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Symmetric functions and Jack polynomials

Symmetric functions

= “polynomials” in infinitely many variables x1, x2, x3, . . .
that are invariant by permuting indices

Augmented monomial basis:

m̃λ =
∑

i1,...,i`≥1
distinct

xλ1i1 · · · x
λ`
i`

Example: m̃(2,1,1) = 2x2
1 x2x3 + 2x1x2

2 x3 + 2x1x2x2
3 + 2x2

1 x2x4 + . . .

Power-sum basis:

pr = x r
1 + x r

2 + . . . , pλ = pλ1 · · · pλ`
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Symmetric functions and Jack polynomials

Schur functions

(sλ) is another basis of the symmetric function ring.

Several equivalent definitions:

sλ =
∑

T xT , sum over semi standard Young tableaux ;

orthogonal basis (for Hall scalar product) + triangular over
(augmented) monomial basis ;

with determinants. . .

-> Encode irreducible characters of symmetric and general linear groups.
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Symmetric functions and Jack polynomials

Jack polynomials

Deformation of Schur functions with a positive real parameter α.

(J(α)
λ ) basis, J(1)

λ = cstλ · sλ

Several equivalent definitions:

Jλ =
∑

T ψT (α)xT , sum over semi standard Young tableaux ;

orthogonal basis (for a deformation of Hall scalar product) +
triangular over (augmented) monomial basis.

For α = 1/2, 2, they also have a representation-theoretical interpretation
(in terms of Gelfand pairs) but not in general !
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Knop Sahi combinatorial formula

Polynomiality in α with non-negative coefficients

Both definitions involve rational functions in α. Nevertheless, . . .

Macdonald-Stanley conjecture (∼ 90)

The coefficients of Jack polynomials in augmented monomial basis are
polynomials in α with non-negative integer coefficients.

Notation: [m̃τ ]Jλ.

KS give a combinatorial interpretation of [m̃τ ]Jλ as a weighted
enumeration of admissible tableaux.
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Lassalle’s dual approach

A function on the set of all Young diagrams

Definition
Let µ be a partition of k (without part equal to 1). Define

Ch(α)
µ (λ) =

{ (n−k+m1(µ)
m1(µ)

)
·zµ · [pµ1n−k ]J(α)

λ if n = |λ| ≥ k ;

0 otherwise.

Ch(α)
µ is a function of all Young diagrams.

zµ: standard explicit numerical factor.

Specialization: if |µ| < |λ|,

Ch(1)
µ (λ) =

|λ|!
(|λ| − |µ|)!

·
χλ
µ1n−k

dim(Vλ)
.

Introduced by S. Kerov, G. Olshanski in the case α = 1 (to study random
diagrams with Plancherel measure), by M. Lassalle in the general case.
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Lassalle’s dual approach

A function on the set of all Young diagrams

Definition
Let µ be a partition of k (without part equal to 1). Define

Ch(α)
µ (λ) =

{ (n−k+m1(µ)
m1(µ)

)
·zµ · [pµ1n−k ]J(α)

λ if n = |λ| ≥ k ;

0 otherwise.

Proposition (Kerov/Olshanski for α = 1, Lassalle in general)

For any r , the application

(λ1, . . . , λr ) 7→ Ch(α)
µ

(
(λ1, . . . , λr )

)
is a polynomial in λ1, . . . , λr . Besides, it is symmetric in λ1 − 1/α, . . . ,
λr − r/α.

In other words, Ch(α)
µ is a shifted symmetric function.
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Lassalle’s dual approach

Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same size, with q
non-decreasing.
We associate to them the partition

λ(p,q) =
(
q1, . . . , q1︸ ︷︷ ︸

p1 times

, q2, . . . , q2︸ ︷︷ ︸
p2 times

, . . .
)
.

Young diagram of λ(p,q)
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p1 times
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Proposition

Let µ be a partition of k . Ch(α)
µ (λ(p,q)) is a polynomial in

p1, p2, . . . , q1, q2, . . . , α
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Lassalle’s dual approach

Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same size, with q
non-decreasing.
We associate to them the partition

λ(p,q) =
(
q1, . . . , q1︸ ︷︷ ︸

p1 times

, q2, . . . , q2︸ ︷︷ ︸
p2 times

, . . .
)
.

Conjecture (M. Lassalle)

Let µ be a partition of k . (−1)k Ch(α)
µ (λ(p,q)) is a polynomial in

p1, p2, . . . ,−q1,−q2, . . . , α− 1

with non-negative integer coefficients.

Still open. . .
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Unifying both ? Two new conjectures. . .

Link between the two questions ?

Knop-Sahi theorem and Lassalle conjecture do not seem related.

Two (main) differences:
monomial coefficients vs power-sum coefficients ;

look at some J(α)
λ vs seen as a function of λ.

Idea: look at monomial coefficients as functions on Young diagrams.
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Unifying both ? Two new conjectures. . .

Monomial coefficients as shifted symmetric functions

Definition
Let µ be a partition of k (without part equal to 1). Define

Ko(α)
µ (λ) =

{ (n−k+m1(µ)
m1(µ)

)
·zµ · [m̃µ1n−k ]J(α)

λ if n = |λ| ≥ k ;

0 otherwise.

