Proof of two conjectures by
 B. Klopsch, A. Stasinski and C. Voll

Angela Carnevale
Università di Roma "Tor Vergata"
(joint work with F. Brenti)

73rd Séminaire Lotharingien de Combinatoire
 September 92014

Conjectures

The aim of this talk is to state and prove two conjectures by B. Klopsch, A. Stasinski and C. Voll, about a generating function, over arbitrary quotients of the symmetric and hyperoctahedral groups, involving a new statistic.

Conjectures

The aim of this talk is to state and prove two conjectures by B. Klopsch, A. Stasinski and C. Voll, about a generating function, over arbitrary quotients of the symmetric and hyperoctahedral groups, involving a new statistic.

We call this statistic, defined on both S_{n} and B_{n}, Odd Length.

Notation

Notation:

- $\mathbb{P}:=\{1,2, \ldots\}$
- $\mathbb{N}:=\mathbb{P} \cup\{0\}$
- $[m, n]:=\{m, m+1, \ldots, n\}$, for all $m, n \in \mathbb{Z}, m \leq n$
- $[n]:=[1, n]$
- $[n]_{q}:=\frac{1-q^{n}}{1-q}$
- $[n]_{q}!:=\prod_{i=1}^{n}[i]_{q} \quad[0]_{q}!:=1$.
$\bullet\left[\begin{array}{c}n \\ n_{1}, \ldots, n_{k}\end{array}\right]_{q}:=\frac{[n]_{q}!}{\left[n_{\mathbf{1}}\right]_{q} \cdot \ldots \cdot\left[n_{k}\right]_{q}!}$, for $n_{1}, \ldots, n_{k} \in \mathbb{N}$ such that $\sum_{i=\mathbf{1}}^{k} n_{i}=n$.

Notation and preliminaries

The symmetric group S_{n} is the group of permutations of the set [n]. For $\sigma \in S_{n}$ we use the one-line notation $\sigma=[\sigma(1), \ldots, \sigma(n)]$.
We let s_{1}, \ldots, s_{n-1} denote the standard generators of $S_{n}, s_{i}=(i, i+1)$.

Notation and preliminaries

The symmetric group S_{n} is the group of permutations of the set [n]. For $\sigma \in S_{n}$ we use the one-line notation $\sigma=[\sigma(1), \ldots, \sigma(n)]$.
We let s_{1}, \ldots, s_{n-1} denote the standard generators of $S_{n}, s_{i}=(i, i+1)$.
We usually identify S with $[n-1]$, and for $I \subseteq S$, we write $I=\left[a_{1}, b_{1}\right] \cup \ldots \cup\left[a_{s}, b_{s}\right]$ and call $\left[a_{i}, b_{i}\right]$ connected components of I.

Notation and preliminaries

The symmetric group S_{n} is the group of permutations of the set [n]. For $\sigma \in S_{n}$ we use the one-line notation $\sigma=[\sigma(1), \ldots, \sigma(n)]$.
We let s_{1}, \ldots, s_{n-1} denote the standard generators of $S_{n}, s_{i}=(i, i+1)$.
We usually identify S with $[n-1]$, and for $I \subseteq S$, we write $I=\left[a_{1}, b_{1}\right] \cup \ldots \cup\left[a_{s}, b_{s}\right]$ and call $\left[a_{i}, b_{i}\right]$ connected components of I.
For (W, S) a Coxeter system we let ℓ be the Coxeter length and for $I \subseteq S$ we define the quotients:

$$
\begin{aligned}
& W^{\prime}:=\{w \in W: D(w) \subseteq S \backslash I\}, \\
& ' W:=\left\{w \in W: D_{L}(w) \subseteq S \backslash I\right\},
\end{aligned}
$$

Notation and preliminaries

The symmetric group S_{n} is the group of permutations of the set [n]. For $\sigma \in S_{n}$ we use the one-line notation $\sigma=[\sigma(1), \ldots, \sigma(n)]$.
We let s_{1}, \ldots, s_{n-1} denote the standard generators of $S_{n}, s_{i}=(i, i+1)$.
We usually identify S with $[n-1]$, and for $I \subseteq S$, we write $I=\left[a_{1}, b_{1}\right] \cup \ldots \cup\left[a_{s}, b_{s}\right]$ and call $\left[a_{i}, b_{i}\right]$ connected components of I.
For (W, S) a Coxeter system we let ℓ be the Coxeter length and for $I \subseteq S$ we define the quotients:

$$
\begin{aligned}
& W^{\prime}:=\{w \in W: D(w) \subseteq S \backslash I\} \\
& ' W:=\left\{w \in W: D_{L}(w) \subseteq S \backslash I\right\}
\end{aligned}
$$

where $D(w)=\{s \in S: \ell(w s)<\ell(w)\}$,
and $D_{L}(w)=\{s \in S: \ell(s w)<\ell(w)\}$, and the parabolic subgroup W_{I}
to be the subgroup generated by I.
For subsets $X \subseteq W$ we let $X^{\prime}:=X \cap W^{\prime}$.

