, let

(3.5) φ−1(v) :=

{
v0 a1 v1 a2 v2, if an is a letter of w1;
v0 a2 v2 a1 v1, if an is a letter of w0.

Lemma 3.2. The André II permutation φ(w) ends with its maximum
letter if and only if w starts with its minimum letter minw, and then
pitφ(w) = Fw = minw.

Proof. This is obviously true for n = 2. For n ≥ 3, we have w = a1v1a2v2
and φ(w) = φ(v1)a1φ(a2v2). As a2v2 is André I starting with its minimum
letter a2, then, by induction, φ(a2v2) ends with its maximum letter, which
is equal to maxw. Hence, pitφ(w) = pit(φ(v1)a1φ(a2v2)) = a1 = Fw. For
the converse take the notation v = w0a1w1 of (3.5). When the maximum
letter an occurs in w1, then ψ(v) = v0a1v1a2v2 with v1 = ψ(w0) and
ψ(w1) = v0a2v2. By assumption, an occurs at the end of v, hence, at the
end of w1. By induction, ψ(w1) = v0a2v2 starts with its minimum letter.
This can be true only if v0 = e. Therefore, ψ(v) = a1v1a2v2 and starts
with its minimum letter a1.

Theorem 3.3. The mapping φ is a bijection between AndIn and AndIIn .
Moreover, relation (3.3) holds.

Proof. The bijectivity is proved by the construction of the inverse φ−1

(see (3.5)). To prove identity (3.3), let w be a André I permutation, either
of the form v0a1v1a2v2, or of the form v0a2v2a1v1. In both cases,

spiw = spi v0 = spi(v0a2v2)

= Lφ(v0a2v2) [by induction]

= L (φ(v1)a1φ(v0a2v2)) = Lφ(w).

Next, if w = v0a1v1a2v2, then

NLw = NL(v0a2v2)

= grnφ(v0a2v2) [by induction]

= grn(φ(v1)a1φ(v0a2v2)) = grnφ(w),

because the maximum letter an is a letter of v2. If w = v0a2v2a1v1, then
a1v1 has at least two letters and ends with an, so that a1v1 is André I of
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form (i). Consequently,

NLw = NL(a1v1)

= grnφ(a1v1) [by induction]

= grn(φ(v1)a1φ(v0a2v2)) = grnφ(w).

When w does not start with its minimum letter, then φ(w) =
φ(v1)a1φ(v0a2v2), and φ(v0a2v2) does not end with maxw. Therefore,
pitφ(w) = pitφ(v0a2v2) = F v0a2v2. As v0 = e only in case (ii), we
then have: pitφ(w) = F v0a2 = Fw.

4. The bijection g from the set of André I permutations
onto itself

When making up the tables of the distribution of the bivariate statistic
(spi,F ) on AndIn for n = 1, 2, . . . , 7, as shown in Table 4.1, it can
be noticed that the matrices are symmetric with respect to their skew-
diagonals. The property will hold in general if a bijection g from AndIn
onto itself can be constructed satisfying

(4.1) (F , spi)w = (n+ 1− spi, n+ 1− F ) g(w)

for all w from AndIn.

F = 1
spi = 2 1

n = 2

F = 1 2
spi = 2 . 1

3 1 .

n = 3

F = 1 2 3
spi = 2 . 1 .

3 . 1 1
4 2 . .

n = 4

F = 1 2 3 4
spi = 2 . 2 . .

3 . 1 3 .
4 . 2 1 2
5 5 . . .

n = 5

F = 1 2 3 4 5
spi = 2 . 5 . . .

3 . 2 8 . .
4 . 3 3 8 .
5 . 6 3 2 5
6 16 . . . .

n = 6

F = 1 2 3 4 5 6
spi = 2 . 16 . . . .

3 . 5 27 . . .
4 . 7 8 31 . .
5 . 11 10 8 27 .
6 . 22 11 7 5 16
7 61 . . . . .

n = 7

Table 4.1: distribution of (spi,F ) on AndIn

For the construction of g we proceed as follows. An André I permutation
v = y1y2 · · · yl on a set X (of cardinality l ≥ 2) is called simple, if the
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first letter y1 of v is equal to minX . Consider an André I permutation
w = x1x2 · · ·xn from AndIn. Let 1 = a1 < a2 < · · · < ar (respectively
1 = b1 < b2 < · · · < bs = n) be the increasing sequence of subscripts
such that xa1

> xa2
> · · · > xar

(respectively xb1 < xb2 < · · · < xbs)
is the increasing (respectively decreasing) sequence of the left minimum
(respectively maximum) records of w = x1x2 · · ·xn from AndIn.

For the following André I permutation the left minimum (respectively
maximum) records are underlined (respectively overlined):

w = 7 8 5 6 9 2 10 1 11 3 12 4 13 .

Going back to the general case, let

v1 := x1 · · ·xa2−1, v2 := xa2
· · ·xa3−1, . . . , vr := xar

· · ·xn,

so that w is the juxtaposition product v1v2 · · · vr, and the factors vi are
obtained by cutting the word w just before each left minimum record.
The factorization (v1, v2, . . . , vr) is called the canonical factorization of
the André I permutation w. Furthermore, the sequence

( (F v1,L v1), (F v2,L v2), . . . , (F vr,L vr) ),

which is also equal to ( (x1, xa2−1), (xa2
, xa3−1), . . . , (xar,xn) ), is called

the type of the canonical factorization of w.
In our running example, the canonical factorization reads

w = 7 8 | 5 6 9 | 2 10 | 1 11 3 12 4 13

v1 v2 v3 v4

and is of type ( (7, 8), (5, 9), (2, 10), (1, 13) ).

Proposition 4.1. Let (v1, v2, . . . , vr) be the canonical factorization of
the André I permutation w = x1x2 · · ·xn from AndIn. Let s be the number
of left maximum records of w. Then:

(i) r ≤ s;
(ii) each factor vi (i = 1, 2, . . . , r) is a simple André I permutation;
(iii) L vi is a left maximum record, so that L v1 < L v2 < · · · < L vr−1 <
L vr = n and, of course, F v1 > F v2 > · · · > F vr−1 > F vr = 1;
(iv) (F v1,L v1) = (Fw, spiw).

Let w = x1x2 · · ·xn be an André I permutation from AndIn and
w := xnxn−1xn−2 · · ·x1 be the permutation defined by xi := N − xn+1−i

(i = 1, 2, . . . , n), where N is some integer greater than n.
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Proposition 4.2. If w is a simple André I permutation, so is w.

For constructing the bijection g, let n ≥ 3 and N := n + 1. If
(v1, v2, . . . , vr) is the canonical factorization of a permutation w from
AndIn, define g(w) to be the juxtaposition product

(4.1) g(w) := v1 v2 . . . vr.

Furthermore, if τ = ((p1, q1), (p2, q2), . . . , (pr, qr)) is the canonical factor-
ization type of w, let

τ := ((q1, p1), (q2, p2), . . . , (qr, pr)).

We then have the following fundamental property of g.

Theorem 4.3. The transformation g is a bijection from AndIn onto itself.
Furthermore, if τ is the canonical factorization type of w, then τ is the
canonical factorization type of g(w). In particular,

(4.2) (F , spi) g(w) = (n+ 1− spi, n+ 1− F )w.

In the running example, where n+ 1 = 14, we get

g(w) = 6 7 | 5 8 9 | 4 12 | 1 10 2 11 3 13,

which is of type ( (6, 7), (5, 9), (4, 12), (1, 13) ).

The proofs of Propositions 4.1, 4.2 and Theorem 4.3 do not present any
difficulties and are therefore omitted.

5. The proof of Theorem 1.1 (iii) and (iv)

We reproduce the sequence (1.5) by decomposing the product φ ◦ g:

(5.1)
AndIn

g−→ AndIn
φ−→ AndIIn

w 7→ g(w) 7→ φ(g(w))
Fw = n+ 1− spi g(w) = n+ 1− Lφ(g(w))

The first (respectively second) identity Fw = n+1−spi g(w) (respectively
spi g(w) = Lφ(g(w))) is a specialization of (4.2) (respectively of (3.3)).

Take the example of the previous section: w = 7 8 5 6 9 2 10 1 11 3 12 4 13
and g(w) = 6 7 5 8 9 4 12 1 10 2 11 3 13. By using the definition of φ given in
(3.4), we get φ(g(w)) = 10 1 11 2 13 3 12 4 8 9 5 6 7, which belongs to AndII13,
and n+ 1− Lφ(g(w)) = 14− 7 = 7 = Fw.
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Next, reproduce the sequence (1.4) by decomposing the product φ ◦ θ:

(5.2)
AndIn

θ−→ AndIn
φ−→ AndIIn

w 7→ θ(w) 7→ φ(θ(w))
Fw = n−NL θ(w) = n− grnφ(θ(w))

The first (respectively second) identity Fw = n −NL θ(w) (respectively
NL θ(w) = grn(φ(g(w))) is a specialization of (2.3) (respectively of (3.3)).

