Stability of Plethysm Coefficients

Laura Colmenarejo Joint with E. Briand

University of Seville

SLC 8.September. 2014

${ }^{1}$ Supported by project MTM2010-19336 and FEDER, and Junta de Andalucia under grants FQM-333 and P12-FQM-2696.

Contents

(1) Introduction

(2) Stability

(3) Combinatorial Proofs

Contents

(1) Introduction

(2) Stability

(3) Combinatorial Proofs

Any (finite-dimensional, complex, analytic) linear representation V of $G L_{n}(\mathbb{C})$ decomposes as:

$$
V \approx \bigoplus_{\lambda} m_{\lambda} S_{\lambda}\left(\mathbb{C}^{n}\right)
$$

where

- m_{λ} are nonnegative integers
- $S_{\lambda}\left(\mathbb{C}^{n}\right)$ are irreducible representations indexed by the integer partitions λ of length at most n

Constructions

Tensor product \longleftrightarrow Littlewood-Richardson coefficients $c_{\mu \nu}^{\lambda}$

$$
S_{\mu}\left(\mathbb{C}^{k}\right) \otimes S_{\nu}\left(\mathbb{C}^{k}\right)=\bigoplus c_{\mu \nu}^{\lambda} S_{\lambda}\left(\mathbb{C}^{k}\right)
$$

They count Littlewood-Richardson tableaux.

Restrictions of $G L_{m n}(\mathbb{C})$ to $G L_{m}(\mathbb{C}) \times G L_{n}(\mathbb{C})$
\downarrow
Kronecker coefficients $g_{\lambda}^{\mu \nu}$

$$
S_{\lambda}\left(\mathbb{C}^{m n}\right)=\bigoplus g_{\lambda}^{\mu \nu} S_{\mu}\left(\mathbb{C}^{m}\right) \otimes S_{\nu}\left(\mathbb{C}^{n}\right)
$$

Murnaghan and Littlewood observed some properties of stability.

Stability of Kronecker Coefficients

- Murnaghan $(1938,1955)$ proved that given any three partitions α, β, γ, the general term of Kronecker coefficients $g_{\alpha+(n), \beta+(n)}^{\gamma+(n)}$ is eventually constant.
- Also, Murnaghan proved that the sequence is weakly increasing as a function of n.
- Few years ago, E. Briand, R. Orellana and M. Rosas improved Murnaghan's bounds.
- Nowadays, J. R. Stembridge has given a more general result: Conditions on α, β, γ such that for all triples λ, μ, ν the sequences $g_{\lambda+n \alpha, \mu+n \beta}^{\nu+n \gamma}$ converge as $n \longrightarrow \infty$.

Plethysm Coefficients

$$
\text { Plethysm } \longleftrightarrow \text { Plethysm coefficients } a_{\pi \nu}^{\lambda}
$$

Apply the Schur functor S_{π} to an irreducible representation S_{ν}

$$
S_{\pi}\left(S_{\nu}\left(\mathbb{C}^{k}\right)\right)=\bigoplus a_{\pi \nu}^{\lambda} S_{\lambda}\left(\mathbb{C}^{k}\right)
$$

TRANSLATION INTO SYMMETRIC FUNCTIONS

$$
s_{\pi}\left[s_{\nu}\right]=\sum a_{\pi \nu}^{\lambda} s_{\lambda}
$$

Contents

(1) Introduction

(2) Stability

(3) Combinatorial Proofs

Previous Results

$\mathrm{P} 0\left\langle s_{\lambda}, s_{n}\left[s_{m}\right]\right\rangle \leq\left\langle s_{\lambda+n}, s_{n}\left[s_{m+1}\right]\right\rangle$
Foulkes' conjecture
Weintraub: formulas for different cases of λ.

P1 $\left\langle s_{\lambda}\left[s_{\mu+(p)}\right], s_{\nu+(q)}\right\rangle$
Thibon and Carré: stability using Vertex Operators

P2 $\left\langle s_{\pi}\left[s_{\mu+n \lambda}\right], s_{\nu+n p \lambda}\right\rangle$
Brion: stability and increase
Foulkes: $\lambda=(1)$ and $\ell(\mu)=\ell(\pi)=1$
Weintraub: stacionary behaviour

Q1 $\left\langle s_{\lambda+(p)}\left[s_{\mu}\right], s_{\nu+(q)}\right\rangle$
Thibon and Carré : stability with Vertex Operators Weintraub: stability