Notation and preliminaries

Proposition
Let (W, S) be a Coxeter system, $J \subseteq S$, and $w \in W$.
Then there exist unique elements $w^{J} \in W^{J}$ and $w_{J} \in W_{J}$ (resp., ${ }^{J} w \in^{J} W$ and $j w \in W_{J}$) such that

$$
w=w^{J} w_{\jmath} \quad\left(r e s p ., w^{J} w\right)
$$

Furthermore

$$
\left.\ell(w)=\ell\left(w^{J}\right)+\ell\left(w_{J}\right)(\text { resp., } \ell(\lrcorner w)+\ell\left({ }^{J} w\right)\right)
$$

Odd Length on S_{n}

Definition (Klopsch - Voll)

Let $n \in \mathbb{N}$. The statistic $L_{A}: S_{n} \rightarrow \mathbb{N}$ is defined as follows. For $\sigma \in S_{n}$

$$
L_{A}(\sigma)=|\{(i, j) \in[n] \times[n] \mid i<j, \sigma(i)>\sigma(j), i \not \equiv j \quad(\bmod 2)\}|
$$

Odd Length on S_{n}

Definition (Klopsch - Voll)

Let $n \in \mathbb{N}$. The statistic $L_{A}: S_{n} \rightarrow \mathbb{N}$ is defined as follows. For $\sigma \in S_{n}$

$$
L_{A}(\sigma)=|\{(i, j) \in[n] \times[n] \mid i<j, \sigma(i)>\sigma(j), i \not \equiv j \quad(\bmod 2)\}|
$$

For example let $n=5, \sigma=[4,2,1,5,3]$. Then
while the L_{A} counts only inversions between positions with different parity, that is:

Odd Length on S_{n}

Definition (Klopsch - Voll)

Let $n \in \mathbb{N}$. The statistic $L_{A}: S_{n} \rightarrow \mathbb{N}$ is defined as follows. For $\sigma \in S_{n}$

$$
L_{A}(\sigma)=|\{(i, j) \in[n] \times[n] \mid i<j, \sigma(i)>\sigma(j), i \not \equiv j \quad(\bmod 2)\}|
$$

For example let $n=5, \sigma=[4,2,1,5,3]$. Then

$$
\ell(\sigma)=|\{(1,2),(1,3),(1,5),(2,3),(4,5)\}|=5,
$$

Odd Length on S_{n}

Definition (Klopsch - Voll)

Let $n \in \mathbb{N}$. The statistic $L_{A}: S_{n} \rightarrow \mathbb{N}$ is defined as follows. For $\sigma \in S_{n}$

$$
L_{A}(\sigma)=|\{(i, j) \in[n] \times[n] \mid i<j, \sigma(i)>\sigma(j), i \not \equiv j \quad(\bmod 2)\}|
$$

For example let $n=5, \sigma=[4,2,1,5,3]$. Then

$$
\ell(\sigma)=|\{(1,2),(1,3),(1,5),(2,3),(4,5)\}|=5
$$

while the L_{A} counts only inversions between positions with different parity, that is:

Odd Length on S_{n}

Definition (Klopsch - Voll)

Let $n \in \mathbb{N}$. The statistic $L_{A}: S_{n} \rightarrow \mathbb{N}$ is defined as follows. For $\sigma \in S_{n}$

$$
L_{A}(\sigma)=|\{(i, j) \in[n] \times[n] \mid i<j, \sigma(i)>\sigma(j), i \not \equiv j \quad(\bmod 2)\}|
$$

For example let $n=5, \sigma=[4,2,1,5,3]$. Then

$$
\ell(\sigma)=|\{(1,2),(1,3),(1,5),(2,3),(4,5)\}|=5
$$

while the L_{A} counts only inversions between positions with different parity, that is:
$L_{A}(\sigma)=|\{(1,2),(2,3),(4,5)\}|=3$.

Type A Conjecture

In the paper
B. Klopsch, C. Voll

Igusa-type functions associated to finite formed spaces and their functional equations.
Trans. Amer. Math. Soc., 361 (2009), no. 8, 4405-4436.
the authors defined the statistic L_{A} and formulated the following conjecture.