For example, with w′ = 10 2 11 3 12 1 9 4 5 8 6 7 13, we obtain θ(w′) =
6 7 5 8 9 4 12 1 10 2 11 3 13 and φ(θ(w′)) = 10 1 11 2 13 3 12 4 8 9 5 6 7. Thus,
Fw′ = 10 = n−NL θ(w′) = 13− 3 = n− grnφ(θ(w′)).

The proofs of (iii) and (iv) of Theorem 1.1 are now completed. Another
proof of Theorem 1.1 (iii) and (iv) makes use of the properties of a
rearrangement group Gn, acting on the group Sn of all permutations
of {1, 2, . . . , n}, which were developed in [FSt74, FSt76], and another
correspondence Γ on binary increasing trees, introduced in [FH13]. They
constitute the main ingredients for the constructions of three bijections,
Γ, ΦI , and ΦII , appearing in the diagram

AndIIn
Γ−→ Sn/Gn

ΦI

−→ AndInyΦII

AndIIn
which have the property

Lw = 1 +NLΦIΓ(w) = 1 + grnΦIIΓ(w).

6. Combinatorics of the twin Seidel matrix sequence

This section is devoted to proving Theorem 1.2. As announced in
Subsection 1.5, the question is to show that the integers an(m, k) and
bn(m, k), when taken as an(m, k) = #An(m, k), bn(m, k) = #Bn(m, k)
with

An(m, k) := {w ∈ AndIn : (F ,NL)w = (m, k)};(6.1)

Bn(m, k) := {w ∈ AndIn : (spi, grn)w = (m, k)};(6.2)

satisfy all the properties (TS1)–(TS5) stated in Subsection 1.5.
The verifications of properties (TS1), (TS2), (TS3), (TS4.1), (TS4.2),

(TS5.1) are easy and given in the next subsection. The proofs of the other
properties are much harder and will be developed thereafter.
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6.1. The first evaluations. By (1.7), the set Bn(m, k) is equinumerous
with

(6.3) B′
n(m, k) := {w ∈ AndIIn : (L , grn)w = (m, k)}.

The evaluations in this subsection are made by using B′
n(m, k) instead of

Bn(m, k).

(TS1) Nothing to prove, except for the diagonals of the twin Seidel
matrices An and Bn. They have zero entries when n ≥ 3, because the first
and next-to-last letter of each André I permutation cannot be the same!
On the other hand, the identity Lw = grnw = m would mean that the
permutation w from AndIIn ends with a double descent n > m > 0.

(TS2) We have an(k, n) = bn(k, n) = 0, because grnw ≤ n − 1
for each w from either AndIn, or AndIIn . Also, an(n, k) = 0, as each
permutation from AndIn ends with n. Finally, bn(1, k) = 0, because each
permutation from AndIIn cannot end with the letter 1.

(TS3) We have: A2 =
1 ·
· · and B1 =

· ·
1 · , because AndI2 = AndII2 = {12}

and (F ,NL,L , grn)(12) = (1, 1, 2, 1).

(TS4.1) The entry bn(n, k) counts the André II permutations w from
AndIIn ending with the two-letter factor k n. The deletion of the ending
letter n maps w onto an André II permutation w′ from AndIIn−1 ending
with k in a bijective manner. Hence, bn(n, k) = bn−1(k, •), which is equal
to an−1(•, k − 1) by Theorem 1.1 for 1 ≤ k ≤ n− 1.

(TS4.2) The entry bn(n − 1, k) counts the André II permutations w
from AndIIn of the form w = x1 · · ·xi−2 nxi · · ·xn−1 (n− 1) with i ≤ n− 1
and k equal to xi−2 or xi. Such a permutation can be mapped onto a
permutation w′ from AndIIn−1 defined by

(6.4) w′ := x1 · · ·xi−2 (n− 1) xi · · ·xn−1.

This defines a bijection between the set of all w from AndIIn such that
(L , grn)w = (n − 1, k) and the set of all w′ from AndIIn−1 such that
grnw′ = k (1 ≤ k ≤ n− 2). Thus, bn(n− 1, k) = bn−1(•, k), which is also
equal to an(•, k) by Theorem 1.1.

(TS5.1)The entry an(1,k) counts the permutations w from AI
n such that

(F ,NL)w = (1, k). The bijection 1 x2 · · ·k n 7→ (x2 − 1) · · · (k − 1) (n− 1)
maps the set of these permutations onto the set of all w′ from AI

n−1 such
that grnw′ = k − 1. Hence, an(1, k) = an−1(•, k − 1).
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6.2. Tight André I permutations. As sketched in Subsection 1.6 and its
display (1.13), proving (TS5.2) and (TS5.3) amounts to do the following
points:

(a) split each set An(m, k) into two disjoint subsets

An(m, k) = Tn(m, k) ⊎NTn(m, k),
in such a way that

(b) when 2 ≤ k + 1 ≤ m ≤ n− 2 or 3 ≤ m+ 2 ≤ k ≤ n− 1 a bijection

f : NTn(m, k)→ An(m+ 1, k);

(c) and another bijection

φ : Bn−1(m, k)→ Tn(m, k), when m > k;

φ : Bn−1(m, k − 1)→ Tn(m, k), when m < k;

can be duly constructed.

Points (a) and (b). Let f be the transposition of the first letter Fw =
m within a permutation w and the letter equal to (m+1) (1 ≤ m ≤ n−2):
(6.5) f : w = mv (m+ 1) v′ 7→ w′ = (m+ 1) vmv′.

If w is an André I permutation, the image w′ = f(w) is not always
an André I permutation. For example, 423516 belongs to AndI6, but not
f(w) = 523416, for the trough 2 is not of type I. However, the reverse
transposition

f−1 : w′ = (m+ 1) vmv′ 7→ f−1(w′) = w = mv (m+ 1) v′,

whenever defined, maps each André I permutation to an André I permu-
tation. The André I permutations w, whose images f(w) are not André I
permutations, are called tight. They are characterized as follows.

Definition 6.1. An André I permutation w = mv (m+ 1) v′ is said to
be tight, if the following two conditions hold:

(i) either v = e, or v 6= e and all its letters are less than m;
(ii) either v′ 6= e and F v′ is less than all the letters of w to its left, or

v′ = e and necessarily m = n− 1.

Let Tn (respectively NTn) be the subset of all André I permutations
from AndIn, which are tight (respectively not tight), and let Tn(m, k) :=
Tn ∩ An(m, k), NTn(m, k) := NTn ∩ An(m, k).

Note that the André I permutations from An(1, k) are all of the form
1 v 2 v′ and, either the letters of v are all greater than 2, or v′ 6= e but 2 <
F v′, so that at least one of conditions (i), (ii) does not hold. Accordingly,
NTn(1, k) = An(1, k) for all k, that is, all André I permutations starting
with 1 are not tight. Also, note that each André I permutation from
An(n − 1, k) is of the form w = (n − 1) v n and is necessarily tight, so
that Tn(n− 1, k) = An(n− 1, k) for all k.
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Proposition 6.1. Let n ≥ 3 and let w be a tight André I permutation
from AndIn. Then, f(w) (defined in (6.5)) cannot be an André I permuta-
tion.

Proof. Take the notation of (6.5) for w and w′ = f(w). If m = n−1, then
w′ = n v (n−1) is not André I. Ifm ≤ n−2, v = e, and (ii) of Definition 6.1
holds, then w′ contains the double descent (m+ 1) > m > F v′, therefore
is not André I. If m ≤ n−2, v 6= e and (ii) of Definition 6.1 holds, let x be
the minimum trough in w′ between (m+1) andm; then the x-factorization
(w1, w2, x, w4, w5) of w′ is such that maxw2w4 = m + 1 with (m + 1) a
letter of w2. Again, w′ cannot be an André I permutation.

Proposition 6.2. If 2 ≤ k + 1 ≤ m ≤ n − 2 or 3 ≤ m + 2 ≤ k ≤ n − 1,
then f maps NTn(m, k) onto An(m+ 1, k) in a bijective manner.

Proof. To prove that w′ is André I when w is not tight, we prove that (i)
w′ has no double descent; (ii) all the troughs of w′ are of type I.

(i) The only double descent that could be created when going from w
to w′ is (m + 1) > m > F v′. This could occur only if v = e, v′ 6= e and
m > F v′, and this would mean that w is tight; a contradiction.

(ii) Let xi (respectively x′i) be the i-th letter counted from left to
right of w (respectively w′). Also, let (w1, w2, xi, w4, w5) (respectively
(w′

1, w
′
2, x

′
i, w

′
4, w

′
5)) be the xi- (respectively x

′
i-)factorization of w (respec-

tively of w′). Several cases are to be considered.
(1) Suppose that xi is to the right of (m + 1) in w. Then x′i = xi.

