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GRAPH PROPERTIES OF GRAPH ASSOCIAHEDRA

THIBAULT MANNEVILLE AND VINCENT PILAUD

Abstract. A graph associahedron is a simple polytope whose face lattice encodes the
nested structure of the connected subgraphs of a given graph. In this paper, we study
certain graph properties of the 1-skeleta of graph associahedra, such as their diameter
and their Hamiltonicity. Our results extend known results for the classical associahedra
(path associahedra) and permutahedra (complete graph associahedra). We also discuss
partial extensions to the family of nestohedra.

1. Introduction

Associahedra are classical polytopes whose combinatorial structure was first investi-
gated by J. Stasheff [Sta63] and later geometrically realized by several methods [Lee89,
GKZ08, Lod04, HL07, PS12, CSZ15]. They appear in different contexts in mathematics,
in particular in algebraic combinatorics (in homotopy theory [Sta63], for the construction
of Hopf algebras [LR98], in cluster algebras [CFZ02, HLT11]) and discrete geometry (as in-
stances of secondary or fiber polytopes [GKZ08, BFS90] or brick polytopes [PS12, PS15]).
The combinatorial structure of the n-dimensional associahedron encodes the dissections
of a convex (n + 3)-gon: its vertices correspond to the triangulations of the (n + 3)-gon,
its edges correspond to flips between them, etc. See Figure 1. Various combinatorial
properties of these polytopes have been studied, in particular in connection with the sym-
metric group and the permutahedron. The combinatorial structure of the n-dimensional
permutahedron encodes ordered partitions of [n + 1] := {1, 2, . . . , n + 1}: its vertices are
the permutations of [n+ 1], its edges correspond to transpositions of adjacent letters, etc.

In this paper, we are interested in graph properties, namely in the diameter and Hamil-
tonicity, of the 1-skeleta of certain generalizations of the permutahedra and the associa-
hedra. For the n-dimensional permutahedron, the diameter of the transposition graph is
the number

(
n+1

2

)
of inversions of the longest permutation of [n+ 1]. Moreover, H. Stein-

haus [Ste64], S. M. Johnson [Joh63], and H. F. Trotter [Tro62] independently designed
an algorithm to construct a Hamiltonian cycle of this graph. For the associahedron, the
diameter of the flip graph motivated intensive research and relevant approaches, involv-
ing volume arguments in hyperbolic geometry [STT88] and combinatorial properties of
Thompson’s groups [Deh10]. Recently, L. Pournin finally gave a purely combinatorial
proof that the diameter of the n-dimensional associahedron is precisely 2n − 4 as soon
as n > 9 [Pou14]. On the other hand, J. Lucas [Luc87] proved that the flip graph is
Hamiltonian. Later, F. Hurtado and M. Noy [HN99] obtained a simpler proof of this
result, using a hierarchy of triangulations which organizes all triangulations of convex
polygons into an infinite generating tree.
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Figure 1. The 3-dimensional associahedron and the graph associahedron
of the tripod.

Generalizing the classical associahedron, M. Carr and S. Devadoss [CD06, Dev09] de-
fined and constructed graph associahedra. For a finite graph G, a G-associahedron Asso(G)
is a simple convex polytope whose combinatorial structure encodes the connected sub-
graphs of G and their nested structure. To be more precise, the face lattice of the polar
of a G-associahedron is isomorphic to the nested complex on G, defined as the simplicial
complex of all collections of tubes (vertex subsets inducing connected subgraphs) of G
which are pairwise either nested, or disjoint and non-adjacent. See Figures 1 and 3 for
3-dimensional examples. The graph associahedra of certain special families of graphs
happen to coincide with well-known families of polytopes (see Figure 3): classical as-
sociahedra are path associahedra, cyclohedra are cycle associahedra, and permutahedra
are complete graph associahedra. Graph associahedra have been geometrically realized
in different ways: by successive truncations of faces of the standard simplex [CD06], as
Minkowski sums of faces of the standard simplex [Pos09, FS05], or from their normal fans
by exhibiting explicit inequality descriptions [Zel06]. However, we do not consider these
geometric realizations as we focus on the combinatorial properties of the nested complex.

Given a finite simple graph G, we denote the 1-skeleton of the graph associahedron
Asso(G) by F(G). In other words, F(G) is the facet-ridge graph of the nested complex
on G. Its vertices are maximal tubings on G and its edges connect tubings which differ
only by two tubes. See Section 2 for precise definitions and examples. In this paper, we
study graph properties of F(G). In Section 3, we focus on the diameter δ(F(G)) of the
flip graph F(G). We obtain the following structural results.

Theorem 1. The diameter δ(F(G)) of the flip graph F(G) is non-decreasing: we have
δ(F(G)) ≤ δ(F(G′)) for any two graphs G,G′ such that G ⊆ G′.

Related to this diameter, we investigate the non-leaving-face property: do all geodesics
between two vertices of a face F of Asso(G) stay in F? This property was proved for the
classical associahedron in [STT88], but the name was coined in [CP16]. Although not all
faces of the graph associahedron Asso(G) fulfill this property, we prove in the following
statement that some of them do.
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Proposition 2. Any tubing on a geodesic between two tubings T and T′ in the flip
graph F(G) contains any common upper set to the inclusion posets of T and T′.

In fact, we extend Theorem 1 and Proposition 2 to all nestohedra [Pos09, FS05], see
Section 3. Finally, using Theorem 1 and Proposition 2, the lower bound on the diameter
of the associahedron [Pou14], the usual construction of graph associahedra [CD06, Pos09]
and the diameter of graphical zonotopes, we obtain the following inequalities on the
diameter δ(F(G)) of F(G).

Theorem 3. For any connected graph G with n + 1 vertices and e edges, the diame-
ter δ(F(G)) of the flip graph F(G) is bounded by

max(e, 2n− 18) ≤ δ(F(G)) ≤
(
n+ 1

2

)
.

In Section 4, we study the Hamiltonicity of F(G). Based on an inductive decomposition
of graph associahedra, we show the following statement.

Theorem 4. For any graph G with at least two edges, the flip graph F(G) is Hamiltonian.

2. Preliminaries

2.1. Tubings, nested complex, and graph associahedron. Let V be an (n + 1)-
elements ground set, and let G be a simple graph on V with π0(G) connected components.
We denote the subgraph of G induced by a subset U of V by G[U ].

A tube of G is a non-empty subset t of V that induces a connected subgraph of G. A
tube is proper if it does not induce a connected component of G. The set of all tubes
of G is called the graphical building set of G and denoted by B(G). We moreover denote
by B(G)max the set of inclusion maximal tubes of B(G), i.e., the vertex sets of connected
components of G.

Two tubes t and t′ are compatible if they are

• nested, i.e., t ⊆ t′ or t′ ⊆ t, or
• disjoint and non-adjacent, i.e., t ∪ t′ is not a tube of G.

A tubing on G is a set of pairwise compatible tubes of G. A tubing is proper if it
contains only proper tubes and loaded if it contains B(G)max. Since inclusion maximal
tubes are compatible with all tubes, we can transform any tubing T into a proper tub-
ing Tr B(G)max or into a loaded tubing T ∪ B(G)max, and we switch along the paper to
whichever version suits better the current purpose. Observe, by the way, that maximal
tubings are automatically loaded. Figure 2 illustrates these notions by a graph with 9
vertices.

The nested complex on G is the simplicial complex N (G) of all proper tubings on G.
This complex is known to be the boundary complex of the graph associahedron Asso(G),
which is an (n + 1 − π0(G))-dimensional simple polytope. This polytope was first con-
structed in [CD06, Dev09]1 and later in the more general context of nestohedra in [Pos09,
FS05, Zel06]. In this paper, we do not need these geometric realizations since we only
consider combinatorial properties of the nested complex N (G). In fact, we focus on the
flip graph F(G) whose vertices are maximal proper tubings on G and whose edges connect
adjacent maximal proper tubings, i.e., which only differ by two tubes. We refer to Figure 4

1The definition used in [CD06, Dev09] slightly differs from ours for disconnected graphs, but our results
still hold in their framework.
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Figure 2. A proper tube, a tubing, a maximal proper tubing, and a max-
imal (loaded) tubing.

for an example, and to Section 2.3 for a description of flips. To avoid confusion, we always
use the term edge for the edges of the graph G, and the term flip for the edges of the flip
graph F(G). To simplify the presentation, it is sometimes more convenient to consider
the loaded flip graph, obtained from F(G) by loading all its vertices with B(G)max, and
still denoted by F(G). Note that only proper tubes can be flipped in each maximal tubing
on the loaded flip graph.

Observe that, if G is disconnected with connected components Gi, for i ∈ [π0(G)],
then the nested complex N (G) is the join of the nested complexes N (Gi), the graph
associahedron Asso(G) is the Cartesian product of the graph associahedra Asso(Gi), and
the flip graph F(G) is the Cartesian product of the flip graphs F(Gi). In many places,
this allows us to restrict our arguments to connected graphs.

Example 5 (Classical polytopes). For certain families of graphs, the graph associahedra
turn out to coincide (combinatorially) with classical polytopes (see Figure 3):

(i) the path associahedron Asso(Pn+1) coincides with the n-dimensional associahedron,
(ii) the cycle associahedron Asso(On+1) coincides with the n-dimensional cyclohedron,

(iii) the complete graph associahedron Asso(Kn+1) coincides with the n-dimensional
permutahedron Perm(n) := conv {(σ(1), . . . , σ(n+ 1)) | σ ∈ Sn+1}.

Figure 3. The associahedron, the cyclohedron, and the permutahedron
are graph associahedra.
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2.2. Spines. Spines provide convenient representations of the tubings on G. Given a
tubing T on G, the corresponding spine S is the Hasse diagram of the inclusion poset
on T ∪ B(G)max, where the node corresponding to a tube t ∈ T ∪ B(G)max is labeled
by λ(t,T) := tr

⋃ {t′ ∈ T | t′ ( t}. See Figure 4.
The compatibility condition on the tubes of T implies that the spine S is a rooted for-

est, where roots correspond to elements of B(G)max. Spines are in fact called B(G)-forests
in [Pos09]. The labels of S define a partition of the vertex set of G. The tubes of
T ∪ B(G)max are the descendant sets desc(s, S) of the nodes s of the forest S, where
desc(s, S) denotes the union of the labels of the descendants of s in S, including s it-
self. The tubing T ∪ B(G)max is maximal if and only if all labels are singletons, and we
then identify nodes with their labels, see Figure 4.

