## Gelfand-Tsetlin Polytopes

Per Alexandersson, September 2014

Based on Gelfand-Tsetlin patterns, integrally closedness and compressed polytopes, arXiv:1405.4718

## Skew Gelfand-Tsetlin patterns

A *Gelfand-Tsetlin pattern*, or GT-patterns for short, is a triangular or parallelogram arrangement of non-negative numbers,



for all values of i, j where the indexing is defined.

## A BIJECTION

The skew shape defined by row j and j + 1 in a GT-pattern G describes which boxes in a tableau T that have content j. In particular, if the bottom row in G is  $\mu$  and the top row is  $\lambda$ , then T has shape  $\lambda/\mu$ . Here is an example of this correspondence:



## The concatenation operator $\boxtimes$

The  $\boxtimes$  operator denotes the elementwise addition of GT-patterns. Hence, the  $\boxtimes$ -sum of any two Young tableaux is a new Young tableau.

Observation: Every skew semi-standard Young tableaux of shape  $k\lambda/k\mu$  can be "decomposed" as k tableaux of shape  $\lambda/\mu$ :

|   |   |   |   |   |   | 1 | 1 | 1 | 1 | 1 | 5 |
|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   | 1 | 1 | 1 | 3 | 3 | 3 |   |   |   |
| 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 5 |   |   |   |
| 2 | 4 | 5 |   |   |   |   |   |   |   |   |   |



=

Here,  $\lambda/\mu = (4, 3, 3, 1)/(2, 1)$  and k = 3.

Consider an  $m \times n$  GT-pattern, with top and bottom row  $\lambda$  resp.  $\mu$ . The GT-inequalities defines a convex polytope,  $\mathcal{P}_{\lambda/\mu} \subset \mathbb{R}^{mn}$ . The integer points in  $\mathcal{P}_{\lambda/\mu}$  corresponds to the Young tableaux with shape  $\lambda/\mu$ , where the entries are in the set 1, 2, ..., m-1. Consider an  $m \times n$  GT-pattern, with top and bottom row  $\lambda$  resp.  $\mu$ . The GT-inequalities defines a convex polytope,  $\mathcal{P}_{\lambda/\mu} \subset \mathbb{R}^{mn}$ . The integer points in  $\mathcal{P}_{\lambda/\mu}$  corresponds to the Young tableaux with shape  $\lambda/\mu$ , where the entries are in the set  $1, 2, \ldots, m-1$ . The observation that a tableau of shape  $k\lambda/k\mu$  can be represented as a  $\boxtimes$ -sum of k tableaux of shape  $\lambda/\mu$  corresponds to  $\mathcal{P}_{\lambda/\mu}$  being integrally closed.

## INTEGRALLY CLOSED POLYTOPES

A convex polytope  $\mathcal{P}$  is *integrally closed* if for every positive integer k and integer point  $p \in k\mathcal{P}$ , there are integer points  $p_j \in \mathcal{P}$  such that

 $p = p_1 + p_2 + \dots + p_k$ 

#### INTEGRALLY CLOSED POLYTOPES

A convex polytope  $\mathcal{P}$  is *integrally closed* if for every positive integer k and integer point  $p \in k\mathcal{P}$ , there are integer points  $p_j \in \mathcal{P}$  such that

$$p = p_1 + p_2 + \dots + p_k$$

All integrally closed polytopes are *integral*, that is, all vertices of the polytope are integer points.

Hence all  $\mathcal{P}_{\lambda/\mu}$  are integral.

## Gelfand-Tsetlin polytopes II

WARNING: NEW NOTATION!

Let  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  be the Gelfand-Tsetlin polytope defined by the same inequalities and equalities before, with the addition that the sum of the entries in row j resp. row j + 1 in the pattern differ by exactly  $w_j$ .

## Gelfand-Tsetlin polytopes II

WARNING: NEW NOTATION!

Let  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  be the Gelfand-Tsetlin polytope defined by the same inequalities and equalities before, with the addition that the sum of the entries in row j resp. row j + 1 in the pattern differ by exactly  $w_j$ .



Here,  $\mathbf{w} = (2, 2, 1, 1)$  and  $\mathbf{w}$  is the *type* of the tableau;  $w_j$  counts the number of boxes with content j.

## Properties of $\mathcal{P}_{\lambda/\mu,w}$

The GT-polytopes  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  have strange properties.

## Properties of $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$

The GT-polytopes  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  have strange properties.

- Some  $\mathcal{P}_{\lambda/\mu, \mathbf{w}}$  are non-integral, (King, Tollu, Toumazet, 2004).
- ► All  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  have polynomial Ehrhart function, (*Rassart*, 2004).

## Properties of $\mathcal{P}_{\boldsymbol{\lambda}/\boldsymbol{\mu},\mathbf{w}}$

The GT-polytopes  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  have strange properties.

- Some  $\mathcal{P}_{\lambda/\mu, \mathbf{w}}$  are non-integral, (King, Tollu, Toumazet, 2004).
- ► All  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  have polynomial Ehrhart function, (*Rassart*, 2004).

Let  $\overline{\mathbf{w}}$  be a permutation of the entries in  $\mathbf{w}$ . Then

- ▶  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  might be integral while  $\mathcal{P}_{\lambda/\mu,\overline{\mathbf{w}}}$  is non-integral.
- ► The number of integer points in  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  and  $\mathcal{P}_{\lambda/\mu,\overline{\mathbf{w}}}$  are always the same.