R1 $\left\langle s_{\pi+n}\left[s_{\lambda}\right], s_{\nu+n \lambda}\right\rangle$
Brion: stability and increase

From Plethysm to Polytopes

We can see our plethysm coefficients as

$$
a_{\mu \nu}^{\lambda}=\left\langle s_{\mu}\left[s_{\nu}\right], s_{\lambda}\right\rangle
$$

We can write explicitly s_{λ} as a sum over the permutations σ in the symmetric group \mathfrak{S}_{N}

$$
s_{\lambda}=\sum_{\sigma \in \mathfrak{S}_{N}} \varepsilon(\sigma) h_{\lambda+\omega(\sigma)}
$$

where $\omega(\sigma)_{j}=\sigma(j)-j$ for all j between 1 and N.

Lemma

Let N and N^{\prime} be positive integers. Let λ, μ and ν be partitions, such that μ has length at most N and λ has length at most N^{\prime}. Then

$$
a_{\mu, \nu}^{\lambda}=\sum_{\sigma, \tau} \varepsilon(\sigma) \varepsilon(\tau)\left\langle h_{\mu+\omega(\sigma)}\left[s_{\nu}\right] \mid h_{\lambda+\omega(\tau)}\right\rangle
$$

where the sum is carried over all permutations $\sigma \in \mathfrak{S}_{N}$ and $\tau \in \mathfrak{S}_{N^{\prime}}$.
For any partition ν and any finite sequences μ and λ of integers we set:

$$
b_{\mu, \nu}^{\lambda}=\left\langle h_{\mu}\left[s_{\nu}\right] \mid h_{\lambda}\right\rangle .
$$

They count the integer points in a polytope $Q(\mu, \nu, \lambda)$.

Proposition

The coefficient $b_{\mu \nu}^{\lambda}$ is the cardinal of the set $Q(\mu ; \nu ; \lambda ; N)$ of matrices $\mathcal{M}=\left(m_{i, T}\right)$ with nonnegative integer entries whose rows are indexed by the integers i between 1 and N and whose columns are indexed by the semi-standard Young tableaux of shape ν with entries between 1 and N, $T \in t(\nu ; N)$, such that:
(1) The sum of the entries in row i of \mathcal{M} is μ_{i}.
(2) The sum of the entries in column j of $\mathcal{M} \cdot \mathcal{P}_{\nu N}$ is λ_{j}, where $\mathcal{P}_{\nu N}$ is the matrix of weights.

Example: $\nu=(2), \mu=\left(\mu_{1}, \mu_{2}\right), \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right), N=3$

- Semi-standard Young tableaux of shape ν with entries between 1 and N
- Matrix of weights $\mathcal{P}_{\nu N}$ and matrix \mathcal{M}

$$
\mathcal{M}=\left(\begin{array}{llll}
m_{1, T_{1}} & m_{1, T_{2}} & \cdots & m_{1, T_{6}} \\
m_{2, T_{1}} & m_{2, T_{2}} & \cdots & m_{2, T_{6}} \\
m_{3, T_{1}} & m_{3, T_{2}} & \cdots & m_{3, T_{6}}
\end{array}\right) \quad \mathcal{P}_{\nu N}=\left(\begin{array}{llllll}
2 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 2
\end{array}\right)^{t}
$$

- Conditions

$$
\begin{gathered}
\sum_{j} m_{1, T_{j}}=\mu_{1} \\
\sum_{j} m_{2, T_{j}}=\mu_{2} \\
\sum_{j} m_{3, T_{j}}=0 \\
m_{i, T_{j}} \geq 0
\end{gathered}
$$

$$
\begin{gathered}
\sum_{\mathcal{M} \mathcal{P}_{\nu N}} 2 m_{i, T_{1}+}+m_{i, T_{2}}+m_{i, T_{3}}=\lambda_{1} \\
\underbrace{}_{i}=m_{i, T_{3}} m_{i, T_{2}+2 m_{i, T_{4}}+m_{i, T_{5}}}^{\sum_{i} m_{i, T_{3}}+m_{i, T_{5}}+2 m_{i, T_{6}}}=\lambda_{2} \\
\hline
\end{gathered}
$$

Contents

(1) Introduction

(2) Stability

(3) Combinatorial Proofs

Brion's result: $\left\langle s_{\pi+n}\left[s_{\lambda}\right], s_{\mu+n \lambda}\right\rangle$

- Stability of $a_{\pi+n, \lambda}^{\mu+n \lambda} \leftrightarrow$ Stability of $b_{\pi+n, \lambda}^{\mu+n \lambda}$
- $b_{\pi+n, \lambda}^{\mu+n \lambda}=\# Q(\pi+n, \lambda, \mu+n \lambda ; N)=\# E(n)$

\[

\]

where \mathcal{M}^{\prime} has $m_{1, T_{0}}^{\prime}=m_{1, T_{0}}+1$.