Let T and T̄ be tubings on G with corresponding spines S and S̄. Then T̄ ⊆ T if
and only if S̄ is obtained from S by edge contractions. We say that S refines S̄, that S̄
coarsens S, and we write S̄ ≺ S. Given any node s of S, we denote the subspine of S
induced by all descendants of s in S, including s itself, by Ss.

2.3. Flips. As already mentioned, the nested complex N (G) is a simplicial sphere. It
follows that there is a natural flip operation on maximal proper tubings on G. Namely,
for any maximal proper tubing T on G and any tube t ∈ T, there exists a unique proper
tube t′ /∈ T of G such that T′ :=T4{t, t′} is again a proper tubing on G (where 4
denotes the symmetric difference operator). We denote this flip by T ↔ T′. This flip
operation can be explicitly described both in terms of tubings and spines as follows.

Consider a tube t in a maximal proper tubing T, with λ(t,T) = {v}. Let t̄ denoting the
smallest element of T∪B(G)max strictly containing t, and denote its label by λ(̄t,T) = {v′}.
Then the unique tube t′ such that T′ :=T4{t, t′} is again a proper tubing on G is the
connected component of the induced subgraph G[̄tr {v}] containing v′. See Figure 4.

This description translates to spines as follows. The flip between the tubings T and T′

corresponds to a rotation between the corresponding spines S and S′. This operation is
local: it only perturbs the nodes v and v′ and their children. More precisely, v is a child
of v′ in S, and becomes the parent of v′ in S′. Moreover, the children of v in S contained
in t′ become children of v′ in S′. All other nodes keep their parents. See Figure 4.
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Figure 4. The flip of a proper tube (shaded, red) in a maximal tubing
seen both in the tubings and in the corresponding spines.
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3. Diameter

Let δ(F(G)) denote the diameter of the flip graph F(G). For example, for the complete
graph Kn+1, the diameter of the n-dimensional permutahedron is δ(F(Kn+1)) =

(
n+1

2

)
,

while for the path Pn+1, the diameter of the classical n-dimensional associahedron is
δ(F(Pn+1)) = 2n− 4 for n > 9, by results of [STT88, Pou14]. In this section, we discuss
properties of the diameter δ(F(G)) and of the geodesics in the flip graph F(G). The
results of Section 3.1 are extended to nestohedra in Section 3.2. We prefer to present
the ideas first for graph associahedra as they prepare the intuition for the more technical
proofs for nestohedra.

3.1. Non-decreasing diameters. We first show that δ(F(·)) is non-decreasing.

Theorem 6. δ(F(Ḡ)) ≤ δ(F(G)) for any two graphs G, Ḡ such that Ḡ ⊆ G.

Remark 7. We could prove this statement by a geometric argument, using the construc-
tion of the graph associahedron of M. Carr and S. Devadoss [CD06]. Indeed, it follows
from [CD06] that the graph associahedron Asso(G) can be obtained from the graph asso-
ciahedron Asso(Ḡ) by successive face truncations. Geometrically, this operation replaces
the truncated face F by its Cartesian product with a simplex of codimension dim(F ) + 1.
Therefore, a path in the graph of Asso(G) naturally projects to a shorter path in the graph
of Asso(Ḡ). Our proof is a purely combinatorial translation of this geometric intuition.
It has the advantage of not relying on the results of [CD06] and of helping to formalize
the argument.

Observe first that the deletion of an isolated vertex in G does not change the nested
complex N (G). We can thus assume that the graphs G and Ḡ have the same vertex set
and that Ḡ = G r {(u, v)} is obtained by deleting a single edge (u, v) from G. We define
below a map Ω from tubings on G to tubings on Ḡ which induces a surjection from the
flip graph F(G) onto the flip graph F(Ḡ). For consistency, we use t and T for tubes and
tubings of G and t̄ and T̄ for tubes and tubings of Ḡ.

Given a tube t of G (proper or not), define Ω(t) to be the coarsest partition of t into
tubes of Ḡ. In other words, Ω(t) = {t} if (u, v) is not an isthmus of G[t], and otherwise
Ω(t) = {t̄u, t̄v} where t̄u and t̄v are the vertex sets of the connected components of Ḡ[t]
containing u and v respectively. For a set of tubes T of G, define Ω(T) :=

⋃
t∈T Ω(t). See

Figure 5 for an illustration.

Lemma 8. For any tubing T on G, the set Ω(T) is a tubing on Ḡ and |T| ≤ |Ω(T)|.
Proof. It is immediate to see that Ω sends tubings on G to tubings on Ḡ. We prove
by induction on |T| that |T| ≤ |Ω(T)|. Consider a non-empty tubing T, and let t be an
inclusion maximal tube of T. By induction hypothesis, |Tr {t}| ≤ |Ω(Tr {t})|. We now
distinguish two cases:

(i) If (u, v) is an isthmus of G[t], then Ω(t) = {t̄u, t̄v} 6⊆ Ω(T r {t}). Indeed,
since t̄u and t̄v are adjacent in G, two tubes of T whose images by Ω produce t̄u
and t̄v must be nested. Therefore, one of them contains both t̄u and t̄v, and thus
equals t = t̄u ∪ t̄v by maximality of t in T.

(ii) If (u, v) is not an isthmus of G[t], then Ω(t) = {t} 6⊆ Ω(Tr {t}). Indeed, if t′ ∈ T
is such that t ∈ Ω(t′), then t ⊆ t′ and thus t = t′ by maximality of t in T.

We conclude that |Ω(T)| ≥ |Ω(Tr {t})|+ 1 ≥ |Tr {t}|+ 1 = |T|. �
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Figure 5. Two maximal tubings (left and middle) with the same image by
the map Ω (right). The middle tubing is the preimage of the rightmost tub-
ing obtained by the process described in the proof of Corollary 9 with u = 6
and v = 8.

Corollary 9. The map Ω induces a graph surjection from the loaded flip graph F(G) onto
the loaded flip graph F(Ḡ), i.e., a surjective map from maximal tubings on G to maximal
tubings on Ḡ such that adjacent tubings on G are sent to identical or adjacent tubings
on Ḡ.

Proof. Let T̄ be a tubing on Ḡ. If all tubes of T̄ containing u also contain v (or the
opposite), then T̄ is a tubing on G and Ω(T̄) = T̄. Otherwise, let T̄u denote the set of
tubes of T̄ containing u but not v, and let t̄v denote the maximal tube containing v but
not u. Then (T̄r T̄u) ∪

{
t̄u ∪ t̄v

∣∣ t̄u ∈ T̄u

}
is a tubing on G whose image by Ω is T̄. See

Figure 5 for an illustration. The map Ω is thus surjective from tubings on G to tubings
on Ḡ. Moreover, any preimage T◦ of a maximal tubing T̄ can be completed into a maximal
tubing T with Ω(T) ⊇ Ω(T◦) = T̄, and thus satisfying Ω(T) = T̄ by maximality of T̄.

Remember that two distinct maximal tubings on G are adjacent if and only if they share
precisely |V| − 1 common tubes. Consider two adjacent maximal tubings T,T′ on G, so
that |T ∩ T′| = |V| − 1. Since Ω(T ∩ T′) ⊆ Ω(T) ∩ Ω(T′) and |Ω(T ∩ T′)| ≥ |T ∩ T′| by
Lemma 8, we have |Ω(T)∩Ω(T′)| ≥ |T∩T′| = |V|−1. Therefore, the tubings Ω(T),Ω(T′)
are adjacent if |Ω(T) ∩ Ω(T′)| = |T ∩ T′| and identical if |Ω(T) ∩ Ω(T′)| > |T ∩ T′|. �

Remark 10. We can in fact precisely describe the preimage Ω−1(T̄) of a maximal tubing T̄
on Ḡ as follows. As in the previous proof, let T̄u denote the chain of tubes of T̄ containing u
but not v, and similarly let T̄v denote the chain of tubes of T̄ containing v but not u. Any
linear extension L of these two chains defines a preimage of T̄ where the tubes of T̄u ∪ T̄v

are replaced by the tubes
⋃ {t′ ∈ L | t′ ≤L t} for t ∈ L. In terms of spines, this translates

to shuffling the two chains corresponding to T̄u and T̄v. Details are left to the reader.

Proof of Theorem 6. Consider two maximal tubings T̄, T̄′ on Ḡ. Let T,T′ be maxi-
mal loaded tubings on G such that Ω(T) = T̄ and Ω(T′) = T̄′ (surjectivity of Ω), and
T = T0, . . . ,T` = T′ be a geodesic between them (` ≤ δ(F(G))). Deleting repetitions in
the sequence T̄ = Ω(T0), . . . ,Ω(T`) = T̄′ yields a path from T̄ to T̄′ (Corollary 9) of length
at most ` ≤ δ(F(G)). So δ(F(G)) ≥ δ(F(Ḡ)). �
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3.2. Extension to nestohedra. The results of the previous section can be extended to
the nested complex on an arbitrary building set. Although the proofs are more abstract
and technical, the ideas behind are essentially the same. We recall the definitions of
building set and nested complex needed here and refer to [CD06, Pos09, FS05, Zel06] for
more details and motivation.

A building set on a ground set V is a collection B of non-empty subsets of V such that

(B1) if b, b′ ∈ B and b ∩ b′ 6= ∅, then b ∪ b′ ∈ B, and
(B2) B contains all singletons {v} for v ∈ V.

We denote the set of inclusion maximal elements of B by Bmax, and call the elements
of Br Bmax proper. The building set is connected if Bmax = {V}. Graphical building sets
are particular examples, and connected graphical building sets correspond to connected
graphs.

A B-nested set on B is a subset N of B such that

(N1) for any n, n′ ∈ N, either n ⊆ n′ or n′ ⊆ n or n ∩ n′ = ∅, and
(N2) for any k ≥ 2 pairwise disjoint sets n1, . . . , nk ∈ N, the union n1∪· · ·∪nk is not in B.