If xi is a trough of w, then either (m+ 1) is a letter of w2, or not. If it is,
then w′

2 is derived from w2 by replacing the letter (m+1) by m. Therefore,
maxw′

2 ≤ maxw2 < maxw4 = maxw′
4, and the x′i-factorization remains

of type I in w′. If it is not, then w′
2 = w2, w

′
4 = w4, and the same conclusion

holds.
(2) Now, suppose that xi = (m+1), so that x′i = m. If xi is a trough of

w — this is possible, as w is supposed to be not tight — then v 6= e, and
m is not a letter of w2. Furthermore, (m+1) is a letter of w′

2 only when all
the letters between m and (m+1) are greater than (m+1). Whatever the
particular case may be, we have maxw′

2 = maxw2 < maxw4 = maxw′
4,

so that x′i is a trough of type I in w′.
(3) Next, let xi lie between m and (m + 1) in w, so that x′i = xi, and

suppose that xi is trough of w. If xi is greater than (m+1), then w′
2 = w2

and w′
4 = w4. Moreover, x′i = xi will be a trough of type I in w′. If xi is less

than m, the only problem arises when m and (m + 1) are the maximum
letters of w2 and w4, respectively. In such a case, all the letters between m
and (m+ 1) are smaller than m and m > F v′. Hence, w would be tight,
a contradiction.

Thus, the image f(w) of w, supposed to be not tight, is André I. If
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2 ≤ k+1 ≤ m ≤ n−2, a fortiori, k < m+1, so that the next-to-last letter
of a permutation w from NTn(m, k), which is equal to k, cannot be equal
to (m + 1). Thus, f(NTn(m, k)) ⊂ An(m + 1, k). In the same manner, if
3 ≤ m+1 < k ≤ n−1, the inequalitym+1 < k implies the same inclusion.
As f and f−1 are inverses of each other when applied to the sets An(m, k)
and An(m + 1, k), respectively, the restriction of f−1 to An(m + 1, k) is
necessarily NTn(m, k) by Proposition 6.1. Thus, Proposition 6.2 is proved
for 2 ≤ k + 1 ≤ m ≤ n− 2 and 3 ≤ m+ 1 < k ≤ n− 1.

In Table 6.1 the bijection f : NT5(m, k)→ A5(m+1, k) is materialized
by the vertical arrows. The five tight permutations in AndI5 are reproduced
in boldface. They can only be targets of these arrows. This completes the
program of points (a) and (b).

1

2

3

4

NL

F 1 2 3 4
❅

❅❅
13425 12435

14235
12345

13245

23415 21435
24135

21345
23145

32415 3124531425
34125

41325 41235

✑
✑

✑✰

❄

❄

❄

✟✟✟✟✟✙

❄

✟✟✟✟✟✙

❄

❄

❄

✑
✑

✑✑✰

Table 6.1: the bijection f : NT5(m, k)→ A5(m+ 1, k) (k 6= m+ 1).
f : A5(m,m+ 1)→ A5(m+ 1, m)

Remark. When 3 ≤ m + 1 = k ≤ n − 2, in the permutation
w = mv (m+1) v′ from An(m,m+1) the right factor v′ is equal to the one-
letter word n. This implies that f maps An(m,m+1) onto An(m+1, m)
in a bijective manner. In particular, an(m,m + 1) = an(m + 1, m). This
fact is illustrated in Table 6.1 by oblique arrows.

Point (c). Let n ≥ 3, and consider a permutation w = x1x2 · · ·xn−1

from AndIn−1. Let xj = spiw. Define φ(w) := xjx
′
1x

′
2 · · ·x′n−1, where

(6.6) x′i :=

{
xi, if xi ≤ xj − 1;
xi + 1, if xi ≥ xj .

The inverse bijection φ−1 is defined as follows: let w′ = x′1x
′
2 · · ·x′n

belong to Tn; then φ
−1(w′) := ρ(x′2 · · ·x′n), where ρ is the reduction defined

in Section 2.
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Theorem 6.3. The mapping φ is a bijection between AndIn−1 and the
set Tn of all tight André I permutations having the following properties:

(i) spiw = Fφ(w);

(ii) grnφ(w) =

{
grn w, if spiw > grnw;
grnw + 1, if spiw < grnw.

k = 1 2 3 4 5
m = 1 · · · · ·

2 2̂1435 2̂1345
231546 231456

3 3̂2415 3̂1425 23̂145
342516 341526 324156

3̂1245
341256

4 234̂15 34̂125 24̂135
423516 435126 425136

4̂1325 4̂1235
451326 451236

5 13425̂ 12435̂ 12345̂
513426 512436 512346

14235̂ 13245̂
514236 513246

Table 6.2: The bijection φ : B5(m, k − 1) (respectively B5(m, k))→ T6(m, k).

In Table 6.2 the permutations in boldface are the elements of AndI5.
Their images under φ are the sixteen tight permutations from T6, written
in plain below them. The box (m, k) contains the permutations w from
AndI5 such that spiw = m and grnw = k (respectively grnw = k − 1)
when m > k (respectively when m < k). It also contains the elements w′

from T6 such that Fw′ = m and grnw′ = k. A hat sign ̂ has been put
on the spike of w.

Proof of Theorem 6.3. Let w = x1x2 · · ·xn−2xn−1 be from AndIn−1.
Let xj = spiw. If j = 1, then x1 > x2 and φ(w) = x1 (x1 + 1)
x2 · · ·x′n−2x

′
n−1. Accordingly, φ(w) is tight. Moreover, spiw = x1 =

Fφ(w), still since x1 > x2. Also, either grnw = xn−2 < x1 = spiw, and
then grnφ(w) = x′n−2 = xn−2 = grnw, or grnw = xn−2 > x1 = spiw,
and then grnφ(w) = x′n−2 = xn−2 + 1 = grnw + 1.
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If j ≥ 2, we have

(6.7) φ(w) = xj x1 · · · xj−1 (xj + 1) xj+1 x
′
j+2 · · ·x′n−1.

On the other hand, φ(w) is André I, because no double descent has
been created; furthermore, the new trough x1 is of type I, as the letter
(xj + 1) is to its right. Also, φ(w) is tight, because xj+1 (respectively
(xj + 1)) is less (respectively greater) than all the letters to its left.
Finally, spiw = xj = Fφ(w). Moreover, grnφ(w) = x′n−2 is equal
to xn−2 = grnw or xn−2 + 1 = grnw + 1, depending on whether
xn−2 = grnw is less than or at least equal to xn = spiw.

This achieves the program of point (c), by definition of Bn(m, k) given
in (6.2).

6.3. Hooked and unhooked permutations. Let n ≥ 3, and consider the
mapping Θ, defined on AndIn−1 as follows. Let w = x1x2 · · ·xn−1 belong

to AndIn−1. Define

(6.8) Θ(w) :=

{
(x1 + 1)x1x

′
2 · · ·x′n−1, if x1 < x2;

x1(x1 + 1)x′2 · · ·x′n−1, if x1 > x2;

where x′i := xi (respectively xi + 1) if xi < x1 (respectively if xi > x1).
Clearly, Θ is an injection from AndIn−1 into AndIn. The permutations

belonging to the subset Θ(AndIn−1) are said to be hooked. Their formal
definition is stated next.

Definition 6.2. An André I permutation w = x1x2 · · ·xn (n ≥ 3) from
AndIn is called hooked, if x1 − 1 = x2 < x3 or x1 + 1 = x2 > x3.

Let Hn denote the subset of all the hooked permutations from AndIn.
The elements of the set-theoretic difference NHn := AndIn \Hn are said
to be unhooked. Let Hn(m, k) (respectively NHn(m, k)) denote the subset
of Hn (respectively of NHn) consisting of all w such that (spi, grn)w =
(m, k).

Proposition 6.4. The injection Θ defined in (6.8) from AndIn−1 into

AndIn maps AndIn−1 onto Hn. Moreover, for each w from AndIn we have

spiΘ(w) = 1 + Fw;

grnΘ(w) =

{
1 + grnw, if Fw < grnw;
grnw, if Fw > grnw.

(6.9)

Proof. With the notation of (6.8), we have spiΘ(w) = x1 + 1 in both
cases. The identity for “grn” follows from the very definition of Θ.
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Corollary 6.5. The mapping Θ is a bijection between An−1(m, k) and
Hn(m+ 1, k) when 1 ≤ k < m ≤ n − 2, and onto Hn(m+ 1, k + 1) when
3 ≤ m+ 2 ≤ k ≤ n− 1.