- $\iota(n)$ is well defined and injective.
- $\iota(n)$ is surjective for $n \gg 0$.

Let $\mathcal{M}^{\prime} \in E(n+1)$. Let T_{0} be the following tableau

\cdots		
3	\cdots	
2	2	\cdots
1	1	1
		\cdots

Denote $\|\alpha\|$ for $\sum_{k=1}^{N} \sum_{j=1}^{k} \alpha_{j}$ and p_{T} for the row T of $\mathcal{P}_{\lambda ; N}$. Then,

$$
\begin{cases}\left\|p_{T}\right\| \leq\|\lambda\|-1 & \text { for } T \neq T_{0} \\ \left\|p_{T}\right\|=\|\lambda\| & \text { for } T=T_{0}\end{cases}
$$

Using the row conditions on \mathcal{M}^{\prime}, a few more elementary operations lead to

$$
m_{1, T_{0}}^{\prime} \geq\|\mu\|+\pi_{1}-|\pi| \cdot\|\lambda\|+(n+1)
$$

that proves that $m_{1, T_{0}}^{\prime}>0$ as soon as $n \geq|\pi| \cdot\|\lambda\|-\|\mu\|-\pi_{1}$

Thibon and Carré case: $\left\langle s_{\lambda+(p)}\left[s_{\mu}\right], s_{\nu+(q)}\right\rangle$

We need to prove that

$$
\begin{gathered}
Q_{p}=Q(\lambda ; \mu+(p) ; \nu+(q) ; N) \\
Q_{p+1}=Q(\lambda ; \mu+(p+1) ; \nu+(q+|\mu|) ; N)
\end{gathered}
$$

FIRST STEP

$$
\begin{aligned}
\varphi_{p}: t(\mu+(p) ; N) & \longrightarrow \\
T & \longrightarrow
\end{aligned} t(\mu+(p+1) ; N)
$$

where \bar{T} is obtained from T adding one box in the first row and putting a one in the first box of the first row.

$$
\begin{aligned}
\varphi_{p}: t(\mu+(p) ; N) & \longrightarrow t(\mu+(p+1) ; N) \\
T & \longrightarrow
\end{aligned}
$$

EXAMPLE: $\mu=(2) \longrightarrow \mu=(3)$
$\mu=(2)$

| 1 | 1 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 2 |
| 1 | 1 | 3 | |
| 1 | 2 | 2 | |
| 1 | 2 | 3 | |
| 1 | 1 | 3 | 3 |

But there are more tableaux in case $\mu=(3)$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 2 & 2 \\
\hline 2 & 2 & 3 \\
\hline 2 & 3 & 3 & 3 & 3 & 3 \\
\hline
\end{array}
$$

So we can separate the tableaux of $t(\mu+(p+1) ; N)$ with preimage in $t(\mu+p ; N)$ and the new ones.

SECOND STEP

$$
\begin{array}{cccc}
\psi: Q(\lambda ; \mu+(p) ; \nu+(q) ; N) & \longrightarrow & Q(\lambda ; \mu+(p+1) ; \nu+(q+|\mu|) ; N) \\
\mathcal{M}_{p} & \longrightarrow & \mathcal{M}_{p+1}=\left(\mathcal{M}_{p} \mid \overline{0}\right)
\end{array}
$$

- ψ is well defined.
- ψ is injective.
- ψ is surjective for p big enough.

IDEA:

- Separate the tableaux of $t(\mu+(p+1) ; N)$ with preimage in $t(\mu+p ; N)$ and the new ones.
- Estimate the number of ones that we can count on each type of tableaux.
- Apply these estimations on the first row condition for $\mathcal{M} \in Q_{p+1}$.

Using that idea, we prove that when $p>|\lambda| \cdot \mu_{1}+\mu_{2}-\nu_{1}-\mu_{1}-1, \mathcal{M}$ is of the form $\left(\mathcal{M}_{p} \mid \overline{0}\right)$, with $\mathcal{M}_{p} \in Q_{p}$.

Thank you for coming!