Type A Conjecture

Conjecture (Klopsch - Voll)

Let $n \in \mathbb{N}$ and $I \subseteq[n-1]$. Then

Type A Conjecture

Conjecture (Klopsch - Voll)

Let $n \in \mathbb{N}$ and $I \subseteq[n-1]$. Then

$$
\sum(-1)^{\ell(\sigma)} x^{L(\sigma)}=
$$

Type A Conjecture

Conjecture (Klopsch - Voll)

Let $n \in \mathbb{N}$ and $I \subseteq[n-1]$. Then

$$
\sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\tilde{m}+1}^{m}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{\left|I_{1}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\tilde{m}}{2}\right\rfloor I_{x^{2} \mid+1}\right.
$$

Type A Conjecture

Conjecture (Klopsch - Voll)

Let $n \in \mathbb{N}$ and $I \subseteq[n-1]$. Then

$$
\begin{aligned}
& \sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\tilde{m}+1}^{m}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{\left\lfloor I_{1} \mid+1\right.}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right\rfloor\right]_{x^{2}} \\
& \text { if } n=2 m+1
\end{aligned}
$$

Type A Conjecture

Conjecture (Klopsch - Voll)

Let $n \in \mathbb{N}$ and $I \subseteq[n-1]$. Then

$$
\sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\tilde{m}+1}^{m}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{\left|I_{1}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right\rfloor\right]_{x^{2}}
$$

if $n=2 m+1$,

$$
\sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\widetilde{m}+1}^{m-1}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{| |_{1} \mid+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right\rfloor\right]_{x^{2}}\left(1-x^{m}\right)
$$

Type A Conjecture

Conjecture (Klopsch - Voll)

Let $n \in \mathbb{N}$ and $I \subseteq[n-1]$. Then

$$
\sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\tilde{m}+1}^{m}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{\left|I_{1}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right\rfloor\right]_{x^{2}}
$$

$$
\text { if } n=2 m+1 \text {, }
$$

$$
\begin{aligned}
& \sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\tilde{m}+\mathbf{1}}^{m-1}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{| |_{\mathbf{1}} \mid+\mathbf{1}}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|\left.\right|_{s}\right|+\mathbf{1}}{2}\right]_{x^{2}}\left(1-x^{m}\right)\right. \\
& \text { if } n=2 m>2 \widetilde{m},
\end{aligned}
$$

Type A Conjecture

Conjecture (Klopsch - Voll)

Let $n \in \mathbb{N}$ and $I \subseteq[n-1]$. Then

$$
\sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\tilde{m}+1}^{m}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{\left|I_{1}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\tilde{m}}{2}\right\rfloor I_{x^{2} \mid+1}\right.
$$

$$
\text { if } n=2 m+1 \text {, }
$$

$$
\sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\widetilde{m}+1}^{m-1}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{| |_{1} \mid+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right\rfloor\right]_{x^{2}}\left(1-x^{m}\right)
$$

if $n=2 m>2 \widetilde{m}$,

$$
\sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\left[\left\lfloor\frac{\left|\left.\right|_{1}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\tilde{m}}{\left|\left.\right|_{s}\right|+1} 2\right]_{x^{2}}\right.
$$

Type A Conjecture

Conjecture (Klopsch - Voll)

Let $n \in \mathbb{N}$ and $I \subseteq[n-1]$. Then

$$
\sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\tilde{m}+1}^{m}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{\left|I_{1}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\tilde{m}}{2}\right\rfloor I_{x^{2} \mid+1}\right.
$$

if $n=2 m+1$,

$$
\sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\widetilde{m}+1}^{m-1}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{| |_{1} \mid+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right\rfloor\right]_{x^{2}}\left(1-x^{m}\right)
$$

if $n=2 m>2 \widetilde{m}$,

$$
\begin{aligned}
& \sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\left[\left\lfloor\frac{\left|\left.\right|_{1}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\tilde{m}}{2}\right\rfloor\right]_{x^{2}} \\
& \text { if } n=2 m=2 \widetilde{m} \text {. }
\end{aligned}
$$

Type A Conjecture

Conjecture (Klopsch - Voll)

Let $n \in \mathbb{N}$ and $I \subseteq[n-1]$. Then

$$
\begin{aligned}
& \sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\widetilde{m}+1}^{m}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{\left|I_{1}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right]_{x^{2}}\right. \\
& \text { if } n=2 m+1, \\
& \sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\widetilde{m}+1}^{m-1}\left(1-x^{2 k}\right)\left[\left\lvert\, \frac{\left|I_{1}\right|+1}{2}\right.\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right]_{x^{2}}\left(1-x^{m}\right) \\
& \text { if } n=2 m>2 \widetilde{m}, \\
& \sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\left[\left\lfloor\frac{\left|I_{1}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right\rfloor\right]_{x^{2}} \\
& \text { if } n=2 m=2 \widetilde{m} \text {. }
\end{aligned}
$$

where I_{1}, \ldots, I_{s} are the connected components of I and $\widetilde{m}:=\sum_{j=1}^{s}\left\lfloor\frac{\left|I_{j}\right|+1}{2}\right\rfloor$.

Type A Conjecture

The original definition of the statistic L_{A}, by Klopsch and Voll, was the following

$$
L_{A}(\sigma):=\sum_{I \subseteq[n-1]}(-1)^{|| |} 2^{n-2-|| |} \ell\left({ }^{\prime} \sigma\right) .
$$

Type A Conjecture

The original definition of the statistic L_{A}, by Klopsch and Voll, was the following

$$
L_{A}(\sigma):=\sum_{\subseteq \subseteq[n-1]}(-1)^{|| |} 2^{n-2-|| |} \ell\left({ }^{\prime} \sigma\right) .
$$

The conjecture arose in the field of finite formed vector spaces. More precisely it relates the statistic L_{A} to the enumeration of partial flags in a non-degenerate quadratic space.