As before, a B-nested set N is proper if N∩Bmax = ∅ and loaded if Bmax ⊆ N. The B-nested
complex is the (|V| − |Bmax|)-dimensional simplicial complex N (B) of all proper nested
sets on B. As in the graphical case, the B-nested complex can be realized geometrically as
the boundary complex of the polar of the nestohedron Nest(B), constructed e.g. in [Pos09,
FS05, Zel06]. We denote the diameter of the graph F(B) of Nest(B) by δ(F(B)). As
in the previous section, it is more convenient to regard the vertices of F(B) as maximal
loaded nested sets.

The spine of a nested set N is the Hasse diagram of the inclusion poset of N ∪ Bmax.
Spines are called B-forests in [Pos09]. The definitions and properties of Section 2.2 extend
to general building sets, see [Pos09] for details.

We shall now prove the following generalization of Theorem 6.

Theorem 11. δ(F(B̄)) ≤ δ(F(B)) for any two building sets B, B̄ on V such that B̄ ⊆ B.

The proof follows the same line as that of Theorem 6. We first define a map Ω which
transforms elements of B to subsets of B̄ as follows: for b ∈ B (proper or not), define Ω(b)
as the coarsest partition of b into elements of B̄. Observe that Ω(b) is well-defined since B̄ is
a building set, and that the elements of Ω(b) are precisely the inclusion maximal elements
of B̄ contained in b. For a nested set N on B, we define Ω(N) :=

⋃
n∈N Ω(n). The following

statement is similar to Lemma 8.

Lemma 12. For any nested set N on B, the image Ω(N) is a nested set on B̄ and
|N| ≤ |Ω(N)|.
Proof. Consider a nested set N on B. To prove that Ω(N) is a nested set on B̄, we start
with condition (N1). Let n̄, n̄′ ∈ Ω(N) and let n, n′ ∈ N such that n̄ ∈ Ω(n) and n̄′ ∈ Ω(n′).
Since N is nested, we can distinguish two cases:

• Assume that n and n′ are disjoint. Then n̄ ∩ n̄′ = ∅ since n̄ ⊆ n and n̄′ ⊆ n′.
• Assume that n and n′ are nested, e.g., n ⊆ n′. If n̄∩ n̄′ 6= ∅, then n̄∪ n̄′ is in B̄ and

is a subset of n′. By maximality of n̄′ in n′, we obtain n̄∪ n̄′ = n̄′, and thus n̄ ⊆ n̄′.

To prove Condition (N2), consider pairwise disjoint elements n̄1, . . . , n̄k ∈ Ω(N) and
n1, . . . , nk ∈ N such that n̄i ∈ Ω(ni). We assume by contradiction that n̄ := n̄1∪· · ·∪ n̄k ∈ B̄
and we prove that n := n1∪· · ·∪nk ∈ B. Indeed, n̄, n1, . . . , nk all belong to B and n̄∩ni 6= ∅
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(it contains n̄i) so that n̄∪n also belongs to B by multiple applications of Property (B1) of
building sets. Moreover, n̄ ⊆ n so that n = n̄∪ n ∈ B. Finally, we conclude distinguishing
two cases:

• If there is i ∈ [k] such that ni contains all nj, then ni contains all n̄j and thus n̄.
This contradicts the maximality of n̄i in ni since n̄i ( n̄ ∈ B̄.
• Otherwise, merging intersecting elements allows us to assume that n1, . . . , nk are

pairwise disjoint and n := n1 ∪ · · · ∪ nk ∈ B contradicts Condition (N2) for N.

This concludes the proof that Ω(N) is a nested set on B̄.
We now prove that |N| ≤ |Ω(N)| by induction on |N|. Consider a non-empty nested

set N and let n◦ be an inclusion maximal element of N. By induction hypothesis,
|Nr {n◦}| ≤ |Ω(Nr {n◦})|. Let Ω(n◦) = {n̄1, . . . , n̄k}. Consider n1, . . . , nk ∈ N such
that n̄i ∈ Ω(ni), and let n := n1 ∪ · · · ∪ nk. Since n◦, n1, . . . , nk all belong to B and
n◦ ∩ ni 6= ∅ (it contains n̄i), we have n◦ ∪ n ∈ B by multiple applications of Property (B1)
of building sets. Moreover, n◦ ⊆ n so that n = n◦ ∪ n ∈ B. It follows by Condition (N2)
on N that there is i ∈ [k] such that ni contains all nj, and thus n◦ ⊆ ni. We obtain
that n◦ = ni by maximality of n◦. We conclude that n◦ is the only element of N such
that n̄i ∈ Ω(n◦), so that |Ω(N)| ≥ |Ω(Nr {n◦})|+ 1 ≥ |Nr {n◦}|+ 1 = |N|. �

Corollary 13. The map Ω induces a graph surjection from the loaded flip graph F(B)
onto the loaded flip graph F(B̄), i.e., a surjective map from maximal nested sets on B
to maximal nested sets on B̄ such that adjacent nested sets on B are sent to identical or
adjacent nested sets on B̄.

Proof. To prove the surjectivity, consider a nested set N̄ on B̄. The elements of N̄ all
belong to B and satisfy Condition (N1) for nested sets. It remains to transform the
elements in N̄ which violate Condition (N2). If there is no such violation, then N̄ is a
nested set on B and Ω(N̄) = N̄. Otherwise, consider pairwise disjoint elements n̄1, . . . , n̄k
of N̄ such that n := n̄1 ∪ · · · ∪ n̄k is in B and is maximal for this property. Consider the
subset N̄′ :=

(
N̄r {n̄1}

)
∪ {n} of B. Observe that:

• N̄′ still satisfies Condition (N1). Indeed, if n̄ ∈ N̄ is such that n ∩ n̄ 6= ∅, then n̄
intersects at least one element n̄i. Since N̄ is nested, n̄ ⊆ n̄i or n̄i ⊆ n̄. In the
former case, n̄ ⊆ n and we are done. In the latter case, n̄ and the elements n̄j
disjoint from n̄ would contradict the maximality of n.
• N̄′ still satisfies Ω(N̄′) = N̄. Indeed, n̄1 ∈ Ω(n) since Ω(n) = {n̄1, . . . , n̄k}. For the

latter equality, observe that {n̄1, . . . , n̄k} is a partition of n into elements of B̄ and
that a coarser partition would contradict Condition (N2) on N̄.
• n cannot be partitioned into two or more elements of N̄′. Such a partition would

refine the partition Ω(n), and would thus contradict again Condition (N2) on N̄.
Therefore, N̄′ has strictly less violations of Condition (N2) than N̄.
• All violations of Condition (N2) in N̄′ only involve elements of B̄. Indeed, pairwise

disjoint elements n̄′1, . . . , n̄
′
` ∈ N̄′ disjoint from n and such that n∪ n̄′1 ∪ · · · ∪ n̄′` ∈ B

would contradict the maximality of n.

These four points enable us to decrease the number of violations of Condition (N2) until
we reach a nested set N on B which still satisfies Ω(N) = N̄.

The second part of the proof is identical to that of Corollary 9. �

From Corollary 13, the proof of Theorem 11 is identical to that of Theorem 6.
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3.3. Geodesic properties. In this section, we focus on properties of the geodesics in
the graphs of nestohedra. We consider three properties for a face F of a polytope P :

NLFP: F has the non-leaving-face property in P if F contains all geodesics con-
necting two vertices of F in the graph of P .

SNLFP: F has the strong non-leaving-face property in P if any path connecting two
vertices v, w of F in the graph of P and leaving the face F has at least two more
steps than a geodesic between v and w.

EFP: F has the entering-face property in P if for any vertices u, v, w of P such
that u /∈ F , v, w ∈ F , and u and v are neighbors in the graph of P , there exists a
geodesic connecting u and w whose first edge is the edge from u to v.

For a face F of a polytope P , we have efp ⇐⇒ snlfp =⇒ nlfp. However, the
reverse of the last implication is wrong: all faces of a simplex have the nlfp (all vertices
are at distance 1), but not the snlfp. Alternative counter-examples with no simplicial
face already exist in dimension 3. Among classical polytopes the n-dimensional cube,
permutahedron, associahedron, and cyclohedron all satisfy the efp. The nlfp is further
discussed in [CP16].

In contrast to the classical associahedron, not all faces of a graph associahedron have the
nlfp. A counter-example is given by the star with n branches: Figure 6 shows a path of
length 2n between two maximal tubings T,T′, while the minimal face containing T and T′

is an (n−1)-dimensional permutahedron (see the face description in [CD06, Theorem 2.9])
and the graph distance between T and T′ in this face is

(
n
2

)
.

1 1

1 1 1

1

1

1

Figure 6. A geodesic (of length 2n) between two maximal tubings of the
star that flips their common tube (the central vertex).

In contrast, the following faces of the nestohedra always have the snlfp.

Lemma 14. We call upper ideal face of the nestohedron Nest(B) a face corresponding to
a loaded nested set N↑ that satisfies the following equivalent properties:

(i) any element of B not in N↑ but compatible with N↑ is contained in an inclusion
minimal element of N↑,

(ii) the set λ(n,N↑) := n r
⋃{

n′ ∈ N↑
∣∣ n′ ( n

}
is a singleton for any inclusion non-

minimal element n of N↑,
(iii) the forest obtained by deleting all leaves of the spine S↑ of N↑ forms an upper ideal

of any spine refining S↑.
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Proof. We first prove that (i) =⇒ (ii). Assume that n ∈ N↑ is not inclusion minimal
and that λ(n,N↑) contains two distinct elements v, w ∈ V. One can then check that the
maximal element of B contained in n and containing v but not w is compatible with N↑,
but not contained in an inclusion minimal element of N↑. This proves that (i) =⇒ (ii).

Conversely, assume (ii) and consider b ∈ B not in N↑ but compatible with N↑. Since N↑

is loaded, there exists n ∈ N↑ strictly containing b and minimal for this property. Since b
is compatible with N↑, we obtain that λ(n,N↑) contains at least one element from b and
one from nrb, and is thus not a singleton. It follows by (ii) that n is an inclusion minimal
element of N↑, and it contains b.

The equivalence (ii)⇐⇒ (iii) follows directly from the definition of the spines and their
labelings, and the fact that a non-singleton node in a spine can be split in a refining
spine. �

Proposition 15. Any upper ideal face of the nestohedron Nest(B) satisfies snlfp.

