Shifted Jack polynomials and multirectangular coordinates

Valentin Féray
joint work (in progress) with Per Alexandersson (Zürich)
Institut für Mathematik, Universität Zürich

Séminaire Lotharingien de Combinatoire Strobl, Austria, September 9th, 2014

Universität Zürich ${ }^{\text {VZH }}$
(1) Symmetric functions and Jack polynomials
(2) Knop Sahi combinatorial formula
(3) Lassalle's dual approach

4 Unifying both ? Two new conjectures...
(5) Partial results

Symmetric functions

$=$ "polynomials" in infinitely many variables $x_{1}, x_{2}, x_{3}, \ldots$ that are invariant by permuting indices

- Augmented monomial basis:

$$
\tilde{m}_{\lambda}=\sum_{\substack{i_{1}, \ldots, i_{i} \geq 1 \\ \text { distinct }}} x_{i_{1}}^{\lambda_{1}} \cdots x_{i_{\ell}}^{\lambda_{\ell}}
$$

Example: $\tilde{m}_{(2,1,1)}=2 x_{1}^{2} x_{2} x_{3}+2 x_{1} x_{2}^{2} x_{3}+2 x_{1} x_{2} x_{3}^{2}+2 x_{1}^{2} x_{2} x_{4}+\ldots$

- Power-sum basis:

$$
p_{r}=x_{1}^{r}+x_{2}^{r}+\ldots, \quad p_{\lambda}=p_{\lambda_{1}} \cdots p_{\lambda_{\ell}}
$$

Schur functions

$\left(s_{\lambda}\right)$ is another basis of the symmetric function ring.
Several equivalent definitions:

- $s_{\lambda}=\sum_{T} x^{T}$, sum over semi standard Young tableaux ;
- orthogonal basis (for Hall scalar product) + triangular over (augmented) monomial basis ;
- with determinants...
-> Encode irreducible characters of symmetric and general linear groups.

Jack polynomials

Deformation of Schur functions with a positive real parameter α.

$$
\left(J_{\lambda}^{(\alpha)}\right) \text { basis, } \quad J_{\lambda}^{(1)}=\operatorname{cst}_{\lambda} \cdot s_{\lambda}
$$

Several equivalent definitions:

- $J_{\lambda}=\sum_{T} \psi_{T}(\alpha) x^{T}$, sum over semi standard Young tableaux ;
- orthogonal basis (for a deformation of Hall scalar product) + triangular over (augmented) monomial basis.

For $\alpha=1 / 2,2$, they also have a representation-theoretical interpretation (in terms of Gelfand pairs) but not in general !

Polynomiality in α with non-negative coefficients

Both definitions involve rational functions in α. Nevertheless, ...
Macdonald-Stanley conjecture (~ 90)
The coefficients of Jack polynomials in augmented monomial basis are polynomials in α with non-negative integer coefficients.

Notation: $\left[\tilde{m}_{\tau}\right] J_{\lambda}$.

Polynomiality in α with non-negative coefficients

Both definitions involve rational functions in α. Nevertheless, ...
Knop-Sahi theorem (97)
The coefficients of Jack polynomials in augmented monomial basis are polynomials in α with non-negative integer coefficients.

Notation: $\left[\tilde{m}_{\tau}\right] J_{\lambda}$.
KS give a combinatorial interpretation of $\left[\tilde{m}_{\tau}\right] J_{\lambda}$ as a weighted enumeration of admissible tableaux.

A function on the set of all Young diagrams

Definition

Let μ be a partition of k (without part equal to 1). Define

$$
\operatorname{Ch}_{\mu}^{(\alpha)}(\lambda)= \begin{cases}\binom{n-k+m_{1}(\mu)}{m_{1}(\mu)} \cdot z_{\mu} \cdot\left[p_{\mu 1^{n-k}}\right] J_{\lambda}^{(\alpha)} & \text { if } n=|\lambda| \geq k \\ 0 & \text { otherwise }\end{cases}
$$

$\mathrm{Ch}_{\mu}^{(\alpha)}$ is a function of all Young diagrams.
z_{μ} : standard explicit numerical factor.