In Table 6.3, the sixteen permutations from AndI5 are reproduced in
boldface, and below them the hooked permutations from H6 that are
their images under Θ. A hat sign ̂ has been put on the spike of each
permutation from H6.

k = 1 2 3 4 5
m = 1 · · · · ·

2 13425 12435 12345

2̂14536 2̂13546 2̂13456
14235 13245

2̂15346 2̂14356
3 23415 21435 21345

3̂24516 23̂1546 23̂1456
24135 23145

3̂25146 3̂24156
4 32415 31425 31245

34̂2516 34̂1526 34̂1256
34125

4̂35126
5 41325 41235

45̂1326 45̂1236

Table 6.3:
the bijection Θ : A5(m, k)→ H6(m+ 1, k) (respectively H6(m+ 1, k + 1))

Referring to the program displayed in (1.14), the first bijection Θ has
been constructed. The next step is devoted to the construction of the
bijection β.

6.4. A bijection between Bn(m, k) and NHn(m+ 1, k). We go back to
the proofs of (TS4.1) and (TS4.2) made in Subsection 6.1. It was shown
that bn(n − 1, k) = bn(n, k + 1) = bn−1(•, k) for 1 ≤ k ≤ n − 2. By
means of the bijections described in Subsection 6.1 and Section 4, and
also the bijection φ constructed in (5.2), we can set up a bijection between
Bn(n−1, k) and Bn(n, k+1). We can also proceed directly as follows. Let

n ≥ 3 and w = x1 · · ·xi−1
̂(n− 1) xi+1 · · ·k n be an André I permutation

such that (spi, grn)w = (n− 1, k). Then the mapping α defined by

(6.10) α(w) := 1 (x1 + 1) · · · (xi−1 + 1) (xi+1 + 1) · · · (k + 1) n̂

fulfills our requirements.
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The inverse α−1 is easy to find: let w′ = x′1 x′2 · · · x′n−1 n be a
permutation from Bn(n, k+ 1), so that x′1 = 1. Then α−1(w′) is obtained
by first determining the leftmost letter x′i+1 less than or equal to x′2 and
subsequently letting

(6.11) α−1(w′) := (x′2 − 1) · · · (x′i−1 − 1) (n− 1) (x′i+1 − 1) · · ·k n.

The bijection α will be an ingredient for the next bijection, β, between
Bn(m, k) and NHn(m+ 1, k).

First, let

(6.12) 2 ≤ k + 1 ≤ m ≤ n− 2 or 3 ≤ m+ 2 ≤ k ≤ n− 1,

and partition Bn(m, k) into two subsets B
(1)
n (m, k), B

(2)
n (m, k) as fol-

lows. Note that each permutation w from Bn(m, k) is of the form w =
w1mw2(m+1)w3 and the factor w2 is never empty, as m is the spike of w.
Also, w3 6= e because of condition (6.12). Say that an element of Bn(m, k)

belongs to B
(1)
n (m, k) (respectively to B

(2)
n (m, k)) if Fw3 is not (respec-

tively if Fw3 is) a left minimum record, or equivalently, if minw2 < Fw3

(respectively if minw2 > Fw3).
Let w = x1x2 · · ·xn = w1mw2 (m+1)w3 be from Bn(m, k) with (m, k)

satisfying (6.12).

(1) If w belongs to B
(1)
n (m, k), define w′ := β(w) to be the permutation

derived from w by transposing the letters m and (m+ 1):

(6.13) β : w = w1mw2 (m+ 1)w3 7→ w′ = w1 (m+ 1)w2mw3.

(2) If w belongs to B
(2)
n (m, k), consider the factorization w = v1w3,

where v1 = w1mw2 (m + 1). Then v1 is André I by Proposition 2.1 (6).
Let n′ be the length of v1 and ρ(v1) be the reduction of v1 (by using the
increasing bijection from the set {x1, . . . , m, . . . , m+1} onto {1, 2, . . . , n′}).
Thus, ρ(v1) is an André I permutation from AndIn′ such that spi ρ(v1) =
n′− 1. The bijection α, introduced in (6.10), can be applied to ρ(v1), and
the permutation w′ := β(w) is defined by replacing the left factor v1 of w
by ρ−1αρ(v1):

(6.14) β : w = v1w3 7→ w′ := ρ−1αρ(v1)w3.

Example. The permutation w = 45 3 8 16 7 2 9 belongs to B
(1)
9 (5, 2),

as minw2 = min 381 = 1 < 7 = Fw3. It then suffices to transpose 5 and 6
to get the permutation w′ = 46 3 8 15 7 2 9.
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Next, w = 3 56 27 1 8 4 9 belongs to B
(2)
9 (6, 4), as minw2 = 2 >

1 = Fw3. Hence, v1 = 3 5 6 2 7, ρ(v1) = 2 3 4 1 5, αρ(v1) = 1 3 4 2 5,
ρ−1αρ(v1) = 2 5 6 3 7 and w′ = 2 56 37 1 8 4 9.

When w belongs to B
(1)
n (m, k), the letter (m + 1) occurs to the left

of m in w′. On the other hand, as w2 is non-empty and m+1 > Fw2, the
permutation w′ is unhooked if w1 = e. The same conclusion also holds if
w1 6= e, because Lw1 < m+ 1 and Lw1 6= m. Obviously, spiw′ = m+ 1
and grnw′ = k by (6.12).

Let us now prove that w′ is André I. Note that the troughs remain the
same in both w and w′. Let x be a trough within w2 and (v1, v2, x, v4, v5)
(respectively (v′1, v

′
2, x, v

′
4, v

′
5)) be the x-factorization of w (respectively

of w′). When going from w to w′, the type of x is not modified when at
least one of the following conditions holds: max v2 6= m, max v4 6= m+ 1.
If both were violated for a given x, it would be the case for x = minw2,
and all the letters of w2 would be less than m. But max v4 = m+1 implies
max v4 > Fw3 > minw2, and Fw3 is a trough of w. If (v′′1 , v

′′
2 ,Fw3, v

′′
4 , v

′′
5 )

is the Fw3-factorization of w, the word Fw3 v
′′
4 is necessarily a factor

of v4, as all its letters are greater than minw2. Hence, max v4 > m+ 1, a
contradiction. Thus,

w′ is an unhooked permutation from AndIn such that spiw′ = m+1,

grnw′=k with (m+1) to the left of m. In short, w′ ∈ NH(1)
n (m+ 1, k).

As the transposition w1 (m+1)w2mw3 7→ w1mw2 (m+1)w3, when
applied to André I permutations with (m + 1) to the left of m, always
maps an André I onto an André I permutations,

the direct transposition β defined in (6.13) is a bijection between

B
(1)
n (m, k) and NH

(1)
n (m+ 1, k).

Next, let w belong to B
(2)
n (m, k), and consider the permutation w′ =

β(w) defined in (6.14). The left factor ρ−1αρ(v1) of β(w) is André I and
ends with (m+1). Therefore, β(w) is of the form w′

1mw′
2 (m+1)w3. Again,

with the hypothesis (6.12), the letter xn−1, equal to k in the permutation
w = x1x2 · · ·k n, remains untouched when going from w to w′. Thus,
grnw′ = grnw = k. Next, we get spi ρ(v1) = n′ − 1 and spiαρ(v1) = n′;
hence, spi ρ−1αρ(v1) = m+ 1. As w3 starts with a letter less than all the
letters in v1, we have spiw′ = spi ρ−1αρ(v1)w3 = m + 1. Moreover, w3

is André I by Proposition 2.1 (5), so that β(w) is André I by Proposition
2.1 (7). This shows that

the mapping β defined in (6.14) is a bijection between B
(2)
n (m, k) and

the set NH
(2)
n (m + 1, k), defined as the set of all unhooked permutations

from AndIn such that spiw′ = m + 1, grnw′ = k with m to the left of
(m+ 1).
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This proves the following theorem.

Theorem 6.6. Under condition (6.12), the mapping β : w 7→ w′ defined

in (6.13) and (6.14) is a bijection between Bn(m, k) = B
(1)
n (m, k) ⊎

B
(2)
n (m, k) and NHn(m+ 1, k) = NH

(1)
n (m+ 1, k) ⊎NH(2)

n (m+ 1, k).

1

2

3

4

5

k
m 1 2 3 4 5

324516 314526

❅❅

❄
423516
342516

❄
413526
341526
435126

241536
412536
415236
425136

❄
234516

❄
243516 345126

❄

351426
513426
❄
❄

451326

245136
514236

512436
251436

451236

❄
❄
❄
❄

214536 213546
215346

315246
312546
231546
325146

❄
❄

213456
214356

❄

❄
❄

❄

314256
231456

324156
312456
❄

❄
412356
234156
241356
413256

341256

Table 6.4: the bijection β : B6(m, k)→ NH6(m+ 1, k)

Example. In Table 6.4, the image β(w) of each André I permutation w
from B6(m, k), with (m, k) satisfying inequalities (6.12) for n = 6, is
indicated by a downarrow. The hooked permutations are reproduced in
boldface. Note that they are not bottoms of any downarrows, as β is a
bijection between Bn(m, k) and NHn(m+ 1, k).