Proof of Type A Conjecture

The proof of Conjecture 1 is based on two fundamental ideas:
the reduction of the support of the sum to smaller subsets of the quotients

Proof of Type A Conjecture

The proof of Conjecture 1 is based on two fundamental ideas:
the reduction of the support of the sum to smaller subsets of the quotients

Proof of Type A Conjecture

The proof of Conjecture 1 is based on two fundamental ideas:
the reduction of the support of the sum to smaller subsets of the quotients and a certain notion of "equivalence" between the quotients.

Tools: Reduction of the support

- Inversion around maximum

Inversion around maximum

Suppose that for $n \in \mathbb{P}, I \subseteq[n-1]$ we have a permutation $\sigma \in S_{n}^{\prime}$ such that $\sigma^{-1}(n)$ is sufficiently far from I.

Suppose that for $n \in \mathbb{P}, I \subseteq[n-1]$ we have a permutation $\sigma \in S_{n}^{\prime}$ such that $\sigma^{-1}(n)$ is sufficiently far from I.

Then we can define an involution $*: S_{n}^{\prime} \rightarrow S_{n}^{\prime}$ that switches the values around the maximum.

Suppose that for $n \in \mathbb{P}, I \subseteq[n-1]$ we have a permutation $\sigma \in S_{n}^{\prime}$ such that $\sigma^{-1}(n)$ is sufficiently far from I.

Then we can define an involution $*: S_{n}^{\prime} \rightarrow S_{n}^{\prime}$ that switches the values around the maximum.

Clearly $\ell(\sigma)=\ell\left(\sigma^{*}\right) \pm 1$, while $L(\sigma)=L\left(\sigma^{*}\right)$.

Lemma (Brenti - C.)

Let $I \subseteq[n-1]$ and $a \in[2, n-1]$ be such that $[a-2, a+1] \cap I=\emptyset$. Then

$$
\sum_{\substack{\left\{\sigma \in S_{n}^{\prime}: \\ \sigma(a)=n\right\}}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=0
$$

Tools: Reduction of the support

- Inversion around maximum

Tools: Reduction of the support

- Inversion around maximum
- Chessboard elements

Chessboard elements

We define chessboard elements of the symmetric group as follows.

Chessboard elements

We define chessboard elements of the symmetric group as follows. Let $n \in \mathbb{N}$. Set:

Chessboard elements

We define chessboard elements of the symmetric group as follows.
Let $n \in \mathbb{N}$. Set:

$$
C_{n,+}:=\left\{\sigma \in S_{n} \mid i+\sigma(i) \equiv 0(\bmod 2), i=1, \ldots, n\right\}
$$

Chessboard elements

We define chessboard elements of the symmetric group as follows.
Let $n \in \mathbb{N}$. Set:

$$
\begin{aligned}
& C_{n,+}:=\left\{\sigma \in S_{n} \mid i+\sigma(i) \equiv 0(\bmod 2), i=1, \ldots, n\right\} \text { even } \\
& C_{n,-}:=\left\{\sigma \in S_{n} \mid i+\sigma(i) \equiv 1(\bmod 2), i=1, \ldots, n\right\}
\end{aligned}
$$

Chessboard elements

We define chessboard elements of the symmetric group as follows.
Let $n \in \mathbb{N}$. Set:

$$
\begin{aligned}
C_{n,+} & :=\left\{\sigma \in S_{n} \mid i+\sigma(i) \equiv 0(\bmod 2), i=1, \ldots, n\right\} \text { even } \\
C_{n,-} & :=\left\{\sigma \in S_{n} \mid i+\sigma(i) \equiv 1(\bmod 2), i=1, \ldots, n\right\} \text { odd } \\
C_{n} & :=C_{n,+} \cup C_{n,-}
\end{aligned}
$$

Chessboard elements

We define chessboard elements of the symmetric group as follows.
Let $n \in \mathbb{N}$. Set:

$$
\begin{aligned}
C_{n,+} & :=\left\{\sigma \in S_{n} \mid i+\sigma(i) \equiv 0(\bmod 2), i=1, \ldots, n\right\} \text { even } \\
C_{n,-} & :=\left\{\sigma \in S_{n} \mid i+\sigma(i) \equiv 1(\bmod 2), i=1, \ldots, n\right\} \text { odd } \\
C_{n} & :=C_{n,+} \cup C_{n,-}
\end{aligned}
$$

For $n=2 m+1$ clearly $C_{n,-}=\emptyset$ so $C_{n}=C_{n,+}$.