A function on the set of all Young diagrams

Definition

Let μ be a partition of k (without part equal to 1). Define

$$
\operatorname{Ch}_{\mu}^{(\alpha)}(\lambda)= \begin{cases}\binom{n-k+m_{1}(\mu)}{m_{1}(\mu)} \cdot z_{\mu} \cdot\left[p_{\mu 1^{n-k}}\right] J_{\lambda}^{(\alpha)} & \text { if } n=|\lambda| \geq k \\ 0 & \text { otherwise }\end{cases}
$$

$\mathrm{Ch}_{\mu}^{(\alpha)}$ is a function of all Young diagrams.
Specialization: if $|\mu|<|\lambda|$,

$$
\mathrm{Ch}_{\mu}^{(1)}(\lambda)=\frac{|\lambda|!}{(|\lambda|-|\mu|)!} \cdot \frac{\chi_{\mu 1^{n-k}}^{\lambda}}{\operatorname{dim}\left(V_{\lambda}\right)}
$$

Introduced by S. Kerov, G. Olshanski in the case $\alpha=1$ (to study random diagrams with Plancherel measure), by M. Lassalle in the general case.

A function on the set of all Young diagrams

Definition

Let μ be a partition of k (without part equal to 1). Define

$$
\operatorname{Ch}_{\mu}^{(\alpha)}(\lambda)= \begin{cases}\binom{n-k+m_{1}(\mu)}{m_{1}(\mu)} \cdot z_{\mu} \cdot\left[p_{\mu 1^{n-k}}\right] J_{\lambda}^{(\alpha)} & \text { if } n=|\lambda| \geq k ; \\ 0 & \text { otherwise }\end{cases}
$$

Proposition (Kerov/Olshanski for $\alpha=1$, Lassalle in general)
For any r, the application

$$
\left(\lambda_{1}, \ldots, \lambda_{r}\right) \mapsto \operatorname{Ch}_{\mu}^{(\alpha)}\left(\left(\lambda_{1}, \ldots, \lambda_{r}\right)\right)
$$

is a polynomial in $\lambda_{1}, \ldots, \lambda_{r}$. Besides, it is symmetric in $\lambda_{1}-1 / \alpha, \ldots$, $\lambda_{r}-r / \alpha$.

In other words, $\mathrm{Ch}_{\mu}^{(\alpha)}$ is a shifted symmetric function.

Multirectangular coordinates (R. Stanley)

Consider two lists \mathbf{p} and \mathbf{q} of positive integers of the same size, with \mathbf{q} non-decreasing.
We associate to them the partition

$$
\lambda(\mathbf{p}, \mathbf{q})=(\underbrace{q_{1}, \ldots, q_{1}}_{p_{1} \text { times }}, \underbrace{q_{2}, \ldots, q_{2}}_{p_{2} \text { times }}, \ldots) .
$$

Young diagram of $\lambda(\mathbf{p}, \mathbf{q})$

Multirectangular coordinates (R. Stanley)

Consider two lists \mathbf{p} and \mathbf{q} of positive integers of the same size, with \mathbf{q} non-decreasing.
We associate to them the partition

$$
\lambda(\mathbf{p}, \mathbf{q})=(\underbrace{q_{1}, \ldots, q_{1}}_{p_{1} \text { times }}, \underbrace{q_{2}, \ldots, q_{2}}_{p_{2} \text { times }}, \ldots)
$$

Proposition
Let μ be a partition of $k . \operatorname{Ch}_{\mu}^{(\alpha)}(\lambda(\mathbf{p}, \mathbf{q}))$ is a polynomial in

$$
p_{1}, p_{2}, \ldots, q_{1}, q_{2}, \ldots, \alpha
$$

Multirectangular coordinates (R. Stanley)

Consider two lists \mathbf{p} and \mathbf{q} of positive integers of the same size, with \mathbf{q} non-decreasing.
We associate to them the partition

$$
\lambda(\mathbf{p}, \mathbf{q})=(\underbrace{q_{1}, \ldots, q_{1}}_{p_{1} \text { times }}, \underbrace{q_{2}, \ldots, q_{2}}_{p_{2} \text { times }}, \ldots) .
$$

Conjecture (M. Lassalle)
Let μ be a partition of $k .(-1)^{k} \operatorname{Ch}_{\mu}^{(\alpha)}(\lambda(\mathbf{p}, \mathbf{q}))$ is a polynomial in

$$
p_{1}, p_{2}, \ldots,-q_{1},-q_{2}, \ldots, \alpha-1
$$

with non-negative integer coefficients.
Still open. . .