Proof. Consider an upper ideal face F of Nest(B) corresponding to the loaded nested
set N↑. We consider the building set B̄ ⊆ B on V consisting of all elements of B (weakly)
contained in an inclusion minimal element of N↑ together with all singletons {v} for
elements v ∈ V not contained in any inclusion minimal element of N↑. The reader is
invited to check that B̄ is indeed a building set on V. It follows from Lemma 14 that

• λ(n,N↑) = n if n is an inclusion minimal element of N↑,
• λ(n,N↑) = {v} for some v not in any inclusion minimal element of N↑ otherwise,

and thus that the map λ(·,N↑) is a bijection from N↑ to B̄max.
Consider the surjection Ω from the maximal nested sets on B to the maximal nested

sets on B̄ as defined in the previous section: Ω(N) =
⋃

n∈N Ω(n) where Ω(n) is the coarsest
partition of n into elements of B̄. Following [STT88, CP16], we consider the normaliza-
tion Ω? on maximal nested sets on B defined by Ω?(N) :=

(
Ω(N) r B̄max

)
∪ N↑. We claim

that Ω?(N) is a maximal nested set on B:

• it is nested since both Ω(N)r B̄max and N↑ are themselves nested, and all elements
of Ω(N) r B̄max are contained in a minimal element of N↑.
• it is maximal since Ω(N) is by Corollary 13 and |Ω?(N)| = |Ω(N)| because λ(·,N↑)

is a bijection from N↑ to B̄max, and B̄max ⊆ Ω(N) while
(
Ω(N) r B̄max

)
∩ N↑ = ∅.

It follows that Ω? combinatorially projects the nestohedron Nest(B) onto its face F .
Let N0, . . . ,N` be a path in the loaded flip graph F(B) whose endpoints N0,N` lie

in the face F , but which leaves the face F . In other words, N↑ ⊆ N0,N` and there
are 0 ≤ i < j ≤ ` such that N↑ ⊆ Ni,Nj while N↑ 6⊆ Ni+1,Nj−1. We claim that

Ω?(N0) = N0, Ω?(N`) = N`, Ω?(Ni) = Ni = Ω?(Ni+1) and Ω?(Nj−1) = Nj = Ω?(Nj),

so that the path N0 = Ω?(N0), . . . ,Ω?(N`) = N` from N0 to N` in F has length at most `−2
after deletion of repetitions.

To prove our claim, consider a loaded nested set N on B containing a maximal proper
nested set N̄ on B̄. Then Ω(N) ⊇ Ω(N̄) = N̄ so that Ω(N) = N̄∪ B̄max by maximality of N̄.
This shows Ω?(N) = N̄ ∪ N↑. In particular, if N = N̄∪N↑, then Ω?(N) = N. Moreover, if N′

is adjacent to N = N̄ ∪ N↑ and does not contain N↑, then N′ contains N̄ and Ω?(N′) = N.
This shows the claim and concludes the proof. �

Proposition 15 specializes in particular to the non-leaving-face and entering face prop-
erties for the upper set faces of graph associahedra.
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Proposition 16. (i) If T and T′ are two maximal tubings on G, then any maximal
tubing on a geodesic between T and T′ in the flip graph F(G) contains any common
upper set to the inclusion posets of T and T′.

(ii) If T, T′ and T′′ are three maximal tubings on G such that Tr{t} = T′r{t′} and t′

belongs to the maximal common upper set to the inclusion poset of T′ and T′′, then
there is a geodesic between T and T′′ starting by the flip from T to T′.

Proof. Using Proposition 15, it suffices to show that the maximal common upper set T↑ to
the inclusion posets of T and T′ defines an upper ideal face of Asso(G). For this, we use the
characterization of Lemma 14 (ii). Consider an inclusion non-minimal tube t of T↑. Let t′ be
a maximal tube of T↑ such that t′ ( t. Then t′ has a unique neighbor v in G[t] and all con-
nected components of G[tr{v}] are both in T and T′, thus in T↑. Thus λ(t,T↑) = {v}. �
Remark 17. For an arbitrary building set B, the maximal common upper set N↑ to
the inclusion poset of two maximal nested sets N,N′ is not always an upper ideal face
of Nest(B). An example is the building set B =

{
{1}, {2}, {3}, {1, 2, 3}

}
and the nested

sets N =
{
{1}, {2}, {1, 2, 3}

}
and N′ =

{
{2}, {3}, {1, 2, 3}

}
. Their maximal common up-

per set N↑ =
{
{2}, {1, 2, 3}

}
is not an upper ideal face of Nest(B) as λ({1, 2, 3},N↑) = {1, 3}

is not a singleton. Moreover, the face corresponding to N↑ does not satisfy snlfp.

3.4. Diameter bounds. We now prove the announced bounds on the diameter δ(F(G)).

Theorem 18. For any connected graph G with n + 1 vertices and e edges, the diame-
ter δ(F(G)) of the flip graph F(G) is bounded by

max(e, 2n− 18) ≤ δ(F(G)) ≤
(
n+ 1

2

)
.

Proof. For the upper bound, we use that the diameter is non-decreasing (Theorem 6)
and that the n-dimensional permutahedron has diameter

(
n+1

2

)
, the maximal number of

inversions in a permutation of Sn+1.
The lower bound consists in two parts. For the first part, we know that the normal

fan of the graph associahedron Asso(G) refines the normal fan of the graphical zonotope
of G (see e.g. [Zie95, Lect. 7] for a reference on zonotopes). Indeed, the graph associahe-
dron of G can be constructed as a Minkowski sum of the faces of the standard simplex
corresponding to tubes of G ([CD06, Pos09]) while the graphical zonotope of G is the
Minkowski sum of the faces of the standard simplex corresponding only to edges of G.
Since the diameter of the graphical zonotope of G is the number e of edges of G, we obtain
that the diameter δ(F(G)) is at least e. For the second part of the lower bound, we use
again Theorem 6 to restrict the argument to trees. Let T be a tree on n+ 1 vertices. We
first discard some basic cases:

(i) If T has precisely two leaves, then T is a path and the graph associahedron Asso(T)
is the classical n-dimensional associahedron, whose diameter is known to be larger
than 2n− 4 by L. Pournin’s result [Pou14].

(ii) If T has precisely 3 leaves, then it consists in 3 paths attached by a 3-valent node v,
see Figure 7 (left). Let w be a neighbor of v and P1,P2 denote the connected
components of T r w. Observe that P1 and P2 are both paths. Denote their
respective lengths by p1 + 1 and p2 + 1. Let T′1,T

′′
1 (respectively T′2,T

′′
2) be a

diametral pair of maximal tubings on P1 (respectively on P2), and consider the
maximal tubings T′ = T′1 ∪ T′2 ∪ {P1,P2} and T′′ = T′′1 ∪ T′′2 ∪ {P1,P2} on the
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v w u v
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P1
P2

Y YP

P

Figure 7. Decompositions of trees with 3 or 4 leaves.

tree T. Finally, denote the maximal tubing on T obtained by flipping P1 in T′

by T. Since {P1,P2} is a common upper set to the inclusion posets of T′ and T′′,
Proposition 16 (ii) ensures that there exists a geodesic from T to T′′ that starts
by the flip from T to T′. Moreover, Proposition 16 (i) ensures that the distance
between T′ and T′′ is realized by a path staying in the face of Asso(T) corresponding
to {P1,P2}, which is the product of a classical p1-dimensional associahedron by a
classical p2-dimensional associahedron. We conclude that

δ(F(T)) ≥ 1+δ(F(P1))+δ(F(P2)) ≥ 1+(2p1−4)+(2p2−4) = 2(p1+p2+2)−11 = 2n−11.

(iii) If T has precisely 4 leaves, it either contains a single 4-valent node v or precisely
two 3-valent nodes u, v, see Figure 7 (middle and right). Define w to be a neighbor
of v, not located in the path between u and v in the latter situation. Then w
disconnects T into a path P on p + 1 nodes and a tree Y with y + 1 nodes and
precisely 3 leaves. A similar argument as in (ii) shows that

δ(F(T)) ≥ 1+δ(F(P))+δ(F(Y)) ≥ 1+(2p−4)+(2y−11) = 2(p+y+2)−18 = 2n−18.

We can now assume that the tree T has k ≥ 5 leaves l1, . . . , lk. Let V̄ = V r {l1, . . . , lk}
and T̄ = T[V̄] denote the tree obtained by deletion of the leaves of T. By induction hy-
pothesis, there exist two maximal tubings T̄ and T̄′ on T̄ at distance at least 2(n− k)− 18.
Define ti := V r {l1, . . . , li} for i ∈ [k], and t′j := V r {lj, . . . , lk} for j ∈ [k]. Consider the

maximal tubings T := T̄ ∪ {t1, . . . , tk} and T′ := T̄′ ∪ {t′1, . . . , t′k} on T. We claim that the
distance between these tubings is at least 2n− 18. To see it, consider the surjection Ω
from the tubings on T onto that of T̄ t {l1, . . . , lk} as defined in Section 3.1. It sends a
path T = T0, . . . ,T` = T′ in the flip graph F(T) to a path

T̄ ∪ {{l1}, . . . , {lk}} = Ω(T0), . . . ,Ω(T`) = T̄′ ∪ {{l1}, . . . , {lk}}
in the flip graph F(T̄t{l1, . . . , lk}) with repeated entries. Since T̄ and T̄′ are at distance
at least 2(n − k) − 18 in the flip graph F(T̄), this path has at least 2(n − k) − 18
non-trivial steps, so we must show that it has at least 2k repetitions. These repetitions
appear whenever we flip a tube ti or t′j. Indeed, we observe that the image Ω(t) of any

tube t ∈ {ti | i ∈ [k]} ∪
{
t′j
∣∣ j ∈ [k]

}
is composed by V̄ together with single leaves of T.

Since all these tubes are connected components of T̄, we have Ω(Tr {t}) = Ω(T) for any
maximal loaded tubing T containing t. To conclude, we distinguish three cases:

(i) If the tube tk = V̄ = t′1 is never flipped along the path T = T0, . . . ,T` = T′,
then we need at least

(
k
2

)
flips to transform {t1, . . . , tk} into {t′1, . . . , t′k}. This

can be seen for example from the description of the link of tk in N (T) in [CD06,
Theorem 2.9]. Finally, we use that

(
k
2

)
≥ 2k since k ≥ 5.
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(ii) Otherwise, we need to flip all {t1, . . . , tk} and then back all {t′1, . . . , t′k}. If no flip
of a tube ti produces a tube t′j, we need at least 2k flips which produces repetitions.

