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Skew Gelfand-Tsetlin patterns

A Gelfand-Tsetlin pattern, or GT-patterns for short, is a
triangular or parallelogram arrangement of non-negative
numbers,
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A bijection
The skew shape defined by row j and j + 1 in a GT-pattern G
describes which boxes in a tableau T that have content j. In
particular, if the bottom row in G is µ and the top row is λ, then
T has shape λ/µ. Here is an example of this correspondence:
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The concatenation operator �
The � operator denotes the elementwise addition of GT-patterns.
Hence, the �-sum of any two Young tableaux is a new Young
tableau.

Observation: Every skew semi-standard Young tableaux of shape
kλ/kµ can be “decomposed” as k tableaux of shape λ/µ:
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Here, λ/µ = (4, 3, 3, 1)/(2, 1) and k = 3.



Gelfand-Tsetlin polytopes

Consider an m × n GT-pattern, with top and bottom row λ resp.
µ. The GT-inequalities defines a convex polytope, Pλ/µ ⊂ Rmn .

The integer points in Pλ/µ corresponds to the Young tableaux
with shape λ/µ, where the entries are in the set 1, 2, . . . ,m − 1.

The observation that a tableau of shape kλ/kµ can be represented
as a �-sum of k tableaux of shape λ/µ corresponds to Pλ/µ being
integrally closed.
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Integrally closed polytopes

A convex polytope P is integrally closed if for every positive
integer k and integer point p ∈ kP, there are integer points
pj ∈ P such that

p = p1 + p2 + · · ·+ pk

All integrally closed polytopes are integral, that is, all vertices of
the polytope are integer points.

Hence all Pλ/µ are integral.
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Gelfand-Tsetlin polytopes II

Warning: New notation!

Let Pλ/µ,w be the Gelfand-Tsetlin polytope defined by the same
inequalities and equalities before, with the addition that the sum
of the entries in row j resp. row j + 1 in the pattern differ by
exactly wj .
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Here, w = (2, 2, 1, 1) and w is the type of the tableau; wj counts
the number of boxes with content j.
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Properties of Pλ/µ,w

The GT-polytopes Pλ/µ,w have strange properties.

I Some Pλ/µ,w are non-integral, (King, Tollu, Toumazet,
2004).

I All Pλ/µ,w have polynomial Ehrhart function, (Rassart,
2004).

Let w be a permutation of the entries in w. Then
I Pλ/µ,w might be integral while Pλ/µ,w is non-integral.
I The number of integer points in Pλ/µ,w and Pλ/µ,w are

always the same.
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Main conjectures

Conjecture
All integral Pλ/µ,w are integrally closed.

Let P�λ/µ,w be the convex hull of the integer points in Pλ/µ,w.
Note P�λ/µ,w ⊆ Pλ/µ,w.

Conjecture
All P�λ/µ,w are integrally closed.
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Results so far (arXiv:1405.4718)

Theorem (A. 2014)
All P�λ/µ,1 are compressed. This implies integrally closedness.

Note that the polytope P�λ/µ,1 is always non-empty and that
integer points in this polytope correspond to standard Young
tableaux of shape λ/µ.
An integral polytope is compressed if all pulling triangulations
are unimodular.

Corollary: All integral points in P�λ/µ,1 are vertices.



Special cases

Proposition (A. 2014)
If λ/µ is a skew Young diagram without any 2× 2-arrangement
of boxes, then Pλ/µ,w is integral and integrally closed.

Proposition (A. 2014)
Pλ,1 is non-integral whenever λ1 ≥ λ2 > λ3 ≥ 1.
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Refinement results
Partial order <ref with respect to composition refinements of w:

Proposition (A. 2014)
Let w′ <ref w and let P = Pλ/µ,w ⊂ Rd and P ′ = Pλ/µ,w′ ⊂ Rd′ .
Then
1. |P ′ ∩ Zd′ | is greater or equal to |P ∩ Zd |. (Trivial)
2. If P ′ is empty, then P is empty. (Trivial)
3. If P ′ is integral, then P is integral.
4. If P ′ is integrally closed, then so is P.

Conjecture

5. If P ′ is a unimodular simplex, then P is a unimodular
simplex.



(Part of the) general picture
Non-skew case λ = 431, and w in the boxes.
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Further questions

1. Are all coefficient in the Ehrhart polynomials obtained from
Pλ/µ,w and P�λ/µ,w non-negative?

2. The Gelfand-Tsetlin patterns discussed here are associated
with Lie algebras of type An . There are polytopes similar to
GT-polytopes for other types. Same phenomenon?

3. The Littlewood-Richardson coefficients can also be
interpreted as the number of integer points in certain
polytopes, for example BZ-polytopes or hive polytopes.
Same phenomenon here?

4. Hint about Kronecker coefficients?
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The end

Thank you for yourtime