Chessboard elements

We define chessboard elements of the symmetric group as follows.
Let $n \in \mathbb{N}$. Set:

$$
\begin{aligned}
C_{n,+} & :=\left\{\sigma \in S_{n} \mid i+\sigma(i) \equiv 0(\bmod 2), i=1, \ldots, n\right\} \text { even } \\
C_{n,-} & :=\left\{\sigma \in S_{n} \mid i+\sigma(i) \equiv 1(\bmod 2), i=1, \ldots, n\right\} \text { odd } \\
C_{n} & :=C_{n,+} \cup C_{n,-}
\end{aligned}
$$

For $n=2 m+1$ clearly $C_{n,-}=\emptyset$ so $C_{n}=C_{n,+}$.
E.g. Let $n=4$. $\sigma=[1,4,3,2]$ and $\tau=[2,1,4,3]$ are chessboard elements (even and odd, respectively), while $\rho=[1,3,2,4]$ is not.

Chessboard elements

Proposition
Let $I \subseteq[n-1]$. Then

$$
\sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\sum_{\sigma \in C_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}
$$

Shifting, fattening and compressing

The other idea is to do some operations on the subset $I \subseteq S$ of generators in a way that changes the quotient but doesn't affect the the generating function that we are considering:
such that

Shifting, fattening and compressing

The other idea is to do some operations on the subset $I \subseteq S$ of generators in a way that changes the quotient but doesn't affect the the generating function that we are considering:

$$
I \leadsto \tilde{I}
$$

Shifting, fattening and compressing

The other idea is to do some operations on the subset $I \subseteq S$ of generators in a way that changes the quotient but doesn't affect the the generating function that we are considering:

$$
I \leadsto \tilde{I} \text { such that } \sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\sum_{\sigma \in S_{n}^{I}}(-1)^{\ell(\sigma)} x^{L(\sigma)}
$$

Shifting, fattening and compressing

The other idea is to do some operations on the subset $I \subseteq S$ of generators in a way that changes the quotient but doesn't affect the the generating function that we are considering:

$$
I \leadsto \tilde{I} \text { such that } \sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\sum_{\sigma \in S_{n}^{I}}(-1)^{\ell(\sigma)} x^{L(\sigma)}
$$

Shifting, fattening and compressing

Proposition (Brenti - C.)
Let $I \subseteq[n-1]$, and $i \in \mathbb{P}, k \in \mathbb{N}$ be such that $[i, i+2 k]$ is a connected component of I and $i+2 k+2 \notin I$.
Then

Shifting, fattening and compressing

Proposition (Brenti - C.)

Let $I \subseteq[n-1]$, and $i \in \mathbb{P}, k \in \mathbb{N}$ be such that $[i, i+2 k]$ is a connected component of I and $i+2 k+2 \notin I$.
Then

$$
\sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\sum_{\sigma \in S_{n}^{\prime} \cup \tilde{I}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\sum_{\sigma \in S_{n}^{\tilde{I}}}(-1)^{\ell(\sigma)} x^{L(\sigma)}
$$

where $\tilde{I}:=(I \backslash\{i\}) \cup\{i+2 k+1\}$.

Shifting, fattening and compressing

Each connected component of I with an odd number of elements can be:

Shifting, fattening and compressing

Each connected component of I with an odd number of elements can be:
(0) Shifted to the right or to the left
(3) Fattened by adding one element at the beginning or at the end

Shifting, fattening and compressing

Each connected component of I with an odd number of elements can be:
(0) Shifted to the right or to the left
(2) Fattened by adding one element at the beginning or at the end

Shifting, fattening and compressing

Each connected component of I with an odd number of elements can be:
(0) Shifted to the right or to the left
(2) Fattened by adding one element at the beginning or at the end as long as it remains a connected component.

Type A Conjecture

Theorem (Brenti - C.)

Let $n \in \mathbb{N}$ and $I \subseteq[n-1]$. Then

$$
\begin{aligned}
& \sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\widetilde{m}+1}^{m}\left(1-x^{2 k}\right)\left[\left\lvert\, \frac{\left|I_{\mathbf{1}}\right|+1}{2}\right.\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right]_{x^{2}} \\
& \text { if } n=2 m+1, \\
& \sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\prod_{k=\widetilde{m}+1}^{m-1}\left(1-x^{2 k}\right)\left[\left\lfloor\frac{\left|I_{\mathbf{1}}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right]_{x^{2}}\left(1-x^{m}\right)\right. \\
& \text { if } n=2 m>2 \widetilde{m}, \\
& \sum_{\sigma \in S_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\left[\left\lfloor\frac{\left|I_{\mathbf{1}}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|I_{s}\right|+1}{2}\right\rfloor\right]_{x^{2}} \\
& \text { if } n=2 m=2 \widetilde{m} .
\end{aligned}
$$

where I_{1}, \ldots, I_{s} are the connected components of I and $\tilde{m}:=\sum_{j=\mathbf{1}}^{s}\left\lfloor\frac{\left|I_{j}\right|+\mathbf{1}}{2}\right\rfloor$.