With the construction of the bijection β : Bn(m, k)→ NHn(m+ 1, k),
the program displayed in (1.14) is completed, as

∆
(1)
bn(m, k) = #Bn(m+ 1, k)−#Bn(m, k)

= #Bn(m+ 1, k)−#NHn(m+ 1, k)

= #Hn(m+ 1, k)

= #An−1(m, k) (respectively = #An−1(m, k − 1))

if 1 ≤ k < m ≤ n− 2 (respectively if 3 ≤ m+ 2 ≤ k ≤ n− 1).
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7. The making of Seidel triangle sequences

7.1. The Seidel tangent-secant matrix. In the sequel, three exponen-
tial generating functions will be attached to each infinite matrix A =
(a(m, k))m,k≥0,

A(x, y) :=
∑

m,k≥0

a(m, k)
xm

m!

yk

k!
;

Am,•(y) :=
∑

k≥0

a(m, k)
yk

k!
; A

•,k(x) :=
∑

m≥0

a(m, k)
xm

m!
;

for A itself, its m-th row, its k-th column. Let H = (hi,j) (i, j ≥ 0) be the
infinite matrix whose entries are the Entringer numbers En(m) displayed
along the skew-diagonals with the following sign:

(7.1) hi,j =

{
(−1)nEi+j+1(j + 1), if i+ j = 2n;
(−1)nEi+j+1(i+ 1), if i+ j = 2n− 1;

or still

(7.2) E2n+1(j + 1) = (−1)n h2n−j,j (0 ≤ j ≤ 2n);

(7.3) E2n(i+ 1) = (−1)n hi,2n−1−i (0 ≤ i ≤ 2n− 1);

or still in displayed form:

H=




E1(1) −E2(1) 0 E4(1) 0 −E6(1) 0 · · ·
0 −E3(2) E4(2) E5(4) −E6(2) −E7(6)

−E3(1) E4(3) E5(3) −E6(3) −E7(5)
0 E5(2) −E6(4) −E7(4)

E5(1) −E6(5) −E7(3)
0 −E7(2)

−E7(1)
...




=




1 −1 0 2 0 −16 0 · · ·
0 −1 2 2 −16 −16
−1 1 4 −14 −32
0 5 −10 −46
5 −5 −56
0 −61
−61
...




.
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As noted by Dumont [Du82], the definition of such a matrix H goes
back to Seidel himself [Se1877]. Entringer [En66] rediscovered the abso-
lute values of the entries, when he classified the alternating permutations
according to their first letters. The entries of the top row are the coeffi-
cients of the Taylor expansion of 1− tanh y = 2/(1 + e2y):

H0,•(y) = 1− tanh y = 1 +
∑

n≥1

y2n−1

(2n− 1)!
(−1)nE2n−1

= 1− y

1!
1+

y3

3!
2− y

5

5!
16+

y7

7!
272− y

9

9!
7936+· · · .

The entries of the leftmost column are the coefficients of the Taylor
expansion of 1/ coshx = 2 ex/(1 + e2x), so that

H
•,0(x) =

1

cosh x
=

∑

n≥0

x2n

(2n)!
(−1)nE2n

= 1− x2

2!
+
x4

4!
5− x6

6!
61 +

x8

8!
1385− · · · .

By means of recurrence (1.1) satisfied by the Entringer numbers and
(7.1), we can verify that the entries hi,j obey the following rule: hi,j =
hi−1,j + hi−1,j+1 for j ≥ 0, i ≥ 1, so that the entries hi,j can be obtained
by applying such a rule inductively, the entries of the top row being
given. Such a matrix is called a Seidel matrix by Dumont [Du82], and its
exponential generating function is directly obtained from the exponential
generating function for its top row by the formula H(x, y) = H0,•(x+y) e

x

(see, e.g., [DV80]). Accordingly,

(7.4) H(x, y) =
2 ex

1 + e2x+2y
.

Two further matrices are derived from H. The first one, H1, is obtained
by replacing all the entries hi,j such that i+ j is odd by zero, so that

H1=




1 · 0 · 0 · 0 · · ·
· −1 · 2 · −16
−1 · 4 · −32
· 5 · −46
5 · −56
· −61
−61
...




.
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As H(x, y) =
2ex

1 + e2x+2y
, we get

(7.5) H1(x, y) =
H(x, y) +H(−x,−y)

2
= ex

1 + e2y

1 + e2x+2y
=

cosh y

cosh(x+ y)
.

The second one, H2, is derived from H by replacing the entries hi,j
such that i+ j is even by 0, so that

H2 =




· −1 · 2 · −16 · 272 · · ·
0 · 2 · −16 · 272
· 1 · −14 · 256
0 · −10 · 224
· −5 · 178
0 · 122
· 61
0
...




.

Therefore,

(7.6) H2(x, y) =
H(x, y)−H(−x,−y)

2
= ex

1− e2y
1 + e2x+2y

=
− sinh y

cosh(x+ y)
.

In the sequel, further matrices will be derived from H1 and H2, es-
sentially by transposing them and/or removing either their top rows or
leftmost columns. The corresponding actions on their respective exponen-
tial generating functions H1(x, y) and H2(x, y) are the exchange of the
variables x and y: THi(x, y) := Hi(y, x); then, the partial derivatives with
respect to x and y: DxHi(x, y) and DyHi(x, y) (i = 1, 2).

7.2. The generating function for the Entringer numbers. The generat-
ing function for the Entringer numbers, already derived in [FH14], can be
obtained from relations (7.5) and (7.6). In fact, they are simply equal to
H1(xI, yI) and IH2(xI, yI), where I =

√
−1. Thus,

∑

1≤k≤2n+1

E2n+1(k)
x2n+1−k

(2n+ 1− k)!
yk−1

(k − 1)!
=

cos y

cos(x+ y)
;(7.7)

∑

1≤k≤2n

E2n(k)
xk−1

(k − 1)!

y2n−k

(2n− k)! =
sin y

cos(x+ y)
.(7.8)

7.3. Seidel triangle sequences. For calculating the generating functions
for the twin Seidel matrices, we shall take recourse to the techniques
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developed in our previous paper [FH14] for the so-called Seidel triangle
sequences. Only definitions will be stated, as well as the main result.

A sequence of square matrices (Cn) (n ≥ 1) is called a Seidel triangle
sequence if the following three conditions are fulfilled:

(STS1) each matrix Cn is of dimension n;
(STS2) each matrix Cn has zero entries along and below its diagonal;

let (cn(m, k)) (0 ≤ m < k ≤ n − 1) denote its entries strictly above its
diagonal, so that

C1 = ( · ) ; C2 =

(
· c2(0, 1)
· ·

)
; C3 =



· c3(0, 1) c3(0, 2)
· · c3(1, 2)
· · ·


 ; . . . ;

Cn =




· cn(0, 1) cn(0, 2) · · · · cn(0, n− 2) cn(0, n− 1)
· · cn(1, 2) · · · · cn(1, n− 2) cn(1, n− 1)
...

...
...

. . .
...

...
...

· · · · · · · · cn(n− 2, n− 1)
· · · · · · · · ·



;

the dots “·” along and below the diagonal referring to zero entries.

(STS3) for each n ≥ 3, the following relation holds:

cn(m, k)− cn(m, k + 1) = cn−1(m, k) (m < k).

Record the last columns of the triangles C2, C3, C4, C5, . . . , read
from top to bottom, namely, c2(0, 1); c3(0, 2), c3(1, 2); c4(0, 3), c4(1, 3),
c4(2, 3); c5(0, 4), c5(1, 4), c5(2, 4), c5(3, 4); . . . , as skew-diagonals of an
infinite matrix H = (hi,j)i,j≥0, as shown next:

(7.9) H :=




0 1 2 3 4 · · ·
0 c2(0, 1) c3(1, 2) c4(2, 3) c5(3, 4) c6(4, 5) · · ·
1 c3(0, 2) c4(1, 3) c5(2, 4) c6(3, 5)
2 c4(0, 3) c5(1, 4) c6(2, 5)
3 c5(0, 4) c6(1, 5)
4 c6(0, 5)
...

...



,

Equivalently, the entries of H are defined by

(7.10) hi,j = ci+j+2(j, i+ j + 1).

The next theorem has been proved in [FH14] and will be of great use in
the next sections.
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Theorem 7.1. The three-variable generating function for the Seidel
triangle sequence (Cn = (cn(m, k)))n≥1 is equal to

(7.11)
∑

1≤m+1≤k≤n−1

cn(m, k)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!
= exH(x+ y, z),

where H is the infinite matrix defined in (7.10).

With I :=
√
−1, we get

(7.12)
∑

1≤m+1≤k≤n−1

In−2cn(m, k)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

= eIxH(Ix+ Iy, Iz).

8. Trivariate generating functions

Each of the sequences Twin(1) := (A2, B3, A4, B5, A6, . . . ) and

Twin(2) := (B2, A3, B4, A5, B6, . . . ) (see Diagram 1.3) gives rise to two
Seidel triangle sequences, by considering the upper and lower triangles of
the matrices.