(iii) Finally, assume that we flip precisely once all {t1, . . . , tk} and then back all
{t′1, . . . , t′k}, and that a tube ti is flipped into a tube t′j. According to the de-
scription of flips, we must have i = k − 1 and j = 2. If p ∈ [`] denotes the position
such that Tp r {tk−1} = Tp+1 r {t′2}, we moreover know that tk−1 ∈ Tq for q ≤ p,
that t′2 ∈ Tq for q > p, and that V̄ ∈ Tp ∩ Tp+1. Applying the non-leaving-
face property either to the upper set {tk−1, tk} in Asso(G[tk−1]) or to the upper
set {t′1, t′2} in Asso(G[t′2]), we conclude that it would shorten the path T0, . . . ,T`

to avoid the flip of tk = V̄ = t′1, which brings us back to Situation (i). �

Remark 19. We note that, although asymptotically optimal, our lower bound 2n − 18
is certainly not sharp. We expect the correct lower bound to be the bound 2n − 4 for
the associahedron. Better upper bound can also be worked out for certain families of
graphs. For example, L. Pournin investigates the cyclohedra, i.e., cycle associahedra.
As far as trees are concerned, we understand better stars and their subdivisions. The
diameter δ(F(K1,n)) for the star K1,n is exactly 2n (for n ≥ 5), see Figure 6. In fact, the
diameter of the graph associahedron of any starlike tree (subdivision of a star) on n + 1
vertices is bounded by 2n. To see it, we observe that any tubing is at distance at most n
from the tubing T◦ consisting in all tubes adjacent to the central vertex. Indeed, we can
always flip a tube in a tubing distinct from T◦ to create a new tube adjacent to the central
vertex. This argument is not valid for non-starlike trees.

Remark 20. The lower bound in Theorem 18 shows that the diameter δ(F(G)) is at
least the number of edges of G. In view of Theorem 1, it is tempting to guess that the
diameter δ(F(G)) is of the same order as the number of edges of G. Adapting arguments
from Remark 19, we can show that the diameter of any tree associahedron δ(F(T)) is of
order at most n log n. In any case, the following question remains open.

Question 21. Is there a family of trees Tn on n nodes such that δ(F(Tn)) is of or-
der n log n? Even more specifically, consider the family of trees illustrated in Figure 8:
T1 = K1,3 (tripod) and Tk+1 is obtained by grafting two leaves to each leaf of Tk. What
is the order of the diameter δ(F(Tk))?

T1 T2 T3 T4 T5

Figure 8. The family of trees Tk.

Remark 22. The upper bound δ(F(B)) ≤
(
n+1

2

)
holds for an arbitrary building set B by

Theorem 6 and the fact that the permutahedron is the nestohedron on the complete build-
ing set. In contrast, the lower bound is not valid for arbitrary connected building sets. For
example, the nestohedron on the connected building set

{
{1}, . . . , {n+ 1}, {1, . . . , n+ 1}

}
is the n-dimensional simplex, whose diameter is 1.
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4. Hamiltonicity

In this section, we prove that the flip graph F(G) is Hamiltonian for any graph G with at
least 2 edges. This extends the result of H. Steinhaus [Ste64], S. M. Johnson [Joh63], and
H. F. Trotter [Tro62] for the permutahedron, and of J. Lucas [Luc87] for the associahedron
(see also [HN99]). For all the proof, it is more convenient to work with spines than with
tubings (recall Sections 2.2 and 2.3). We first sketch the strategy of our proof.

4.1. Strategy. For any vertex v of G, we denote the graph of flips on all spines on G
where v is a root by Fv(G). We call fixed-root subgraphs of F(G) the subgraphs Fv(G)
for v ∈ V. Note that the fixed-root subgraph Fv(G) is isomorphic to the flip graph
F(G[v̂]), where G[v̂] is the subgraph of G induced by v̂ := V r {v}.

We now distinguish two extreme types of flips. Consider two maximal tubings T,T′

on G and tubes t ∈ T and t′ ∈ T′ such that T̄ :=T r {t} = T′ r {t′}. Let S, S′ and S̄
denote the corresponding spines and {v} = λ(t,T) and {v′} = λ(t′,T′). We say that the
flip T̄ (or equivalently S̄) is

(i) a short flip if both t and t′ are singletons, that is, if {v, v′} is a leaf of S̄;
(ii) a long flip if t and t′ are maximal proper tubes in T and T′, that is, if {v, v′} is a

root of S̄.

Note that, in a short flip, the vertices v, v′ are necessarily adjacent in G. In the short
flip S̄, we call short leaf the leaf labeled by {v, v′} of S̄, short root the root of the tree of S̄
containing the short leaf, and short child the child w of the short root on the path to the
short leaf. If the short leaf is already a child of the short root, then it coincides with the
short child. Moreover, the short root, short child and short leaf all coincide if they form
an isolated edge of G. In the long flip S̄, we call long root the root labeled by {v, v′}.

We define a bridge to be a square B in the flip graph F(G) formed by two short and
two long flips. We say that these two short (respectively long) flips are parallel, and we
borrow the terms long root and short leaf for the bridge B. Figure 9 illustrates the notions
of bridge, long flips and short flips.

In terms of spines, a bridge can equivalently be defined as a spine B of G where all
labels are singletons, except the label {r, r′} of a root and the label {s, s′} of a leaf. The
short flip of B where r is a root is denoted by B[r], the long flip of B where s is a leaf is
denoted by B[s], and the maximal spine on G refining both B[r] and B[s], i.e., where r is
a root and s a leaf, is denoted by B[rs]. The flips B[r′] and B[s′] as well as the maximal
spines B[r′s],B[rs′], and B[r′s′] are defined similarly. These notations are summarized
below:

To obtain a Hamiltonian cycleH of the flip graph F(G), we proceed as follows. The idea
is to construct by induction a Hamiltonian cycle Hv̂ of each flip graph F(G[v̂]), which is
isomorphic to a Hamiltonian cycle Hv in each fixed-root subgraph Fv(G). We then select
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Figure 9. A bridge, with two long flips (red) and two short flips (blue).

an ordering v1, . . . , vn+1 of V, such that two consecutive Hamiltonian cycles Hvi and Hvi+1

meet the parallel short flips of a bridge Bi for all i ∈ [n]. The Hamiltonian cycle of F(G)
is then obtained from the union of the cycles Hv1 , . . . ,Hvn+1 by exchanging the short flips
with the long flips of all bridges B1, . . . ,Bn, as illustrated in Figure 10.

Hv̂2

F(G[v̂2])

f̊

Hv2f

Fv2(G)

B̊1[v1] B̊1[v2]Hv̂1 B̊2[v2]

F(G[v̂1])

Hv1

Fv1(G)

B1[v1] B1[v2]B1 B2[v2] B2

F(G[v̂n+1])

Hv̂n+1B̊n[vn+1]

Hvn+1

Fvn+1(G)

Bn[vn+1]Bn

↓o ↓o ↓o

f̊ ′

f ′

Figure 10. The strategy for the proof of the Hamiltonicity of F(G). The
circles above the short flips in the flip graphs F(G[v̂i]) on top indicate that
they are obtained by deleting the root vi in the corresponding short flip of
the fixed-root subgraph Fvi(G) in the bottom. See also Theorem 23.
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Of course, this description is a simplified and naive approach. The difficulty lies in
that, given the Hamiltonian cycles Hv of the fixed-root subgraphs Fv(G), the existence
of a suitable ordering v1, . . . , vn+1 of V and of the bridges B1, . . . ,Bn connecting the
consecutive Hamiltonian cycles Hvi and Hvi+1

is not guaranteed. To overpass this issue,
we need to impose the presence of two forced short flips in each Hamiltonian cycle Hv.
We include this condition in the induction hypothesis and prove the following sharper
version of Theorem 4.

Theorem 23. For any graph G, any pair of short flips of F(G) with distinct short roots
is contained in a Hamiltonian cycle of the flip graph F(G).

Note that for any graph G with at least 2 edges, the flip graph F(G) always contains
two short flips with distinct short roots. Theorem 4 thus follows from the formulation of
Theorem 23.

The issue in our inductive approach is that the fixed-root subgraphs of F(G) do not
always contain two edges, and therefore cannot be treated by Theorem 23. Indeed, it can
happen that:

• G[v̂] has a single edge and thus the fixed-root subgraph Fv(G) ∼ F(G[v̂]) is
reduced to a single (short) flip. This case can still be treated with the same
strategy: we consider this single flip Fv(G) as a degenerate Hamiltonian cycle and
we can concatenate two bridges containing this short flip.
• G[v̂] has no edge and thus the fixed-root subgraph Fv(G) ∼ F(G[v̂]) is a point.

This is the case when G is a star with central vertex v together with some isolated
vertices. We need to make a special and independent treatment for this particular
case. See Section 4.4.

4.2. Disconnected graphs. We first show how to restrict the proof to connected graphs
using some basic results on products of cycles. We need the following lemmas.

Lemma 24. For any two cycles H,H′ and any two edges e, e′ of H ×H′, there exists a
Hamiltonian cycle of H×H′ containing both e and e′.

Proof. The idea is illustrated in Figure 11. The precise proof is left to the reader. �

1a

2a3a

1b

2b3b

1c

2c3c

1a 2a

6a 5a
7a 4a
8a 3a

1b 2b

6b 5b

7b 4b

8b 3b

1c

2e

6e 5e

7e 4e

8c
3e

1d 2d

6d 5d

7d 4d

8d 3d

1e

2c

6c 5c

7c 4c

8e
3c

Figure 11. Proof of Lemma 24. Any pair of edges is contained in a Hamil-
tonian cycle similar to those. The pictures represent Cartesian products of
the cycle H with the path obtained by deleting one edge in H′.
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Lemma 25. For any cycle H, any isolated edge e◦ and any two edges e, e′ of H × e◦,
there exists a Hamiltonian cycle containing both e and e′, as soon as one of the following
conditions hold:

(1) the edges e, e′ are not both of the form {v} × e◦ with v ∈ H;
(2) e = {v} × e◦ and e′ = {v′} × e◦ where {v, v′} is an edge of H;
(3) H has an even number of edges.