Link between the two questions ?

Knop-Sahi theorem and Lassalle conjecture do not seem related.
Two (main) differences:

- monomial coefficients vs power-sum coefficients;
- look at some $J_{\lambda}^{(\alpha)}$ vs seen as a function of λ.

Link between the two questions ?

Knop-Sahi theorem and Lassalle conjecture do not seem related.
Two (main) differences:

- monomial coefficients vs power-sum coefficients;
- look at some $J_{\lambda}^{(\alpha)}$ vs seen as a function of λ.

Idea: look at monomial coefficients as functions on Young diagrams.

Monomial coefficients as shifted symmetric functions

Definition

Let μ be a partition of k (without part equal to 1). Define

$$
\mathrm{Ko}_{\mu}^{(\alpha)}(\lambda)= \begin{cases}\left({ }^{n-k+m_{1}(\mu)}\right) \cdot z_{\mu} \cdot\left[\tilde{m}_{\mu 1^{n-k}}\right] J_{\lambda}^{(\alpha)} & \text { if } n=|\lambda| \geq k \\ 0 & \text { otherwise }\end{cases}
$$

Proposition
$\mathrm{Ko}_{\mu}^{(\alpha)}$ is a shifted symmetric function.
Proof: Uses $\mathrm{Ko}_{\mu}^{(\alpha)}=\sum_{\nu \vdash k} L_{\mu, \nu} \mathrm{Ch}_{\nu}^{(\alpha)}$ and Lassalle proposition.
($L_{\mu, \nu}$ is defined by $p_{\nu}=\sum_{\mu \vdash k} L_{\mu, \nu} \tilde{m}_{\mu}$).

A new conjecture

Proposition

$\mathrm{Ko}_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q})$ is a polynomial in \mathbf{p}, \mathbf{q} and α.

A new conjecture

Proposition
$\mathrm{Ko}_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q})$ is a polynomial in \mathbf{p}, \mathbf{q} and α.

Conjecture (F., Alexandersson)
In the falling factorial basis in \mathbf{p} and $\mathbf{q}, \mathrm{Ko}_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q})$ has non-negative integer coefficients.
falling factorial: $(n)_{k}:=n(n-1) \ldots(n-k+1)$.
falling factorial basis: $\left(\left(p_{1}\right)_{i_{1}}\left(p_{2}\right)_{i_{2}} \ldots\left(q_{1}\right)_{j_{1}}\left(q_{2}\right)_{j_{2}} \ldots \alpha^{k}\right)$.

A new conjecture

Proposition

$\mathrm{Ko}_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q})$ is a polynomial in \mathbf{p}, \mathbf{q} and α.

Conjecture (F., Alexandersson)
In the falling factorial basis in \mathbf{p} and $\mathbf{q}, \mathrm{Ko}_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q})$ has non-negative integer coefficients.
falling factorial: $(n)_{k}:=n(n-1) \ldots(n-k+1)$.
falling factorial basis: $\left(\left(p_{1}\right)_{i_{1}}\left(p_{2}\right)_{i_{2}} \ldots\left(q_{1}\right)_{j_{1}}\left(q_{2}\right)_{j_{2}} \ldots \alpha^{k}\right)$.
It is stronger than positivity in Knop-Sahi theorem (and does not follow from their combinatorial interpretation)!

Another conjecture

Another interesting family of shifted symmetric function
Shifted Jack polynomials (Okounkov, Olshanski, 97)
$J_{\mu}{ }_{\mu}^{(\alpha)}$ is the unique shifted symmetric function whose highest degree component is the Jack polynomial J_{μ}.

Another conjecture

Another interesting family of shifted symmetric function
Shifted Jack polynomials (Okounkov, Olshanski, 97)
$J_{\mu}^{\sharp}(\alpha)$ is the unique shifted symmetric function whose highest degree component is the Jack polynomial J_{μ}.