8.1. The upper triangles of Twin(1). The Seidel triangle sequence to
be constructed is the following: first, C1 := (·), then for n ≥ 2 each Cn

will be derived from the upper triangle of An+1 (respectively Bn+1) by
(i) dropping the rightmost column; (ii) transposing the remaining triangle
with respect to its skew-diagonal; (iii) changing the signs of its entries
according the following rule. More precisely,

Cn := (−1)(n+1)/2




· an+1(n− 1, n) · · ·an+1(2, n)an+1(1, n)
. . .

...
...

· an+1(2, 3) an+1(1, 3)
· an+1(1, 2)

·




ifn is odd;

Cn := (−1)n/2




· bn+1(n− 1, n) · · · bn+1(2, n) bn+1(1, n)
. . .

...
...

· bn+1(2, 3) bn+1(1, 3)
· bn+1(1, 2)

·




if n is even;

By referring to Diagram 1.3, we get C1 = · ; C2 =
· 0
· ; C3 =

· 1 1
· 1
·
;
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C4 =

· 2 1 0
· 1 0
· 0
·
; C5 =

· −2 −4 −5 −5
· −4 −5 −5
· −4 −4
· −2
·

; C6 =

· −16 −14 −10 −5 0
· −14 −10 −5 0

· −8 −4 0
· −2 0
· 0
·

;

C7 =

· 16 32 46 56 61 61
· 32 46 56 61 61
· 44 52 56 56
· 44 46 46
· 32 32
· 16
·

; C8 =

· 272 256 224 178 122 61 0
· 256 224 178 122 61 0
· 208 164 112 56 0
· 136 92 46 0
· 64 32 0
· 16 0
· 0
·

.

Therefore,

(8.1) cn(m, k) =

{
(−1)(n+1)/2an+1(n− k, n−m), if n is odd;
(−1)n/2bn+1(n− k, n−m), if n is even.

Proposition 8.1. The sequence (Cn) (n ≥ 1) just defined is a Seidel
triangle sequence.

Proof. We only have to verify that rule (STS3) holds. If n is odd and
0 ≤ m < k ≤ n − 2, then 3 ≤ m′ + 2 := (n− k − 1) + 2 ≤ k′ := n −m ≤
(n+ 1)− 1 and

cn(m, k)− cn(m, k + 1)

= (−1)(n+1)/2
(
an+1(n− k, n−m) − an+1(n− k − 1, n−m)

)

= (−1)(n+1)/2 ∆
(1)
an+1(n− k − 1, n−m)

= (−1)(n+1)/2 ∆
(1)
an+1(m

′, k′)

= (−1)(n−1)/2 bn(m
′, k′ − 1) [by rule (TS5.2)]

= (−1)(n−1)/2 bn(n− k − 1, n−m− 1)

= (−1)(n−1)/2(−1)(n−1)/2 cn−1(m, k) = cn−1(m, k).

The case when n is even can be proved in a similar way.

The next step is to determine the matrix H, as defined in (7.9), whose
skew-diagonals are equal to the rightmost columns of the matrices Cn. For
n ≥ 2 the skew-diagonal (cn(0, n − 1), cn(1, n − 1), . . . , cn(n − 2, n − 1))
of H, being the rightmost column of Cn, is equal to{

(−1)(n+1)/2(an+1(1, n), an+1(1, n− 1), . . . , an+1(1, 2)), if n is odd,
(−1)n/2(bn+1(1, n), bn+1(1, n− 1), . . . , bn+1(1, 2)), if n is even;

which is also equal to
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{
(−1)(n+1)/2(bn(•, n− 1), bn(•, n− 2), . . . , bn(•, 1)), if n is odd;
(0, 0, . . . , 0 ), if n is even;

by Rules (TS5.1) and (TS2); finally, this is equal to{
(−1)(n+1)/2(En(1), En(2), . . . , En(n− 1)), if n is odd;
(0, 0, . . . , 0 ), if n is even;

by (1.11).

Thus,

H =




0 E3(2) 0 −E5(4) 0 E7(6) 0 · · ·
E3(1) 0 −E5(3) 0 E7(5) 0
0 −E5(2) 0 E7(4) 0

−E5(1) 0 E7(3) 0
0 E7(2) 0

E7(1) 0
0
...




(8.2)

=




0 1 0 −2 0 16 0 · · ·
1 0 −4 0 32 0
0 −5 0 46 0
−5 0 56 0
0 61 0
61 0
0
...




.

This matrix is to be compared with the matrix H1 (see §7.1). For
getting H, it suffices to delete the top row of H1 and change the signs
of all the entries. As H1(x, y) = cosh y/ cosh(x+ y) by (7.5), we have

H(x, y) = −DxH1(x, y) =
cosh y sinh(x+ y)

cosh2(x+ y)
.(8.3)

Hence, the right-hand side of (7.11) becomes

exH(x+ y, z) = ex
cosh z sinh(x+ y + z)

cosh2(x+ y + z)
;

and the right-hand side of (7.12) is equal to

eIxH(Ix+ Iy, Iz) = (cosx+ I sinx)
I cos z sin(x+ y + z)

cos2(x+ y + z)
.

It remains to interpret the left-hand side of identity (7.12) by using
(8.1). If n = 2l + 1, then In−2 = (−1)l+1I and (−1)(n+1)/2 = (−1)l+1.
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Thus, In−2cn(m, k) = I an+1(n−k, n−m). The imaginary part of identity
(7.12) then reads

∑

1≤m+1≤k≤n−1
n odd

an+1(n− k, n−m)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

=
cosx cos z sin(x+ y + z)

cos2(x+ y + z)
.

With the change of variables n ← 2n − 1, n − k ← m, n − m ← k, we
get (1.15) from Theorem 1.3. Note that the above generating function

involves all the matrices A4, A6, . . . of Twin(1), but not the very first
term A2 =

(
1 0
0 0

)
.

If n = 2l, then In−2 = (−1)l−1 and (−1)n/2 = (−1)l, so that
In−2cn(m, k) = −bn+1(n− k, n−m). As for the real part, we have

∑

1≤m+1≤k≤n−1
n even

bn+1(n− k, n−m)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

=
sinx cos z sin(x+ y + z)

cos2(x+ y + z)
.

With the change of variables n ← 2n, n − k ← m, n − m ← k, we get
(1.21) from Theorem 1.6.

8.2. The upper triangles of Twin(2). The sequence of triangles to be
considered is the following: C1 = · and for n ≥ 2

Cn := (−1)(n−1)/2




· bn+1(n− 1, n) · · · bn+1(2, n) bn+1(1, n)
. . .

...
...

· bn+1(2, 3) bn+1(1, 3)
· bn+1(1, 2)

·




if n is odd;

Cn := (−1)n/2




· an+1(n− 1, n) · · ·an+1(2, n)an+1(1, n)
. . .

...
...

· an+1(2, 3) an+1(1, 3)
· an+1(1, 2)

·




if n is even;

that is, C1 = ·, C2 =
· −1
· ; C3 =

· −1 0
· 0
·
; C4 =

· 1 2 2
· 2 2
· 1
·
;
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C5 =

· 5 4 2 0
· 4 2 0
· 1 0
· 0
·

; C6 =

· −5 −10 −14 −16 −16
· −10 −14 −16 −16
· −13 −14 −14

· −10 −10
· −5

·

;

C7 =

· −61 −56 −46 −32 −16 0
· −56 −46 −32 −16 0

· −41 −28 −14 0
· −20 −10 0

· −5 0
· 0
·

; C8 =

· 61 122 178 224 256 272 272
· 122 178 224 256 272 272
· 173 214 242 256 256
· 194 214 224 224
· 173 178 178
· 122 122
· 61

.

.

Thus,

(8.6) cn(m, k) =

{
(−1)(n−1)/2bn+1(n− k, n−m), if n is odd;
(−1)n/2an+1(n− k, n−m), if n is even.

The sequence of triangles (Cn) defined by (8.6) is a Seidel triangle sequence
(same argument as in the proof of Proposition 8.1). Following the same
pattern as in the preceding subsection, we form the matrix H, whose
skew-diagonals carry the entries of the leftmost columns of the Cn’s:

H =




−1 0 1 0 −5 0 61 · · ·
0 2 0 −10 0 122
2 0 −14 0 178
0 −16 0 224
−16 0 256
0 272

272
...




.

This matrix is to be compared with the matrix H2 (see Subsection 7.2).
We see that H is obtained from H2 by transposition and deletion of the
first row, so that

H(x, y) = DxH2(y, x) = Dx

( − sinh x

cosh(x+ y)

)

=
− coshx cosh(x+ y) + sinhx sinh(x+ y)

cosh2(x+ y)

=
− cosh y

cosh2(x+ y)
.
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Therefore,

exH(x+ y, z) = ex
− cosh z

cosh2(x+ y + z)
;

eIxH(Ix+ Iy, Iz) = (cosx+ I sinx)
− cos z

cos2(x+ y + z)
.