Proof. The idea is illustrated in Figure 12. The precise proof is left to the reader. �

Figure 12. Proof of Lemma 25. The right picture only works for even cycles.

Corollary 26. If two graphs G,G′ both have the property that any pair of short flips of
their flip graph with distinct short roots is contained in a Hamiltonian cycle of their flip
graph, then G tG′ fulfills the same property.

Proof. We have seen that the flip graph of the disjoint union of two graphs G1 and G2 is
the product of their flip graphs F(G1) and F(G2). The statement thus follows from the
previous lemmas. �

4.3. Generic proof. We now present an inductive proof of Theorem 23. Corollary 26
allows us to restrict to the case where G is connected. For technical reasons, the stars and
the graphs with at most 6 vertices will be treated separately. We thus assume here that G
is not a star and has at least 7 vertices, which ensures that any fixed root subgraph of the
flip graph F(G) has at least one short flip. Fix two short flips f , f ′ of F(G) with distinct
short roots v1, vn+1, respectively.

We follow the strategy described in Section 4.1 and illustrated in Figure 10. To apply
Theorem 23 by induction on G[v̂i], the short flips Bi−1[vi] and Bi[vi] should have distinct
short children. This forbids certain positions for vi+1 in Bi−1[vi] illustrated in Figure 13,
and motivates the following definition. We say that a vertex w and a short flip g with
root v are in conflict if either of the following happens:

w

v v

w

v

w

v

w

(A) (B) (C)

Figure 13. Short flips in conflict with vertex w. The short leaf is shaded.
The second short flip of Case (B) is in conflict with w only if the connected
component of G[v̂] containing w is a star with central vertex w.
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(A) {w} is the short child of g and all other children of v in g are isolated in G[v̂];
(B) the graph G[v̂] has at least three edges, the graph Gr{v, w} has exactly one edge

which is the short leaf of g;
(C) the graph G[v̂] has exactly two edges, the graph G r {v, w} has exactly one edge

which is the short leaf of g, and w is a child of v.

It is immediate that a short flip is in conflict with at most one vertex. Observe also that,
if w is in the short leaf of g, then w and g cannot be in conflict.

We now show how we order the vertices v1, . . . , vn+1 such that for each i ∈ [n] there
exists a bridge Bi connecting the fixed-root subgraphs Fvi(G) and Fvi+1

(G).

Lemma 27. There exists an ordering v1, . . . , vn+1 of the vertices of G (provided |V| ≥ 7)
satisfying the following properties:

• v2 and f are not in conflict, and vn and f ′ are not in conflict, and
• for any i ∈ [n], the graph G contains an edge disjoint from {vi, vi+1}.

Proof. Let a and a′ denote the vertices in conflict with f and f ′ if any. Let D denote
the set of totally disconnecting pairs of G, i.e., of pairs {x, y} such that G r {x, y} has
no edge. We want to show that there exists an ordering on the vertices of G in which
neither {v1, a} nor {a′, vn+1}, nor any pair of D are consecutive. For this, we prove that,
if G has at least 5 vertices and is not a star (i.e., all edges contain a central vertex),
then |D| ≤ 2 and the pairs in D are not disjoint.

Suppose by contradiction that D contains two disjoint pairs {x1, y1} and {x2, y2}. Then
any edge of G intersects both pairs, so that x1, x2, y1, y2 are the only vertices in G (by
connectivity), contradicting that G has at least 5 vertices. Suppose now that D contains
three pairwise distinct pairs {x, y1}, {x, y2} and {x, y3}. Then any edge of G contains x
since it cannot contain y1, y2 and y3 together. It follows that G is a star with central
vertex x.

Since |D| ≤ 2, at most 4 pairs of vertices of G cannot be consecutive in our ordering.
It is thus clear that, if there are enough other vertices, we can find a suitable ordering.
In fact, it turns out that it is already possible as soon as G has 7 vertices. It is easy to
prove by a boring case analysis. We just treat the worst case below.

Assume that D = {{x, y}, {x, z}} where x, y, z /∈ {v1, vn+1} and that x is in conflict
with both short flips f and f ′. Since |V| ≥ 7, there are two distinct vertices u, v /∈ {v1, vn+1,
x, y, z} and we set v2 = z, v3 = y, v4 = u, v5 = x, v6 = v and choose any ordering for the
remaining vertices. This order satisfies the requested conditions. �

Remark 28. In fact, using similar arguments, one can easily check that the result of
Lemma 27 holds in the following situations:

• |V| = 6, and either |D| ≤ 1 or D = {{x, y}, {x, z}} where x is not in conflict with
both f , f ′.
• |V| = 5, and either D = ∅ or D = {{x, y}} where neither x nor y is in con-

flict with both f , f ′.
• |V| = 5, and D = {{x, y}, {x, z}} and |{x, y, z} ∩ {v1, v5}| = 2.
• |V| = 5, and D = {{x, y}, {x, z}} and |{x, y, z}∩{v1, v5}| = 1 and neither of x, y, z

is in conflict with any of f and f ′.

Given such an ordering v1, . . . , vn+1, we choose bridges B1, . . . ,Bn connecting the fixed-
root subgraphs Fv1(G), . . . ,Fvn+1(G). We start with the choice of B1.
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Lemma 29. There exists a bridge B1 with root {v1, v2} such that

• if Fv1(G) is a square, the short flips f and B1[v1] are distinct,
• if Fv1(G) is not reduced to a single flip nor to a square, the short flips f and B1[v1]

have distinct short children,
• B1[v2] and v3 are not in conflict, and
• the singleton {v3} is a child of v2 in B1[v2] only if v3 is isolated in G r {v1, v2}.

Proof. The proof is an intricate case analysis. In each case, we will provide a suitable
choice for B1, but the verification that this bridge exists and satisfies the conditions of
the statement is immediate and left to the reader. We denote the connected component
of G[v̂1] containing v2 by κ. The following cases cover all possibilities:

♠ κ = {v2}:
♥ G r {v1, v2} has only one edge: the fixed root subgraph Fv1(G) is reduced to the

short flip f and the bridge obtained by contracting {v1, v2} in f suits for B1.
♥ G r {v1, v2} has at least two edges: we choose for B1 any bridge with root {v1, v2}

and with a short child different from that of f .
♠ κ 6= {v2}, so that κ has at least one edge:
♥ G[v̂1] r κ has no edge: Condition (4.3) on f and v2 ensures that v2 is not the short

child of f . Since the short leaf of f has to be in κ, the short children of f and B1[v1]
will automatically be different.
♦ v3 /∈ κ: any bridge with root {v1, v2} suits for B1.
♦ v3 ∈ κ:
♣ v3 is isolated in κr {v2}: any bridge with root {v1, v2} suits for B1.
♣ v3 is not isolated in κr {v2}: we choose for B1 a bridge with root {v1, v2} and

whose short leaf contains v3.
♥ G[v̂1] r κ has precisely one edge e:
♦ e is not the short leaf of f : we choose for B1 any bridge with root {v1, v2}, short

leaf e and in which {v3} is a child of the root only if it is isolated in Gr {v1, v2}.
♦ e is the short leaf of f :
♣ κ is a single edge: we choose for B1 the bridge obtained by contracting {v1, v2}

in the short flip opposite to f in the square Fv1(G) (it suits by Condition (4.3)).
♣ κ has at least two edges: by Condition (4.3), κr {v2} has at least one edge.
◦ v3 /∈ κ: any bridge with root {v1, v2} and short leaf in κ suits for B1.
◦ v3 ∈ κ:
? v3 is isolated in κr {v2}: any bridge with root {v1, v2} and short leaf in κ

suits.
? v3 is not isolated in κr {v2}: we choose for B1 a bridge with root {v1, v2}

and whose short leaf contains v3.
♥ G[v̂1] r κ has at least two edges:
♦ G[v̂1] r κ has only one non-trivial connected component: we choose for B1 a

bridge with root {v1, v2}, with short leaf containing the non-isolated child of v1

in f which is not in κ, and in which {v3} is a child of the root only if it is either
isolated in G r {v1, v2} or the short child of B1[v1].

♦ G[v̂1] r κ has at least two non-trivial connected components: we choose for B1 a
bridge with root {v1, v2}, with short leaf in a connected component of G[v̂1] r κ
not containing the short leaf of f , and in which {v3} is a child of the root only if
it is either isolated in G r {v1, v2} or the short child of B1[v1]. �
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The choice of Bn is similar to that of B1, replacing v1, v2, v3 and f by vn+1, vn, vn−1 and f ′

respectively. For choosing the other bridges B2, . . . ,Bn−1, we first observe the existence
of certain special vertices in G.

We say that a vertex distinct from v1 and vn+1 which disconnects at most one vertex
is an almost leaf of G. Observe that G contains at least one almost leaf: Consider a
spanning tree T of G. If T is a path from v1 to vn+1, the neighbor of v1 in T is an almost
leaf of G. Otherwise, any leaf of T distinct from v1 and vn+1 is an almost leaf of G.

Choose an almost leaf vi of G which disconnects no vertex if possible, and any almost
leaf otherwise. We sequentially construct the bridges B2, . . . ,Bi−1: once Bj is constructed,
we choose Bj+1 using Lemma 29 where we replace v1, v2, v3 and f by vj+1, vj+2, vj+3

and Bj[vj+1]. Similarly, we choose the bridges Bn−1, . . . ,Bi+1: once Bj+1 is constructed, we
choose Bj using Lemma 29 where we replace v1, v2, v3 and f by vj+1, vj, vj−1 and Bj+1[vj+1].
Note that the conditions on B1 required in Lemma 29 ensure that the hypothesizes in
Lemma 27 can be propagated.

It remains to properly choose the last bridge Bi. This is done by the following statement.

Lemma 30. Let g,h be two short flips on G with distinct roots v, w. Assume that

(i) G r {v, w} has at least one edge;
(ii) g and w are not in conflict, and h and v are not in conflict;

(iii) {v} is a child of w in h only if v is isolated in G[ŵ];
(iv) v disconnects at most one vertex of G and this vertex is not w.

Then there exists a bridge B with root {v, w} such that g and B[v] are distinct if Fv[G] is
not reduced to a single flip and have distinct short children if Fv[G] is not a square, and
similarly for h and B[w].