Sketch of the proof

Given n, I :

- Reduce to chessboard elements

- Shift and compress / to the left (with some technical tricks, according to the parity

Sketch of the proof

Given n, I :

- Reduce to chessboard elements
- Shift and compress $/$ to the left (with some technical tricks, according to the parity of n)

Sketch of the proof

Given n, I :

- Reduce to chessboard elements
- Shift and compress $/$ to the left (with some technical tricks, according to the parity of n)
- Use some combinatorial features to calculate the generating function for the quotients with compressed I

Type B

The hyperoctahedral group B_{n} is the group of signed permutations, or permutations σ of the set $[-n, n]$ such that $\sigma(j)=-\sigma(-j)$. We use the window notation $[\sigma(1), \ldots, \sigma(n)]$.

Type B

The hyperoctahedral group B_{n} is the group of signed permutations, or permutations σ of the set $[-n, n]$ such that $\sigma(j)=-\sigma(-j)$. We use the window notation $[\sigma(1), \ldots, \sigma(n)]$.

The Coxeter generating set of B_{n} is $S=\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\}$, where $s_{0}=[-1,2,3, \ldots, n]$ and s_{1}, \ldots, s_{n-1} are as for S_{n}.

Type B

The hyperoctahedral group B_{n} is the group of signed permutations, or permutations σ of the set $[-n, n]$ such that $\sigma(j)=-\sigma(-j)$. We use the window notation $[\sigma(1), \ldots, \sigma(n)]$.

The Coxeter generating set of B_{n} is $S=\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\}$, where $s_{0}=[-1,2,3, \ldots, n]$ and s_{1}, \ldots, s_{n-1} are as for S_{n}.

Quotients and parabolic subgroups were already defined,
\qquad

Type B

The hyperoctahedral group B_{n} is the group of signed permutations, or permutations σ of the set $[-n, n]$ such that $\sigma(j)=-\sigma(-j)$. We use the window notation $[\sigma(1), \ldots, \sigma(n)]$.

The Coxeter generating set of B_{n} is $S=\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\}$, where $s_{0}=[-1,2,3, \ldots, n]$ and s_{1}, \ldots, s_{n-1} are as for S_{n}.

Quotients and parabolic subgroups were already defined,
in particular when $J=[n-1]$ we have that $B_{n}=B_{n}^{[n-1]}\left(B_{n}\right)_{[n-1]}$ where the parabolic subgroup $\left(B_{n}\right)_{[n-1]}$ can be identified with S_{n}.

Odd Length on B_{n}

Definition (Voll - Stasinski)

Let $n \in \mathbb{N}$. The statistic $L_{B}: B_{n} \rightarrow \mathbb{N}$ is defined as follows. For $\sigma \in B_{n}$

$$
L_{B}(\sigma)=\frac{1}{2}\left|\left\{(i, j) \in[-n, n]^{2} \mid i<j, \sigma(i)>\sigma(j), i \not \equiv j \quad(\bmod 2)\right\}\right|
$$

Notice that if $\sigma \in S_{n} \subset B_{n}$ then $L_{B}(\sigma)=L_{A}(\sigma)$, so in the following we omit the type and
worite iust I for both the statistics.

Odd Length on B_{n}

Definition (Voll - Stasinski)

Let $n \in \mathbb{N}$. The statistic $L_{B}: B_{n} \rightarrow \mathbb{N}$ is defined as follows. For $\sigma \in B_{n}$

$$
L_{B}(\sigma)=\frac{1}{2}\left|\left\{(i, j) \in[-n, n]^{2} \mid i<j, \sigma(i)>\sigma(j), i \not \equiv j \quad(\bmod 2)\right\}\right|
$$

Let $n=4, \tau=[-2,4,3,-1]$. Then

$$
L_{B}(\tau)=\frac{1}{2}|\{(-4,-3),(-4,1),(-3,-2),(-1,0),(-1,4),(0,1),(2,3),(3,4)\}|=4
$$

Odd Length on B_{n}

Definition (Voll - Stasinski)

Let $n \in \mathbb{N}$. The statistic $L_{B}: B_{n} \rightarrow \mathbb{N}$ is defined as follows. For $\sigma \in B_{n}$

$$
L_{B}(\sigma)=\frac{1}{2}\left|\left\{(i, j) \in[-n, n]^{2} \mid i<j, \sigma(i)>\sigma(j), i \not \equiv j \quad(\bmod 2)\right\}\right|
$$

Let $n=4, \tau=[-2,4,3,-1]$. Then

$$
L_{B}(\tau)=\frac{1}{2}|\{(-4,-3),(-4,1),(-3,-2),(-1,0),(-1,4),(0,1),(2,3),(3,4)\}|=4
$$

Notice that if $\sigma \in S_{n} \subset B_{n}$ then $L_{B}(\sigma)=L_{A}(\sigma)$, so in the following we omit the type and write just L for both the statistics.

Odd Length on B_{n}

Odd length in type B has the following characterization:

Proposition (Brenti - C.)

