Gelfand-Tsetlin Polytopes

Per Alexandersson, September 2014

Based on Gelfand-Tsetlin patterns, integrally closedness and compressed polytopes, arXiv:1405.4718

Skew Gelfand-Tsetlin patterns

A Gelfand-Tsetlin pattern, or GT-patterns for short, is a triangular or parallelogram arrangement of non-negative numbers,

$$
\begin{aligned}
& x_{1}^{m} \quad x_{2}^{m} \quad \cdots \quad \cdots \quad x_{n}^{m} \\
& \begin{array}{lllllllllll}
\cdot & & \ddots & & & & & & \ddots & \\
& x_{1}^{2} & & x_{2}^{2} & & \cdots & & \cdots & & x_{n}^{2} & \\
& & x_{1}^{1} & & x_{2}^{1} & & \cdots & & \cdots & & x_{n}^{1}
\end{array}
\end{aligned}
$$

satisfying

$$
x_{j}^{i+1} \geq x_{j}^{i} \text { and } x_{j}^{i} \geq x_{j+1}^{i+1}
$$

for all values of i, j where the indexing is defined.

A Bijection

The skew shape defined by row j and $j+1$ in a GT-pattern G describes which boxes in a tableau T that have content j. In particular, if the bottom row in G is $\boldsymbol{\mu}$ and the top row is $\boldsymbol{\lambda}$, then T has shape $\boldsymbol{\lambda} / \boldsymbol{\mu}$. Here is an example of this correspondence:

The concatenation operator \boxtimes

The \boxtimes operator denotes the elementwise addition of GT-patterns. Hence, the \boxtimes-sum of any two Young tableaux is a new Young tableau.

Observation: Every skew semi-standard Young tableaux of shape $k \boldsymbol{\lambda} / k \boldsymbol{\mu}$ can be "decomposed" as k tableaux of shape $\boldsymbol{\lambda} / \boldsymbol{\mu}$:

						1	1	1	$\begin{array}{l\|l\|l} 1 & 1 & 5 \\ \hline \end{array}$	
			1	1	1	3	3	3		
1	2	2	2	2	2	4	4	5		
2	4	5								

Here, $\boldsymbol{\lambda} / \boldsymbol{\mu}=(4,3,3,1) /(2,1)$ and $k=3$.

Gelfand-Tsetlin polytopes

Consider an $m \times n$ GT-pattern, with top and bottom row $\boldsymbol{\lambda}$ resp. $\boldsymbol{\mu}$. The GT-inequalities defines a convex polytope, $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}} \subset \mathbb{R}^{m n}$.
The integer points in $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}}$ corresponds to the Young tableaux with shape $\boldsymbol{\lambda} / \boldsymbol{\mu}$, where the entries are in the set $1,2, \ldots, m-1$.

Gelfand-Tsetlin polytopes

Consider an $m \times n$ GT-pattern, with top and bottom row $\boldsymbol{\lambda}$ resp. $\boldsymbol{\mu}$. The GT-inequalities defines a convex polytope, $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}} \subset \mathbb{R}^{m n}$. The integer points in $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}}$ corresponds to the Young tableaux with shape $\boldsymbol{\lambda} / \boldsymbol{\mu}$, where the entries are in the set $1,2, \ldots, m-1$.

The observation that a tableau of shape $k \boldsymbol{\lambda} / k \boldsymbol{\mu}$ can be represented as a \boxtimes-sum of k tableaux of shape $\boldsymbol{\lambda} / \boldsymbol{\mu}$ corresponds to $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}}$ being integrally closed.

Integrally closed polytopes

A convex polytope \mathcal{P} is integrally closed if for every positive integer k and integer point $p \in k \mathcal{P}$, there are integer points
$p_{j} \in \mathcal{P}$ such that

$$
p=p_{1}+p_{2}+\cdots+p_{k}
$$

Integrally closed polytopes

A convex polytope \mathcal{P} is integrally closed if for every positive integer k and integer point $p \in k \mathcal{P}$, there are integer points
$p_{j} \in \mathcal{P}$ such that

$$
p=p_{1}+p_{2}+\cdots+p_{k}
$$

All integrally closed polytopes are integral, that is, all vertices of the polytope are integer points.

Hence all $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}}$ are integral.

Gelfand-Tsetlin polytopes II

WARNING: New notation!
Let $\mathcal{P}_{\boldsymbol{\lambda} / \mu, \mathbf{w}}$ be the Gelfand-Tsetlin polytope defined by the same inequalities and equalities before, with the addition that the sum of the entries in row j resp. row $j+1$ in the pattern differ by exactly w_{j}.

Gelfand-Tsetlin polytopes II

Warning: New notation!
Let $\mathcal{P}_{\boldsymbol{\lambda} / \mu, \mathbf{w}}$ be the Gelfand-Tsetlin polytope defined by the same inequalities and equalities before, with the addition that the sum of the entries in row j resp. row $j+1$ in the pattern differ by exactly w_{j}.

Here, $\mathbf{w}=(2,2,1,1)$ and \mathbf{w} is the type of the tableau; w_{j} counts the number of boxes with content j.

Properties of $\mathcal{P}_{\boldsymbol{\lambda} / \mu, \mathrm{w}}$

The GT-polytopes $\mathcal{P}_{\boldsymbol{\lambda} / \mu, \mathrm{w}}$ have strange properties.

Properties of $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$

The GT-polytopes $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathrm{w}}$ have strange properties.

- Some $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathbf{w}}$ are non-integral, (King, Tollu, Toumazet, 2004).
- All $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ have polynomial Ehrhart function, (Rassart, 2004).

Properties of $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$

The GT-polytopes $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ have strange properties.