By using (8.6), the left-hand side of identity (7.12) can be computed as
follows. If n = 2l + 1, then In−2 = (−1)l+1I and (−1)(n−1)/2 = (−1)l.
Thus, In−2cn(m, k) = −I bn+1(n − k, n − m). The imaginary part of
identity (7.12) reads

∑

1≤m+1≤k≤n−1
n odd

bn+1(n− k, n−m)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

=
sinx cos z

cos2(x+ y + z)
.

With the change of variables n← 2n− 1, n− k ← m, n−m← k, we get
(1.19) from Theorem 1.5.

If n = 2l, then In−2 = (−1)l−1 and (−1)n/2 = (−1)l, so that
In−2cn(m, k) = −an+1(n− k, n−m). As for the real part, we have

∑

1≤m+1≤k≤n−1
n even

an+1(n− k;n−m)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

=
cosx cos z

cos2(x+ y + z)
.

With the change of variables n ← 2n, n − k ← m, n − m ← k, we get
(1.17) from Theorem 1.4.

8.3. The bottom rows of the matrices Bn’s. By Rule (TS4.1) and
(2.6), these bottom rows, after discarding the rightmost entry which is
always zero, read b2(2, 1) = 1; (b3(3, 1), b3(3, 2)) = (0, 1), (b4(4, 1), b4(4, 2),
b4(4, 3)) = (0, 1, 1), (b5(5, 1), b5(5, 2), b5(5, 3), b5(5, 4)) = (0, 1, 2, 2), . . . ,
which are equal to the sequences of the Entringer numbers: E1(1),
(E2(2), E2(1)), (E3(3), E3(2), E3(1)), (E4(4), E4(3), E4(2), E4(1)), . . . By
(7.7) and (7.8), we recover the two identities (1.23) and (1.24) written at
the end of Section 1.

8.4. The lower triangles of Twin(1). As for the upper triangles, a
geometric transformation is to be made to configurate these lower triangles
into Seidel triangles. The bottom rows of the An’s and Bn’s being
discarded, we form the following sequence of triangles:
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C1 = ·; C2 =
· 1
· ; C3 =

· 1 0
· 1
·
; C4 =

· 0 −1 −1
· −1 −2
· −2
·
; C5 =

· −2 −2 −1 0
· −4 −3 −1
· −4 −2
· −2
·

;

C6 =

· 0 2 4 5 5
· 2 6 9 10
· 8 12 14
· 14 16
· 16
·

; C7 =

· 16 16 14 10 5 0
· 32 30 24 15 5
· 44 36 24 10
· 44 30 14
· 32 16
· 16
·

;

Thus, for 0 ≤ m < k ≤ n− 1, we have

(8.9) cn(m, k) =

{
(−1)(n+1)/2an+1(k + 1, m+ 1), if n is odd;
(−1)(n+2)/2bn+1(k + 1, m+ 1), if n is even.

The sequence of triangles (Cn) defined by (8.9) is a Seidel triangle
sequence. The corresponding matrix H reads

H =




1 1 −2 −2 16 16 · · ·
0 −2 −2 16 16
−1 −1 14 14
0 10 10
5 5
0
...




=




1 . −2 . 16 · · ·
. −2 . 16 .
−1 . 14 .
. 10 .
5 .
...



+




. 1 . −2 . 16 · · ·
0 . −2 . 16
. −1 . 14
0 . 10
. 5
0
...




= −DyH2 −H2.

Thus,

H(x, y) = Dy
sinh y

cosh(x+ y)
+

sinh y

cosh(x+ y)

=
coshx

cosh2(x+ y)
+

sinh y

cosh(x+ y)
;(8.10)
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exH(x+ y, z) = ex
( cosh(x+ y)

cosh2(x+ y + z)
+

sinh z

cosh(x+ y + z)

)
;

eIxH(Ix+ Iy, Iz) = (cosx+ I sinx)
( cos(x+ y)

cos2(x+ y + z)
+

I sin z

cos(x+ y + z)

)
.

If n = 2l + 1, then In−2 = (−1)l+1I and (−1)(n+1)/2 = (−1)l+1. Thus,
In−2cn(m, k) = I an+1(k+1, m+1). The imaginary part of identity (7.12)
becomes

∑

1≤m+1≤k≤n−1
n odd

an+1(k + 1, m+ 1)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

=
cosx sin z

cos(x+ y + z)
+

sinx cos(x+ y)

cos2(x+ y + z)
.

With the change of variables n← 2n− 1, k + 1← m, m+ 1← k, we get
(1.16) from Theorem 1.3.

If n = 2l, then In−2 = (−1)l−1 and (−1)(n+2)/2 = (−1)l+1, so that
In−2cn(m, k) = bn+1(k + 1, m+ 1). As for the real part, we have

∑

1≤m+1≤k≤n−1
n even

bn+1(k + 1, m+ 1)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

= − sinx sin z

cos(x+ y + z)
+

cosx cos(x+ y)

cos2(x+ y + z)
.

With the change of variables n ← 2n, k + 1 ← m, m + 1 ← k, we get
(1.22) from Theorem 1.6.

8.5. The lower triangles of Twin(2). Again, the bottom rows of the
An’s and Bn’s having been discarded, the Seidel triangle sequence to be
considered is

C1 = · ; C2 =
· 1
· ; C3 =

· 0 −1
· −1
·
; C4 =

· −1 −1 0
· −2 −1
· −1
·

C5 =

· 0 1 2 2
· 1 3 4
· 4 5
· 5
·

;

C6 =

· 5 5 4 2 0
· 10 9 6 2
· 13 9 4
· 10 5
· 5
·

; C7 =

· 0 −5 −10 −14 −16 −16
· −5 −15 −24 −30 −32
· −20 −33 −42 −46
· −41 −51 −56

· −56 −61
· −61

·

;
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the general formula being

(8.13) cn(m, k) =

{
(−1)(n−1)/2bn+1(k + 1, m+ 1), if n is odd;
(−1)(n−2)/2an+1(k + 1, m+ 1), if n is even.

Next, form the matrix H, whose skew-diagonals carry the entries of the
rightmost columns of the cn’s, and write it as the sum of the two matrices

H =




1 −1 −1 5 5 −61 −61 · · ·
−1 −1 5 5 −61 −61
0 4 4 −56 −56
2 2 −46 −46
0 −32 −32
−16 −16
0
...




:= K1 +K2

=




1 · −1 · 5 · −61 · · ·
· −1 · 5 · −61
0 · 4 · −56
· 2 · −46
0 · −32
· −16
0
...




+




· −1 · 5 · −61 · · ·
−1 · 5 · −61 ·
· 4 · −56 ·
2 · −46 ·
· −32 ·
−16 ·
...




.

These matrices are to be compared with the matrix H1 (see Section 7).
Clearly, K2 can be obtained from H1 by deleting the top row and then
transposing the matrix, so that K2(x, y) = TDxH1(x, y). Also, K1 =
TH1, and then K1(x, y) = H1(y, x). As H1(x, y) = cosh y/ cosh(x + y),
we get

H(x, y) = TDxH1(x, y) +H1(y, x)

= −cosh x sinh(x+ y)

cosh2(x+ y)
+

coshx

cosh(x+ y)
;

exH(x+ y, z) = ex
(
−cosh(x+ y) sinh(x+ y + z)

cosh2(x+ y + z)
+

cosh(x+ y)

cosh(x+ y + z)

)
;

eIxH(Ix+ Iy, Iz)=(cosx+ I sinx)

×
(
−I cos(x+ y) sin(x+ y + z)

cos2(x+ y + z)
+

cos(x+ y)

cos(x+ y + z)

)
.

If n = 2l + 1, then In−2 = (−1)l+1I and (−1)(n−1)/2 = (−1)l. Thus,
In−2cn(m, k) = −I bn+1(k + 1, m + 1). The imaginary part of identity
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(7.12) becomes

∑

1≤m+1≤k≤n−1
n odd

bn+1(k + 1, m+ 1)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

= −sinx cos(x+ y)

cos(x+ y + z)
+

cosx cos(x+ y) sin(x+ y + z)

cos2(x+ y + z)

=
cos(x+ y) sin(y + z)

cos2(x+ y + z)
.

With the change of variables n← 2n− 1, m+ 1← k, k + 1← m, we get
(1.20) from Theorem 1.5.

If n = 2l, then In−2 = (−1)l−1 and (−1)(n−2)/2 = (−1)l−1, so that
In−2cn(m, k) = an+1(k + 1, m+ 1). As for the real part, we have

∑

1≤m+1≤k≤n−1
n even

an+1(k + 1, m+ 1)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

=
cosx cos(x+ y)

cos(x+ y + z)
+

sinx cos(x+ y) sin(x+ y + z)

cos2(x+ y + z)

=
cos(x+ y) cos(y + z)

cos2(x+ y + z)
.