Let $\sigma \in B_{n}$. Then

$$
L(\sigma)=\operatorname{oinv}(\sigma)+\operatorname{oneg}(\sigma)+\operatorname{onsp}(\sigma)
$$

where:

Odd Length on B_{n}

Odd length in type B has the following characterization:

Proposition (Brenti - C.)

Let $\sigma \in B_{n}$. Then

$$
L(\sigma)=\operatorname{oinv}(\sigma)+\operatorname{oneg}(\sigma)+\operatorname{onsp}(\sigma)
$$

where:

$$
\begin{aligned}
\operatorname{oinv}(\sigma) & :=|\{(i, j) \in[n] \times[n] \mid i<j, \sigma(i)>\sigma(j), i \not \equiv j(\bmod 2)\}|, \\
\operatorname{oneg}(\sigma) & :=|\{i \in[n] \mid \sigma(i)<0, i \not \equiv 0(\bmod 2)\}|, \\
\operatorname{onsp}(\sigma) & :=|\{(i, j) \in[n] \times[n] \mid \sigma(i)+\sigma(j)<0, i \not \equiv j(\bmod 2)\}| .
\end{aligned}
$$

Type B Conjecture

A. Stasinski, C. Voll

A new statistic on hyperoctahedral groups
Electronic J. Combin., 20 (2013), no. 3, Paper 50, 23 pp.
A. Stasinski, C. Voll

Representation zeta functions of nilpotent groups and generating functions for Weyl groups of type B,
Amer. J. Math., 136 (2) (2014), 501-550.
the authors defined L_{B} and formulated the following conjecture, arising in the field of representation zeta function of certain groups.

Type B Conjecture

Conjecture (Stasinski - Voll)
Let $n \in \mathbb{N}$ and $J \subseteq[0, n-1]$. Then

$$
\sum_{\sigma \in B_{n}^{J}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\frac{\prod_{\eta} \sigma_{1}\left(1-x^{i}\right)}{\prod_{-1}\left(1-x^{2 i}\right)}\left[\frac{H_{1}+1}{2}\right]
$$

Type B Conjecture

Conjecture (Stasinski - Voll)

Let $n \in \mathbb{N}$ and $J \subseteq[0, n-1]$. Then

$$
\sum_{\sigma \in B_{n}^{J}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\frac{\prod_{j=a+1}^{n}\left(1-x^{i}\right)}{\prod_{i=1}^{\tilde{m}}\left(1-x^{2 i}\right)}\left[\left\lfloor\frac{\left|J_{1}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|J_{s}\right|+1}{2}\right\rfloor\right]_{x^{2}}
$$

Type B Conjecture

Conjecture (Stasinski - Voll)

Let $n \in \mathbb{N}$ and $J \subseteq[0, n-1]$. Then

$$
\sum_{\sigma \in B_{n}^{J}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\frac{\prod_{j=a+1}^{n}\left(1-x^{i}\right)}{\prod_{i=1}^{\widetilde{m}}\left(1-x^{2 i}\right)}\left[\left\lfloor\frac{\left|J_{\mathbf{1}}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|J_{s}\right|+1}{2}\right\rfloor\right]_{x^{2}}
$$

where J_{0} is the (possibly empty) connected component to $0, J_{1}, \ldots, J_{s}$ are the remaining connected components of $J, \widetilde{m}:=\sum_{i=1}^{s}\left\lfloor\frac{\left|J_{i}\right|+1}{2}\right\rfloor$ and $a:=\min \{[0, n-1] \backslash J\}$.

Reduction of the support

The results of reduction of the support that hold for S_{n} can be analogously stated and proved for B_{n}.
In particular, one can give the definition of chessboard elements also in B_{n}, and the following holds:

Reduction of the support

The results of reduction of the support that hold for S_{n} can be analogously stated and proved for B_{n}.
In particular, one can give the definition of chessboard elements also in B_{n}, and the following holds:

Proposition

Let $J \subseteq[0, n-1]$. Then

$$
\sum_{\sigma \in B_{n}^{J}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\sum_{\sigma \in C_{n,+}^{J}}(-1)^{\ell(\sigma)} x^{L(\sigma)} .
$$

Shifting, fattening and compressing

Given $J \subseteq[0, n-1]$ the results of shifting, fattening and compressing still hold, for quotients in type B, for the connected components of J which do not contain the 0 .

Shifting, fattening and compressing

Given $J \subseteq[0, n-1]$ the results of shifting, fattening and compressing still hold, for quotients in type B, for the connected components of J which do not contain the 0 .

Define $J_{0} \subseteq J$ to be the (possibly empty) connected component of J which contains the 0 . Then the following holds:

Shifting, fattening and compressing

Given $J \subseteq[0, n-1]$ the results of shifting, fattening and compressing still hold, for quotients in type B, for the connected components of J which do not contain the 0 .