Conjecture (F., Alexandersson)

In the falling factorial basis in \mathbf{p} and $\mathbf{q}, \alpha^{\ell(\mu)} J_{\mu}^{\sharp}{ }_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q})$ has non-negative integer coefficients.

For a fixed α, FF-positivity of $\alpha^{\ell(\mu)} J_{\mu}{ }_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q})$ implies FF-positivity of $\mathrm{Ko}_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q})$.

Case $\alpha=1(1 / 2)$

For $\alpha=1$, there is a combinatorial formula for $\mathrm{Ch}_{\mu}^{(1)}$:
Theorem (F. 2007; F., Śniady 2008 ; conj. by Stanley 2006)
Let μ a partition of k. Fix a permutation π in S_{k} of type μ. Then

$$
(-1)^{k} \operatorname{Ch}_{\mu}(\mathbf{p} \times \mathbf{q})=\sum_{\substack{\sigma, \tau \in S_{k} \\ \sigma \tau=\pi}} N_{\sigma, \tau}(\mathbf{p},-\mathbf{q})
$$

$N_{\sigma, \tau}$: combinatorial polynomial with non-negative integer coefficients. \Rightarrow Lassalle conjecture holds for $\alpha=1$.

Similar formula for $\alpha=2$: replace permutations by pairings of [2n] (F., Śniady, 2011).

Case $\alpha=1(1 / 2)$

For $\alpha=1$, there is a combinatorial formula for $\mathrm{Ch}_{\mu}^{(1)}$:
Theorem (F. 2007; F., Śniady 2008 ; conj. by Stanley 2006)
Let μ a partition of k. Fix a permutation π in S_{k} of type μ. Then

$$
(-1)^{k} \mathrm{Ch}_{\mu}(\mathbf{p} \times \mathbf{q})=\sum_{\substack{\sigma, \tau \in S_{k} \\ \sigma=\pi}} N_{\sigma, \tau}(\mathbf{p},-\mathbf{q}) .
$$

Proposition

Fix a set-partition Π whose block size are given by μ.

$$
\begin{aligned}
(-1)^{k} \mathrm{Ko}_{\mu}^{(1)}(\mathbf{p} \times \mathbf{q}) & =\sum_{\substack{\sigma, \tau \in S_{k} \\
\sigma \tau \in S_{\Pi}}} N_{\sigma, \tau}(\mathbf{p},-\mathbf{q}) . \\
(-1)^{k} s_{\lambda \mu}^{\sharp}(\mathbf{p} \times \mathbf{q}) & =\sum_{\sigma, \tau \in S_{k}} \chi^{\mu}(\sigma \tau) N_{\sigma, \tau}(\mathbf{p},-\mathbf{q})
\end{aligned}
$$

Case $\alpha=1(2 / 2)$

\ldots use explicit expression of $N_{\sigma, \tau}(\mathbf{p}, \mathbf{q})+$ sum manipulations \ldots
It is enough to prove
Question 1
For any three set partitions T, U and Π of the same set,

$$
\sum_{\substack{\begin{subarray}{c}{S_{T}, \tau \in \in_{U} \\
\sigma \tau \in S_{\Pi}} }}\end{subarray}} \varepsilon(\tau) \geq 0 .
$$

Question 2

For any two set partitions T, U of $[n]$ and integer partition μ of n,

$$
\sum_{\sigma \in S_{T}, \tau \in S_{U}} \varepsilon(\tau) \chi^{\mu}(\sigma \tau) \geq 0
$$

Case $\alpha=1(2 / 2)$

\ldots use explicit expression of $N_{\sigma, \tau}(\mathbf{p}, \mathbf{q})+$ sum manipulations \ldots
It is enough to prove
Conjecture
For any three set partitions T, U and Π of the same set,

$$
\sum_{\substack{\sigma \in S_{T}, \tau \in S_{U} \\ \sigma \tau \in S_{\Pi}}} \varepsilon(\tau) \geq 0 .
$$

Proposition

For any two set partitions T, U of $[n]$ and integer partition μ of n,

$$
\sum_{\in S_{T}, \tau \in S_{U}} \varepsilon(\tau) \chi^{\mu}(\sigma \tau) \geq 0
$$

Proof: representation theory + group algebra manipulation.