Proof. Condition (iv) implies that {w} is the short child of B[v] for any bridge B with
root {v, w}. In contrast, Condition (iv) and Condition (4.3) for g and w ensure that {w}
is not the short child of g. Therefore, the conclusion of the lemma holds for g and B[v],
for any bridge B with root {v, w}. The difficulty is to choose B in order to satisfy the
conclusion for h and B[w]. For this, we distinguish various cases, in a similar manner as
in Lemma 29. Again, we provide in each case a suitable choice for B, but the verification
that this bridge exists and satisfies the conditions of the statement is immediate and left
to the reader.

♠ G r {v, w} has exactly one edge e: this edge e has to be the short leaf of any bridge
with root {v, w}, thus Condition (4.3) for h and v ensures that e is isolated in G[ŵ].
♥ e is the short leaf of h: Condition (4.3) for h and v ensures that Fw(G) is either a

single flip or a square (because v disconnects at most one vertex from G).
♦ Fw(G) is a single flip: B is obtained by contracting {v, w} in h.
♦ Fw(G) is a square: Condition (4.3) for h and v ensures that v is not a child of w

in h and B is obtained by contracting {v, w} in the short flip opposite to h in the
square Fw(G).

♥ e is not the short leaf of h: we choose for B a bridge with root {v, w} and short leaf e.
♠ G r {v, w} has at least two edges:
♥ the short leaf and the short child of h coincide: any bridge with root {v, w} and a

short leaf distinct from that of h suits for B.
♥ the short leaf and the short child of h are distinct: we choose for B a bridge with

root {v, w} whose short leaf contains the short child of h. �
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We have now chosen the order on the vertices v1, . . . , vn+1 and chosen for each i ∈ [n]
a bridge Bi connecting the fixed-root subgraphs Fvi(G) and Fvi+1

(G). Our choice forces
the short flips Bi−1[vi] and Bi[vi] (as well as the short flips f and B1[v1] and the short
flips Bn[vn+1] and f ′) to be distinct if Fvi [G] is not reduced to a single flip and have
distinct short children if Fvi [G] is not a square. We then construct a Hamiltonian cycle Hi

in each fixed-root subgraph Fvi(G) such thatH1 contains the short flips f and B1[v1], Hn+1

contains the short flips Bn[vn+1] and f ′, and Hi contains the short flips Bi−1[vi] and Bi[vi]
for all 2 ≤ i ≤ n. Note that

• when Fvi(G) is reduced to a single flip, we just set Hi = Fvi(G) and consider it as
a degenerate Hamiltonian cycle;
• when Fvi(G) is a square, it is already a cycle;
• otherwise, we apply Theorem 23 by induction to G[v̂i] and obtain the Hamiltonian

cycle Hi. The theorem applies since the short flips Bi−1[vi] and Bi[vi] have distinct
short children, so that the corresponding short flips in F(G[v̂i]) have distinct short
roots.

Finally, we obtain a Hamiltonian cycle of F(G) containing f and f ′ by gluing the cy-
cles H1, . . . ,Hn+1 together using the bridges B1, . . . ,Bn as explained in Section 4.1. This
is possible since the short flips Bi−1[vi] and Bi[vi] both belong to the Hamiltonian cycleHi,
and are distinct when Fvi(G) is not reduced to a single flip. This concludes the proof for
all generic cases. The remaining of the paper deals with the special cases of stars and
graphs with at most 6 vertices.

4.4. Stars. We now treat the particular case of stars. Consider a ground set V where a
vertex ∗ is distinguished. The star on V is the tree XV where all vertices of V r {∗} are
leaves connected to ∗. The flip graph F(XV) has two kinds of fixed-root subgraphs:

• F∗(XV) is reduced to a single spine ~ with root ∗ and n leaves;
• for any other vertex v ∈ V r {∗}, the fixed-root subgraph Fv(XV) is isomorphic

to the flip graph F(Xv̂) of the star Xv̂, where ∗ is still the distinguished vertex

in v̂ = Vr{v}. For a spine S ∈ Fv(XV), we denote the unique subspine of S by S̊,
and we write in column S = v

S̊.

To find a Hamiltonian cycle passing through forced short flips and through the spine ~
we need to refine again the induction hypothesis of Theorem 23 as follows.

Proposition 31. Assume that |V| ≥ 3, and fix two short flips f , f ′ of F(XV) with distinct
roots r 6= r′ and a long flip g of F(XV) with root {r′′, ∗}. Then the flip graph F(XV) has
a Hamiltonian cycle containing f , f ′,g.

Proof. The proof works by induction on |V|. If |V| = 3, then XV is a 3-path and its flip
graph is a pentagon. The case |V| = 4 is solved by Figure 14 up to relabeling of V. Namely,
whatever triple f , f ′,g is imposed, there is a permutation of the leaves of X{1,2,3,∗} which
sends the Hamiltonian cycle of Figure 14 to a Hamiltonian cycle passing through f , f ′,g.
Assume now that |V| ≥ 5. We distinguish two cases.

Case 1: r′′ ∈ {r, r′}, say for instance r′′ = r. Let w′ denote the child of r′ in the short
flip f ′. Let v1, . . . , vn−2 be an arbitrary ordering of Vr {∗, r, r′} such that v1 6= w′ (this is
possible since |V| ≥ 5), and B1, . . . ,Bn−2 any bridges such that the root of Bi is {vi−1, vi}
(where we set v0 = r′). We now choose inductively a Hamiltonian cycle Hv̂ in each flip
graph F(Xv̂) for all v ∈ V r {∗} as follows.
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Figure 14. A Hamiltonian cycle in the flip graph F(X{1,2,3,∗}). Up to per-
mutations of the leaves {1, 2, 3}, this cycle contains all possible triples f , f ′,g
considered in Proposition 31.

(i) In F(Xr̂), we choose a cycle Hr̂ containing the short flip f̊ and the long flip ~↔ r′
~ .

(ii) In F(Xr̂′), we choose a cycle Hr̂′ containing the short flips f̊ ′ and B̊1[r′] and the
long flip ~↔ r

~.
(iii) In F(Xv̂i) for i ∈ [n − 3], we choose a cycle Hv̂i containing the short flips B̊i[vi]

and B̊i+1[vi].

(iv) In F(Xv̂n−2), we choose a cycle Hv̂n−2 containing the short flip B̊n−2[vn−2].

Note that these Hamiltonian cycles exist by induction hypothesis. Indeed, the short
flips B̊i[vi] and B̊i+1[vi] have distinct roots vi−1 and vi+1. The only delicate case is thus

Point (ii): the short flips f̊ ′ and B̊1[r′] have distinct roots since we forced v1 to be different
from w′. Each Hamiltonian cycle Hv̂ in F(Xv̂) induces a Hamiltonian cycle Hv in Fv(XV)
(just add v at the root in all spines). From these Hamiltonian cycles, we construct a
Hamiltonian cycle for F(XV) as illustrated in Figure 15. We join Hr with Hr′ by deleting

the flips r
~↔

r
r′
~

and r′
~ ↔

r′
r
~

while inserting the long flips r
~↔ ~↔ r′

~ and
r
r′
~
↔ r′

r
~

. Finally,

we use the bridges B1, . . . ,Bn−2 to connect the resulting cycle to the cycles Hv1 , . . . ,Hvn−2

by exchanging their short flips with their long flips.

Hr̂

∗

∗r
′

f̊

F(Xr̂)

∗

∗r
Hr̂′

F(Xr̂′)

f̊ ′

∗r
′

∗r
r′

∗r
′r

∗r ∗
g

Hr Hr′

f f ′

Fr(XV) Fr′(XV)

B̊1[r
′] B̊1[v1] Hv̂1 B̊2[v1]

F(Xv̂1)

Hv1

Fv1(XV)

B1[r
′] B1[v1]B1 B2[v1] B2

F(Xv̂n−2)

Hv̂n−2B̊n−2[vn−2]

Hvn−2

Fvn−2(XV)

Bn−2[vn−2]Bn−2

↓o ↓o ↓o ↓o

Figure 15. Construction of a Hamiltonian cycle in F(XV) when r′′ = r.
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Figure 16. Construction of a Hamiltonian cycle in F(XV) when r′′ /∈ {r, r′}.

Case 2: r′′ /∈ {r, r′}. Let v1, . . . , vn−3 be an arbitrary ordering of V r {∗, r, r′, r′′},
and B1, . . . ,Bn−3 any bridges such that the root of Bi is {vi−1, vi} (where we set v0 = r′′).
We now choose inductively a Hamiltonian cycle Hv̂ in each flip graph F(Xv̂) for all
v ∈ V r {∗, r′} as follows.

(i) In F(Xr̂), we choose a cycleHr̂ containing the short flip f̊ and the long flip ~↔ r′′
~ .

(ii) In F(Xr̂′′), we choose a cycle Hr̂′′ containing a short flip h̊ with root r′, the short

flip B̊1[r′′] and the long flip ~↔ r
~.

(iii) In F(Xv̂i) for i ∈ [n − 4], we choose a cycle Hv̂i containing the short flips B̊i[vi]

and B̊i+1[vi].

(iv) In F(Xv̂n−3), we choose a cycle Hv̂n−3 containing the short flip B̊n−3[vn−3] and a

short flip k̊ with root r′.

Each Hamiltonian cycle Hv̂ in F(Xv̂) induces a Hamiltonian cycle Hv in Fv(XV) (just
add v at the root in all spines). From these Hamiltonian cycles, we construct the cycle
illustrated in Figure 16. We still have to enlarge this cycle to cover Fr′(XV). Let h′

and k′ denote the short flips in Fr′(XV) parallel to the short flips h and k respectively.

Since r′′ 6= vn−3, the root w′ of f̊ ′ cannot coincide with both. Assume for example
that w′ 6= r′′. By induction, we can then find a Hamiltonian cycleHr̂′ of F(Xr̂′) containing

both f̊ ′ and h̊′. This cycle induces a Hamiltonian cycle Hr′ of Fr′(XV) passing through f ′

and h′. We can then connect this cycle to the cycle of Figure 16 by exchanging the parallel
short flips h and h′ by the corresponding parallel long flips. In the situation when w′ = r′′,
we have w′ 6= vn−3 and we argue similarly by attaching Fr′(XV) to k instead of h. �

4.5. Graph with at most 6 vertices. Again we will focus on connected graphs because
of Corollary 26. The analysis for graphs with at most 3 vertices is immediate. We now
treat separately the graphs with 4, 5 and 6 vertices, which are not stars (stars have been
treated in the previous section).