With the change of variables n← 2n− 1, k + 1← m, m+ 1← k, we get
(1.18) from Theorem 1.4.

9. The formal Laplace transform

The purpose of this section is to show that, when the Entringer
numbers En(k) are defined by relations (1.1), without any reference to
their combinatorial interpretations, they can be proved to be a refinement
of the tangent/secant numbers:

∑
k En(k) = En (n ≥ 1). In the same

manner, when the twin Seidel matrix sequence (An), (Bn) is analytically
defined, as it was stated in Subsection 1.5, also without reference to any
combinatorial interpretation, their entries (an(m, k)), (bn(m, k)) make up
a refinement of the Entringer numbers, by row and by column, and

∑

m,k

an(m, k) =
∑

m,k

bn(m, k) = En.

The proofs of these results make use of the closed expressions found for
the generating functions in the preceding section, and of a well-adapted
formal Laplace transform technique.
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Theorem 9.1. (1) Let (En(k)) be the sequence of the Entringer numbers,
defined by

E1(1) := 1; En(n) := 0 for all n ≥ 2;

∆En(m) +En−1(n−m) = 0 (n ≥ 2;m = n− 1, . . . , 2, 1);

Then,

(9.1)
∑

1≤k≤2n−1

E2n−1(k) = E2n−1;
∑

1≤k≤2n

E2n(k) = E2n; (n ≥ 1).

(2) Let (an(m, k)), (bn(m, k)) be the entries of the twin
Seidel matrix sequence (An), (Bn), as they are defined in Subsection 1.5.
Then,

an(m, •) = En(m), bn(m, •) = En(n+ 1−m), (1 ≤ m ≤ n);(9.2)

an(•, k) = bn(•, k) = En(n− k) (1 ≤ k ≤ n).(9.3)

The proof of (9.1) is fully given. Next, we reproduce the proof of
a2n(m, •) = E2n(m), based on Theorem 1.3. The other identities in
(9.2) and (9.3) can also be derived following the same method by using
Theorems 1.4, 1.5, 1.6. Their proofs are omitted.

The formal Laplace transform, already used in our previous paper
[FH14], maps a function f(x) to a function L(f(x), x, s) defined by

L(f(x), x, s) : =
∫ ∞

0

f(x)e−xs dx.

In particular, L(•, x, s) maps xk/k! to 1/sk+1:

L(x
k

k!
, x, s) =

1

sk+1
.

For proving (9.1), start with identity (7.7) involving the generating
function for the numbers E2n+1(k) and apply the Laplace transform twice
with respect to (x, s), (y, t), respectively. We get

∑

1≤k≤2n+1

1

s2n−k+2

1

tk
E2n+1(k) =

∫ ∞

0

∫ ∞

0

cos y

cos(x+ y)
e−xs−ytdx dy,

which becomes, with t← s and r = x+ y,

∑

1≤k≤2n+1

1

s2n+2
E2n+1(k) =

∫ ∞

0

∫ ∞

0

cos y

cos(x+ y)
e−xs−ysdx dy



50 DOMINIQUE FOATA AND GUO-NIU HAN

=

∫ ∞

0

∫ r

0

cos y

cos r
e−rsdy dr

=

∫ ∞

0

sin r

cos r
e−rsdr

=

∫ ∞

0

(tan r)e−rsdr

=
∑

n≥1

1

s2n
E2n−1.

Hence, ∑

1≤k≤2n−1

E2n−1(k) = E2n−1.

In the same manner, apply the Laplace transform to identity (7.8) twice
with respect to (x, s), (y, t), respectively. We get

∑

1≤k≤2n

1

sk
1

t2n−k+1
E2n(k) =

∫ ∞

0

∫ ∞

0

sin y

cos(x+ y)
e−xs−ytdx dy,

which becomes, with s← t and r = x+ y,

∑

1≤k≤2n

1

t2n+1
E2n(k) =

∫ ∞

0

∫ ∞

0

sin y

cos(x+ y)
e−xt−ytdx dy

=

∫ ∞

0

∫ r

0

sin y

cos r
e−rtdy dr

=

∫ ∞

0

1− cos r

cos r
e−rtdr

=

∫ ∞

0

(sec r − 1)e−rtdr

=
∑

n≥1

1

t2n+1
E2n.

Hence, ∑

1≤k≤2n

E2n(k) = E2n.

Next, to prove a2n(m, •) = E2n(m) start with identity (1.15) of
Theorem 1.5 and apply the Laplace transform to its left-hand side three
times with respect to (x, s), (y, t), (z, u), respectively. We get

∑

2≤m+1≤k≤2n−1

1

sm
1

tk−m

1

u2n−k
a2n(m, k),

which becomes
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(9.4)
∑

2≤m+1≤k≤2n−1

1

sm
1

u2n
a2n(m, k),

when t ← u and s ← su. Apply the Laplace transform to the right-hand
side of (1.15) three times with respect to (x, s), (y, t), (z, u), respectively,
and let t← u, s← su. With r = y + z, we get

∫ ∞

0

∫ ∞

0

∫ ∞

0

cosx cos z sin(x+ y + z)

cos2(x+ y + z)
e−xsu−yu−zudx dy dz

=

∫ ∞

0

∫ ∞

0

∫ r

0

cosx cos z sin(x+ r)

cos2(x+ r)
e−xsu−rudz dr dx

(9.5) =

∫ ∞

0

∫ ∞

0

cosx sin r sin(x+ r)

cos2(x+ r)
e−xsu−rudr dx.

With identity (1.16) apply the Laplace transform to its left-hand side
three times with respect to (x, u), (y, s), (z, t), respectively. We get

∑

2≤k+1≤m≤2n−1

1

u2n−m

1

sm−k

1

tk
a2n(m, k),

which becomes

(9.6)
∑

2≤k+1≤m≤2n−1

1

sm
1

u2n
a2n(m, k),

when s← su and t← su. Apply the Laplace transform to the right-hand
side of (1.16) three times with respect to (x, u), (y, s), (z, t), respectively,
and let s← su, t← su. With r = y + z we get

∫ ∞

0

∫ ∞

0

∫ ∞

0

( cosx sin z

cos(x+ y + z)
+

sinx cos(x+ y)

cos2(x+ y + z)

)
e−xu−ysu−zsudx dy dz

=

∫ ∞

0

∫ ∞

0

∫ r

0

( cosx sin z

cos(x+ r)
+

sinx cos(x+ r − z)
cos2(x+ r)

)
e−xu−rsudz dr dx

=

∫ ∞

0

∫ ∞

0

(cosx (1− cos r)

cos(x+ r)
+

sinx (sin(x+ r)− sinx)

cos2(x+ r)

)
e−xu−rsudr dx

(9.7) =

∫ ∞

0

∫ ∞

0

(cos r (1−cosx)
cos(x+ r)

+
sin r (sin(x+ r)−sin r)

cos2(x+ r)

)
e−ru−xsudr dx.

By (9.4)–(9.7), we have

(9.8)
∑

1≤k,m≤2n−1;k 6=m

1

sm
1

u2n
a2n(m, k) =

∫ ∞

0

∫ ∞

0

F (x, r)e−xsu−rudr dx,
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where

F (x, r) =
cosx sin r sin(x+ r)

cos2(x+ r)
+

cos r (1− cosx)

cos(x+ r)
+

sin r (sin(x+ r)− sin r)

cos2(x+ r)

=
cosx

cos2(x+ r)
− 1.

However, from (7.8), we conclude

∑

1≤m≤2n

E2n(m)
xm−1

(m− 1)!

r2n−m−1

(2n−m− 1)!
=

∂

∂r

sin r

cos(x+ r)

=
cosx

cos2(x+ r)
.(9.9)

Apply the Laplace transform to (9.9) twice with respect to (x, s), (y, u),
respectively. We get

∑

1≤m≤2n

1

sm
1

u2n−m
E2n(m) =

∫ ∞

0

∫ ∞

0

cosx

cos2(x+ r)
e−xs−rudx dr,

or still
∑

1≤m≤2n

1

sm
1

u2n
E2n(m) =

∫ ∞

0

∫ ∞

0

cosx

cos2(x+ r)
e−xsu−rudx dr.(9.10)

By (9.8) and (9.10), we obtain

∑

1≤k,m≤2n−1;k 6=m

1

sm
1

u2n
a2n(m, k) =

∑

1≤m≤2n

1

sm
1

u2n
E2n(m)− 1

su2
,

and then
∑

1≤k,m≤2n−1

1

sm
1

u2n
a2n(m, k) =

∑

1≤m≤2n

1

sm
1

u2n
E2n(m).

Hence, ∑

1≤k≤2n−1

a2n(m, k) = E2n(m).
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