Case $\alpha=1(2 / 2)$

\ldots use explicit expression of $N_{\sigma, \tau}(\mathbf{p}, \mathbf{q})+$ sum manipulations \ldots
It is enough to prove
Conjecture
For any three set partitions T, U and Π of the same set,

$$
\sum_{\substack{\sigma \in S_{T}, \tau \in S_{U} \\ \sigma \tau \in S_{\Pi}}} \varepsilon(\tau) \geq 0 .
$$

Proposition

For any two set partitions T, U of $[n]$ and integer partition μ of n,

$$
\sum_{\sigma \in S_{T}, \tau \in S_{U}} \varepsilon(\tau) \chi^{\mu}(\sigma \tau) \geq 0
$$

Conclusion: Our second (and hence both) conjecture(s) hold(s) for $\alpha=1$.

$\mathrm{Ko}_{(k)}$ is FF non-negative.

Observation: $(-1)^{k} \mathrm{Ko}_{(k)}^{(1)}(\mathbf{p} \times \mathbf{q})=\sum_{\substack{\sigma, \tau \in \mathcal{S}_{k} \\ \text { no restriction }}} N_{\sigma, \tau}(\mathbf{p},-\mathbf{q})$.

$\mathrm{Ko}_{(k)}$ is FF non-negative.

Observation: $(-1)^{k} \operatorname{Ko}_{(k)}^{(1)}(\mathbf{p} \times \mathbf{q})=\sum_{\substack{\sigma, \tau \in S_{k} \\ \text { no restriction }}} N_{\sigma, \tau}(\mathbf{p},-\mathbf{q})$.
Proposition
For a general α,

$$
(-1)^{k} \operatorname{Ko}_{(k)}^{(\alpha)}(\mathbf{p} \times \mathbf{q})=\sum_{\sigma, \tau \in S_{k}} \alpha^{k-\#(L R-\max (\sigma))} N_{\sigma, \tau}(\mathbf{p},-\mathbf{q})
$$

Proof: KS combinatorial interpretation + a new bijection.

$\mathrm{Ko}_{(k)}$ is FF non-negative.

Observation: $(-1)^{k} \mathrm{Ko}_{(k)}^{(1)}(\mathbf{p} \times \mathbf{q})=\sum_{\substack{\sigma, \tau \in \boldsymbol{S}_{k} \\ \text { no restriction }}} N_{\sigma, \tau}(\mathbf{p},-\mathbf{q})$.
Proposition
For a general α,

$$
(-1)^{k} \operatorname{Ko}_{(k)}^{(\alpha)}(\mathbf{p} \times \mathbf{q})=\sum_{\sigma, \tau \in S_{k}} \alpha^{k-\#(L R-\max (\sigma))} N_{\sigma, \tau}(\mathbf{p},-\mathbf{q})
$$

Proof: KS combinatorial interpretation + a new bijection.
Corollary (special case of our first conjecture)
The coefficients of $\mathrm{Ko}_{(k)}^{(\alpha)}$ in the falling factorial basis are non-negative.

Conclusion

A bridge between KS theorem and Lassalle's conjecture:

- Our conjecture involves shifted symmetric functions and multirectangular coordinates and implies KS theorem ;
- Our partial results use (partial) results to both questions.

Conclusion

A bridge between KS theorem and Lassalle's conjecture:

- Our conjecture involves shifted symmetric functions and multirectangular coordinates and implies KS theorem ;
- Our partial results use (partial) results to both questions.

Other partial results?

- $\alpha=2$ works similarly as $\alpha=1$ with a bit more work ;
- Case of rectangular Young diagram is perhaps tractable (Lassalle proved his conjecture in this case);

Conclusion

A bridge between KS theorem and Lassalle's conjecture:

- Our conjecture involves shifted symmetric functions and multirectangular coordinates and implies KS theorem ;
- Our partial results use (partial) results to both questions.

Other partial results?

- $\alpha=2$ works similarly as $\alpha=1$ with a bit more work ;
- Case of rectangular Young diagram is perhaps tractable (Lassalle proved his conjecture in this case);

An extension?

- What about (shifted) Macdonald polynomials and multirectangular coordinates?