- Some $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ are non-integral, (King, Tollu, Toumazet, 2004).
- All $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ have polynomial Ehrhart function, (Rassart, 2004).

Let $\overline{\mathbf{w}}$ be a permutation of the entries in \mathbf{w}. Then

- $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ might be integral while $\mathcal{P}_{\lambda / \mu, \overline{\mathbf{w}}}$ is non-integral.
- The number of integer points in $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathrm{w}}$ and $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \overline{\mathrm{w}}}$ are always the same.

Main conjectures

Conjecture

All integral $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ are integrally closed.

Main conjectures

Conjecture

All integral $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ are integrally closed.

Let $\mathcal{P}_{\boldsymbol{\lambda} / \mu, \mathbf{w}}^{\diamond}$ be the convex hull of the integer points in $\mathcal{P}_{\boldsymbol{\lambda} / \mu, \mathbf{w}}$. Note $\mathcal{P}_{\lambda / \mu, \mathbf{w}}^{\alpha} \subseteq \mathcal{P}_{\lambda / \mu, \mathbf{w}}$.

Main conjectures

Conjecture

All integral $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ are integrally closed.

Let $\mathcal{P}_{\boldsymbol{\lambda} / \mu, \mathbf{w}}^{\diamond}$ be the convex hull of the integer points in $\mathcal{P}_{\boldsymbol{\lambda} / \mu, \mathbf{w}}$. Note $\mathcal{P}_{\lambda / \mu, \mathbf{w}}^{\alpha} \subseteq \mathcal{P}_{\lambda / \mu, \mathbf{w}}$.

Conjecture

All $\mathcal{P}_{\lambda / \mu, \mathbf{w}}^{\diamond}$ are integrally closed.

Results so far (ARXIV:1405.4718)

Theorem (A. 2014)

All $\mathcal{P}_{\lambda / \mu, \mathbf{1}}^{\diamond}$ are compressed. This implies integrally closedness.
Note that the polytope $\mathcal{P}_{\lambda / \mu, 1}^{\diamond}$ is always non-empty and that integer points in this polytope correspond to standard Young tableaux of shape $\boldsymbol{\lambda} / \boldsymbol{\mu}$.
An integral polytope is compressed if all pulling triangulations are unimodular.

Corollary: All integral points in $\mathcal{P}_{\lambda / \mu, \mathbf{1}}^{\diamond}$ are vertices.

Special cases

Proposition (A. 2014)

If $\boldsymbol{\lambda} / \boldsymbol{\mu}$ is a skew Young diagram without any 2×2-arrangement of boxes, then $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathrm{w}}$ is integral and integrally closed.

Special cases

Proposition (A. 2014)
If $\boldsymbol{\lambda} / \boldsymbol{\mu}$ is a skew Young diagram without any 2×2-arrangement of boxes, then $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathrm{w}}$ is integral and integrally closed.

Proposition (A. 2014)

$\mathcal{P}_{\lambda, 1}$ is non-integral whenever $\lambda_{1} \geq \lambda_{2}>\lambda_{3} \geq 1$.

Refinement Results

Partial order $<_{\text {ref }}$ with respect to composition refinements of \mathbf{w} :
Proposition (A. 2014)
Let $\mathbf{w}^{\prime}<_{\text {ref }} \mathbf{w}$ and let $P=\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathbf{w}} \subset \mathbb{R}^{d}$ and $P^{\prime}=\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathbf{w}^{\prime}} \subset \mathbb{R}^{d^{\prime}}$. Then

1. $\left|P^{\prime} \cap \mathbb{Z}^{d^{\prime}}\right|$ is greater or equal to $\left|P \cap \mathbb{Z}^{d}\right|$. (Trivial)
2. If P^{\prime} is empty, then P is empty. (Trivial)
3. If P^{\prime} is integral, then P is integral.
4. If P^{\prime} is integrally closed, then so is P.

Conjecture

5. If P^{\prime} is a unimodular simplex, then P is a unimodular simplex.

(Part of the) general picture

Non-skew case $\boldsymbol{\lambda}=431$, and \mathbf{w} in the boxes.

11111111

Further questions

1. Are all coefficient in the Ehrhart polynomials obtained from $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ and $\mathcal{P}_{\lambda / \mu, \mathrm{w}}^{\diamond}$ non-negative?

Further questions

1. Are all coefficient in the Ehrhart polynomials obtained from $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ and $\mathcal{P}_{\lambda / \mu, \mathrm{w}}^{\diamond}$ non-negative?
2. The Gelfand-Tsetlin patterns discussed here are associated with Lie algebras of type A_{n}. There are polytopes similar to GT-polytopes for other types. Same phenomenon?

Further questions

1. Are all coefficient in the Ehrhart polynomials obtained from $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ and $\mathcal{P}_{\lambda / \mu, \mathrm{w}}^{\diamond}$ non-negative?
2. The Gelfand-Tsetlin patterns discussed here are associated with Lie algebras of type A_{n}. There are polytopes similar to GT-polytopes for other types. Same phenomenon?
3. The Littlewood-Richardson coefficients can also be interpreted as the number of integer points in certain polytopes, for example BZ-polytopes or hive polytopes. Same phenomenon here?

Further questions

1. Are all coefficient in the Ehrhart polynomials obtained from $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ and $\mathcal{P}_{\lambda / \mu, \mathrm{w}}^{\diamond}$ non-negative?
2. The Gelfand-Tsetlin patterns discussed here are associated with Lie algebras of type A_{n}. There are polytopes similar to GT-polytopes for other types. Same phenomenon?
3. The Littlewood-Richardson coefficients can also be interpreted as the number of integer points in certain polytopes, for example BZ-polytopes or hive polytopes. Same phenomenon here?
4. Hint about Kronecker coefficients?

The End

THANK YOU FOR YOUR