## MAIN CONJECTURES

Conjecture

All integral  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  are integrally closed.

## MAIN CONJECTURES

Conjecture

All integral  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  are integrally closed.

Let  $\mathcal{P}^{\diamond}_{\lambda/\mu,\mathbf{w}}$  be the convex hull of the integer points in  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ . Note  $\mathcal{P}^{\diamond}_{\lambda/\mu,\mathbf{w}} \subseteq \mathcal{P}_{\lambda/\mu,\mathbf{w}}$ .

## MAIN CONJECTURES

#### Conjecture

All integral  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  are integrally closed.

Let  $\mathcal{P}^{\diamond}_{\lambda/\mu,\mathbf{w}}$  be the convex hull of the integer points in  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ . Note  $\mathcal{P}^{\diamond}_{\lambda/\mu,\mathbf{w}} \subseteq \mathcal{P}_{\lambda/\mu,\mathbf{w}}$ .

#### Conjecture

All  $\mathcal{P}^{\diamond}_{\boldsymbol{\lambda}/\boldsymbol{\mu},\mathbf{w}}$  are integrally closed.

## RESULTS SO FAR (ARXIV:1405.4718)

#### Theorem (A. 2014)

All  $\mathcal{P}^{\diamond}_{\lambda/\mu,1}$  are *compressed*. This implies integrally closedness.

Note that the polytope  $\mathcal{P}^{\diamond}_{\lambda/\mu,1}$  is always non-empty and that integer points in this polytope correspond to *standard* Young tableaux of shape  $\lambda/\mu$ .

An integral polytope is compressed if all *pulling triangulations* are *unimodular*.

Corollary: All integral points in  $\mathcal{P}^{\diamond}_{\lambda/\mu,1}$  are vertices.

#### Proposition (A. 2014)

If  $\lambda/\mu$  is a skew Young diagram without any 2 × 2-arrangement of boxes, then  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  is integral and integrally closed.

#### Proposition (A. 2014)

If  $\lambda/\mu$  is a skew Young diagram without any 2 × 2-arrangement of boxes, then  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  is integral and integrally closed.

Proposition (A. 2014)

 $\mathcal{P}_{\lambda,1}$  is non-integral whenever  $\lambda_1 \geq \lambda_2 > \lambda_3 \geq 1$ .

#### REFINEMENT RESULTS

Partial order  $<_{\rm ref}$  with respect to composition refinements of w:

#### Proposition (A. 2014)

Let  $\mathbf{w}' <_{\text{ref}} \mathbf{w}$  and let  $P = \mathcal{P}_{\boldsymbol{\lambda}/\boldsymbol{\mu},\mathbf{w}} \subset \mathbb{R}^d$  and  $P' = \mathcal{P}_{\boldsymbol{\lambda}/\boldsymbol{\mu},\mathbf{w}'} \subset \mathbb{R}^{d'}$ . Then

- 1.  $|P' \cap \mathbb{Z}^{d'}|$  is greater or equal to  $|P \cap \mathbb{Z}^{d}|$ . (Trivial)
- 2. If P' is empty, then P is empty. (Trivial)
- 3. If P' is integral, then P is integral.
- 4. If P' is integrally closed, then so is P.

#### Conjecture

5. If P' is a unimodular simplex, then P is a unimodular simplex.

## (PART OF THE) GENERAL PICTURE

Non-skew case  $\lambda = 431$ , and w in the boxes.



1. Are all coefficient in the Ehrhart polynomials obtained from  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  and  $\mathcal{P}^{\diamond}_{\lambda/\mu,\mathbf{w}}$  non-negative?

- 1. Are all coefficient in the Ehrhart polynomials obtained from  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  and  $\mathcal{P}^{\diamond}_{\lambda/\mu,\mathbf{w}}$  non-negative?
- 2. The Gelfand-Tsetlin patterns discussed here are associated with Lie algebras of type  $A_n$ . There are polytopes similar to GT-polytopes for other types. Same phenomenon?

- 1. Are all coefficient in the Ehrhart polynomials obtained from  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  and  $\mathcal{P}^{\diamond}_{\lambda/\mu,\mathbf{w}}$  non-negative?
- 2. The Gelfand-Tsetlin patterns discussed here are associated with Lie algebras of type  $A_n$ . There are polytopes similar to GT-polytopes for other types. Same phenomenon?
- 3. The Littlewood-Richardson coefficients can also be interpreted as the number of integer points in certain polytopes, for example BZ-polytopes or hive polytopes. Same phenomenon here?

- 1. Are all coefficient in the Ehrhart polynomials obtained from  $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$  and  $\mathcal{P}^{\diamond}_{\lambda/\mu,\mathbf{w}}$  non-negative?
- 2. The Gelfand-Tsetlin patterns discussed here are associated with Lie algebras of type  $A_n$ . There are polytopes similar to GT-polytopes for other types. Same phenomenon?
- 3. The Littlewood-Richardson coefficients can also be interpreted as the number of integer points in certain polytopes, for example BZ-polytopes or hive polytopes. Same phenomenon here?
- 4. Hint about Kronecker coefficients?

THE END

# THANK YOU FOR YOUR TIME