4.5.1. Graphs with 4 vertices. We consider all possible connected graphs on 4 vertices
and exhibit explicit Hamiltonian cycles of their flip graphs. To do so, we could draw a
cycle of spines as in Figure 14 (middle). Instead, we rather draw the Hamiltonian cycle in
the flip graph F(G) represented as the 1-skeleton of the graph associahedron Asso(G) as
in Figure 14 (right). Let us recall from [CD06] that the graph associahedron Asso(G) is
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obtained from the standard simplex 4V := conv {ev | v ∈ V} (where (ev)v∈V denotes the
canonical basis of RV) by successive truncations of the faces 4Vrt = conv {ev | v ∈ V r t}
for the tubes t of G, in decreasing order of dimension. Each tube t of G corresponds to
a facet Ft of Asso(G), and each maximal tubing T corresponds to the vertex of Asso(G)
which belongs to all facets Ft for t ∈ T. In Figure 17 (right), we label the positions of the
vertices of 4V before the truncations. The fixed-root subgraphs appear as the 1-skeleta
of the four shaded faces of G, and the bridges are the five thin parallelograms (the short
flips correspond to their short sides, and the long flips correspond to their long sides).

3
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1 4
G =

2

3

1
4

Asso(G) =

1 2

3 4

1

4

11

2

Figure 17. Correspondence between vertices of Asso(G) and spines on G.

Using these conventions, Figure 18 represents Hamiltonian cycles for the flip graphs
on all connected graphs on 4 vertices (the 4-star was already treated in Figure 14). The
Hamiltonian cycles, together with their orbits under the action of the isomorphism group
of the corresponding graph, prove the following statements, which imply Theorem 23 for
all graphs on 4 vertices.

Proposition 32. (a) For any graph G on at most 4 vertices, any pair of short flips
(even with the same root) is contained in a Hamiltonian cycle of F(G).

(b) For the stars on 3 and 4 vertices, each triple consisting of two short flips (even with
the same root) and one long flip as in Proposition 31 is contained in a Hamiltonian
cycle of F(G).

(c) For the classical 3-dimensional (path) associahedron, there exists a Hamiltonian
cycle containing simultaneously all short flips.

(d) For all connected graphs on 4 vertices, there exists a Hamiltonian cycle of F(G)
containing at least one short flip in each fixed-root subgraph. We can even preserve
this property if we impose the Hamiltonian cycle to pass through one distinguished
short flip.

4.5.2. Graphs with 5 vertices. Graphs on 5 vertices are treated by a case analysis. As in
the proof of Lemma 27, by D we will denote the set of totally disconnecting pairs of G,
i.e., pairs {x, y} of vertices of G such that G r {x, y} has no edge. Recall from the proof
of Lemma 27 that D has at most two elements and that they are not disjoint.

Consider now a graph G on 5 vertices. According to Remark 28, the proof of Section 4.3
applies in various configurations. We treat here the remaining cases. As we observed in
Proposition 32 (a) that, for any connected graph G on at most 4 vertices, any pair of
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Figure 18. Hamiltonian cycles showing Proposition 32. Each vertex of
the graph associahedra corresponds to a spine as explained in Figure 17.

short flips (even with the same root) is contained in a Hamiltonian cycle of F(G), we
can ignore Condition (4.3) in the definition of conflict. We therefore say that a vertex w
and a short flip g with root v are in conflict if G r {v, w} has a single edge which is
the short leaf of g, and w is a child of v. With this definition, there is only one bridge
connecting Fv(G) and Fw(G), but we cannot use it if we want the short flip g to belong
to the Hamiltonian cycle. One can check that the conclusions of Lemmas 29 and 30 still
hold in this situation.

We first suppose that D = {{x, y}} is a singleton and that either x or y is in conflict
with both f and f ′. Checking all connected graphs on five vertices, we see that this
situation can only happen for the following graphs:

G1 =
v w

u
x

y

G2 =
v w

u
x

y

G3 =
v w

u
x

y

G4 =
v w

u
x

y

.

For each one, we explain how to prove Theorem 23.

G = G1: The only possible conflicts are between x and a short flip with root v or w.
Thus, up to isomorphism of the graph, the only instance of Theorem 23 fitting to
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the configuration we are looking at is given by

f =

v

x

yw u

and f ′ =

w

x

yv u

.

Observe that there exist bridges Bv,Bu,By with respective roots {w, v}, {w, u},
{w, y} and a bridge B with root {u, x}. Notice that the fixed root subgraph Fw(G1)
is isomorphic to the classical (path) associahedron so that Proposition 32 (c) en-
sures that there exists a Hamiltonian cycle Hw of the flip graph Fw(G1) containing
all the short flips f ,Bv[w],Bu[w],By[w]. Moreover Proposition 32 (a) ensures that
there exists a Hamiltonian cycle Hy (respectively Hx) of the flip graph Fy(G1)
(respectively Fx(G1) ) containing the short flip By[y] (respectively B[x]). Propo-
sition 32 (a) again gives us a Hamiltonian cycle Hu (respectively Hv) of the flip
graph Fu(G1) (respectively Fv(G1)) containing the two short flips Bu[u] and B[u]
(respectively f ′ and Bv[v]). Note that the short flips of the bridges are all distinct
since u, v and w do no disconnect the graph. Gluing all the Hamiltonian cycles
of the fixed root subgraphs along the bridges as explained in Section 4.1 gives a
Hamiltonian cycle of F(G1) containing f and f ′.

G = G2: The only possible conflicts are between x and a short flip with root v or w.
Thus, up to isomorphism of the graph, the only instance of Theorem 23 fitting to
the configuration we are looking at is given by

f =

v

x

yw u

and f ′ =

w

x

yv u

.

Observe that there exists a bridge B with root {u, x}. Notice that the fixed
root subgraph Fw(G1) is isomorphic to the graph associahedron of a connected
graph on 4 vertices so that Proposition 32 (d) ensures that there exists a Hamil-
tonian cycle Hw of the flip graph Fw(G2) containing the short flip f and three
short flips Bv[w],Bu[w],By[w] of some bridges Bv,Bu,By whose respective roots
are {w, v}, {w, u}, {w, y}. Moreover Proposition 32 (a) ensures that there ex-
ists a Hamiltonian cycle Hy (respectively Hx) of the flip graph Fy(G2) (respec-
tively Fx(G2)) containing the short flip By[y] (respectively B[x]). Propos-
ition 32 (a) again gives us a Hamiltonian cycle Hu (respectively Hv) of the flip
graph Fu(G2) (respectively Fv(G2)) containing the two short flips Bu[u] and B[u]
(respectively f ′ and Bv[v]). Note that the short flips of the bridges are all distinct
since u, v and w do no disconnect the graph. Gluing all the Hamiltonian cycles
of the fixed root subgraphs along the bridges as explained in Section 4.1 gives a
Hamiltonian cycle of F(G2) containing f and f ′.

G = G3: The analysis is identical to the case G = G1.

G = G4: The analysis is identical to the case G = G2.
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We now suppose that G has 5 vertices and that D = {{x, y}, {x, z}}. Since all edges
either contain x or both y and z, G is one of the following graphs:

G5 =
vu

x
zy

G6 =
vu

x
zy

.

We note that in both of them, the only possible conflicts are between x and short flips
with root either u or v. Indeed, {x, u} and {x, v} are the only pairs of vertices disjoint
from exactly one edge, and the fixed-root subgraphs Fx(G5) and Fx(G6) are reduced to
single flips. Using Remark 28, we can restrict ourselves to the cases in which x /∈ {v1, v5}.
Again we treat the two graphs separately:

G = G5: Notice that the fixed-root subgraphs Fy(G5) and Fz(G5) both are isomor-
phic to the flip graph of a star on 4 vertices with central vertex x. So given a
short flip h (respectively k) with roots y (respectively z), Proposition 31 provides
us with a Hamiltonian cycle Hy (respectively Hz) of Fy(G5) (respectively Fz(G5))
containing h (respectively k) and the flip of Fy(G5) (respectively Fz(G5)) cor-
responding to the long flip of F(G5[ŷ]) (respectively F(G5[ŷ])) with root {x, z}
(respectively {x, y}). Then gluing together the cyclesHy andHz and the fixed-root
subgraph Fx(G5) as in Figure 19 gives a tool to deal with the remaining config-
urations, always with the strategy of gluing Hamiltonian cycles of the fixed-root
subgraphs along bridges.

Fy(G5) Fz(G5)

Hy Hz

Fx(G5)

kh

y

y

y

y

y

y

x

u v z

x x

x

xx

u u

u

uu v v

v

vv

z

z

z
z

z

Figure 19. How to glue together the flip graphs Fy(G5),Fx(G5) and Fz(G5).

G = G6: Observe that both fixed-root subgraphs Fu(G6) and Fv(G6) are isomorphic
to the classical (path) associahedron. Thus as soon as one of the short flips f
and f ′ is not in conflict with x, one can find an arrangement of the vertices in the
same way as when we treated the graph G2 and G4 (without the intermediary of
the vertex u) which always makes our strategy work. We thus only need to deal
with the case where x is in conflict with both f and f ′, which corresponds to a
single instance of Theorem 23, checked by hand in Figure 20.
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Figure 20. The flip graph F(G6) represented as the 1-skeleton of the
graph associahedron Asso(G6), visualized by its Schlegel diagram. The
(blue) Hamiltonian cycle passes through the only two short flips in con-
flict with x (in red).

4.5.3. Graphs with 6 vertices. To finish, we need to deal with the case where G has 6
vertices, D = {{x, y}, {x, z}} and x is in conflict with both f and f ′. Again G can only
be one of the two following graphs:

G7 =
wvu

x
zy

G8 =
wvu

x
zy

.

The graph G7 is treated exactly as G5, using Remark 28 instead of Proposition 32 to
restrict the number of cases to analyze. In the case of G8, there is again a single difficult
instance which can be treated by hand (since the graph associahedron Asso(G8) has 236
vertices, we do not include here the resulting picture).
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