Define $J_{0} \subseteq J$ to be the (possibly empty) connected component of J which contains the 0 . Then the following holds:

Proposition (Brenti - C.)

Let $J \subseteq[0, n-1]$ and $a \in[0, n-1]$ be such that $[0, a-1] \subseteq J, a, a+1 \notin J$. Then

$$
\sum_{\sigma \in B_{n}^{J}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\left(1-x^{a+1}\right) \sum_{\sigma \in B_{n}^{\text {JU\{a\} }}}(-1)^{\ell(\sigma)} x^{L(\sigma)} .
$$

By repeated applications of this result we can eliminate the connected component that contains 0 and use the following results of factorization

Shifting, fattening and compressing

Given $J \subseteq[0, n-1]$ the results of shifting, fattening and compressing still hold, for quotients in type B, for the connected components of J which do not contain the 0 .

Define $J_{0} \subseteq J$ to be the (possibly empty) connected component of J which contains the 0 . Then the following holds:

Proposition (Brenti - C.)

Let $J \subseteq[0, n-1]$ and $a \in[0, n-1]$ be such that $[0, a-1] \subseteq J, a, a+1 \notin J$. Then

$$
\sum_{\sigma \in B_{n}^{J}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\left(1-x^{a+1}\right) \sum_{\sigma \in B_{n}^{J \cup\{a\}}}(-1)^{\ell(\sigma)} x^{L(\sigma)} .
$$

By repeated applications of this result we can eliminate the connected component that contains 0 and use the following results of factorization.

Factorization

Proposition (Stasinski - Voll)

Let $n \in \mathbb{P}$ and $J \subseteq[n-1]$. If $n \equiv 1(\bmod 2)$ or $n \equiv 0(\bmod 2)$ and $[n-1] \backslash J \subseteq 2 \mathbb{N}$ then

$$
\begin{equation*}
\sum_{\sigma \in B_{n}^{\prime}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\left(\sum_{\sigma \in B_{n}^{[n-1]}}(-1)^{\ell(\sigma)} x^{L(\sigma)}\right)\left(\sum_{\sigma \in S_{n}^{J}}(-1)^{\ell(\sigma)} x^{L(\sigma)}\right) . \tag{1}
\end{equation*}
$$

Factorization

Proposition (Stasinski - Voll)

Let $n \in \mathbb{P}$ and $J \subseteq[n-1]$. If $n \equiv 1(\bmod 2)$ or $n \equiv 0(\bmod 2)$ and $[n-1] \backslash J \subseteq 2 \mathbb{N}$ then

$$
\begin{equation*}
\sum_{\sigma \in B_{n}^{J}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\left(\sum_{\sigma \in B_{n}^{[n-1]}}(-1)^{\ell(\sigma)} x^{L(\sigma)}\right)\left(\sum_{\sigma \in S_{n}^{J}}(-1)^{\ell(\sigma)} x^{L(\sigma)}\right) \tag{1}
\end{equation*}
$$

Proposition (Stasinski - Voll)

Let $n \in \mathbb{P}$ be even, and $J \subseteq[0, n-1]$ be such that $[0, n-1] \backslash J \subseteq 2 \mathbb{N}$. Then

$$
\begin{equation*}
\sum_{\sigma \in B_{n}^{J \backslash\{0\}}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\left(\sum_{\sigma \in B_{n}^{J}}(-1)^{\ell(\sigma)} x^{L(\sigma)}\right)\left(\sum_{\sigma \in B_{i}^{[i-1]}}(-1)^{\ell(\sigma)} x^{L(\sigma)}\right), \tag{2}
\end{equation*}
$$

where $i:=\min \{[0, n] \backslash J\}$.

Sketch of the proof

- Use shifting, compressing and the result for the connected component which contains 0
to get in the hypotheses of the results of factorization of L

Sketch of the proof

- Use shifting, compressing and the result for the connected component which contains 0
to get in the hypotheses of the results of factorization of L
- Combine with the result for type A

Type B Conjecture

Theorem (Brenti - C.)

Let $n \in \mathbb{N}$ and $J \subseteq[0, n-1]$. Then

$$
\sum_{\sigma \in B_{n}^{j}}(-1)^{\ell(\sigma)} x^{L(\sigma)}=\frac{\prod_{j=a+1}^{n}\left(1-x^{i}\right)}{\prod_{i=1}^{\tilde{m}}\left(1-x^{2 i}\right)}\left[\left\lfloor\frac{\left|f_{1}\right|+1}{2}\right\rfloor, \ldots,\left\lfloor\frac{\left|J_{s}\right|+1}{2}\right\rfloor\right]_{x^{2}}
$$

where J_{0} is the (possibly empty) connected component to $0, J_{1}, \ldots, J_{s}$ are the remaining connected components of $J, \tilde{m}:=\sum_{i=1}^{s}\left\lfloor\frac{\mid \mathcal{L}_{i}+1}{2}\right\rfloor$ and $a:=\min \{[0, n-1] \backslash J\}$.

Thank you