Proposition

Ko(α)
µ is a shifted symmetric function.

Proof: Uses Ko(α)
µ =

∑
ν`k

Lµ,ν Ch(α)
ν and Lassalle proposition.

(Lµ,ν is defined by pν =
∑
µ`k

Lµ,νm̃µ).

V. Féray (with P.A.) (I-Math, UZH)Multirectangular shifted Jack SLC, 2014–09 10 / 16



Unifying both ? Two new conjectures. . .

A new conjecture

Proposition

Ko(α)
µ (p× q) is a polynomial in p, q and α.

Conjecture (F., Alexandersson)

In the falling factorial basis in p and q, Ko(α)
µ (p× q) has non-negative

integer coefficients.

falling factorial: (n)k := n(n − 1) . . . (n − k + 1).

falling factorial basis:
(

(p1)i1(p2)i2 . . . (q1)j1(q2)j2 . . . α
k
)
.

It is stronger than positivity in Knop-Sahi theorem (and does not follow
from their combinatorial interpretation) !
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Unifying both ? Two new conjectures. . .

Another conjecture

Another interesting family of shifted symmetric function

Shifted Jack polynomials (Okounkov, Olshanski, 97)

J](α)
µ is the unique shifted symmetric function whose highest degree

component is the Jack polynomial Jµ.

Conjecture (F., Alexandersson)

In the falling factorial basis in p and q, α`(µ)J](α)
µ (p× q) has non-negative

integer coefficients.

For a fixed α, FF-positivity of α`(µ)J](α)
µ (p× q) implies FF-positivity of

Ko(α)
µ (p× q).
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Partial results

Case α = 1 (1/2)

For α = 1, there is a combinatorial formula for Ch(1)
µ :

Theorem (F. 2007; F., Śniady 2008 ; conj. by Stanley 2006)

Let µ a partition of k . Fix a permutation π in Sk of type µ. Then

(−1)k Chµ(p× q) =
∑
σ,τ∈Sk
στ=π

Nσ,τ (p,−q).

Nσ,τ : combinatorial polynomial with non-negative integer coefficients.
⇒ Lassalle conjecture holds for α = 1.

Similar formula for α = 2: replace permutations by pairings of [2n] (F.,
Śniady, 2011).
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Partial results

Case α = 1 (1/2)

For α = 1, there is a combinatorial formula for Ch(1)
µ :

Theorem (F. 2007; F., Śniady 2008 ; conj. by Stanley 2006)

Let µ a partition of k . Fix a permutation π in Sk of type µ. Then

(−1)k Chµ(p× q) =
∑
σ,τ∈Sk
στ=π

Nσ,τ (p,−q).

Proposition
Fix a set-partition Π whose block size are given by µ.

(−1)kKo(1)
µ (p× q) =

∑
σ,τ∈Sk
στ∈SΠ

Nσ,τ (p,−q).

(−1)ks]λµ(p× q) =
∑
σ,τ∈Sk

χµ(σ τ) Nσ,τ (p,−q)
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Partial results

Case α = 1 (2/2)

. . . use explicit expression of Nσ,τ (p,q) + sum manipulations . . .
It is enough to prove
Question 1
For any three set partitions T , U and Π of the same set,∑

σ∈ST ,τ∈SU
στ∈SΠ

ε(τ) ≥ 0.

Question 2
For any two set partitions T , U of [n] and integer partition µ of n,∑

σ∈ST ,τ∈SU

ε(τ)χµ(σ τ) ≥ 0.

Proof: representation theory + group algebra manipulation.
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Partial results

Case α = 1 (2/2)

. . . use explicit expression of Nσ,τ (p,q) + sum manipulations . . .
It is enough to prove
Conjecture
For any three set partitions T , U and Π of the same set,∑

σ∈ST ,τ∈SU
στ∈SΠ

ε(τ) ≥ 0.

Proposition

For any two set partitions T , U of [n] and integer partition µ of n,∑
σ∈ST ,τ∈SU

ε(τ)χµ(σ τ) ≥ 0.

Conclusion: Our second (and hence both) conjecture(s) hold(s) for α = 1.
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Partial results

Ko(k) is FF non-negative.

Observation: (−1)k Ko(1)
(k)(p× q) =

∑
σ,τ∈Sk

no restriction

Nσ,τ (p,−q).

Proposition
For a general α,

(−1)k Ko(α)
(k)(p× q) =

∑
σ,τ∈Sk

αk−#(LR-max(σ))Nσ,τ (p,−q)

Proof: KS combinatorial interpretation + a new bijection.

Corollary (special case of our first conjecture)

The coefficients of Ko(α)
(k) in the falling factorial basis are non-negative.
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Conclusion

Conclusion

A bridge between KS theorem and Lassalle’s conjecture:

Our conjecture involves shifted symmetric functions and
multirectangular coordinates and implies KS theorem ;

Our partial results use (partial) results to both questions.

Other partial results?

α = 2 works similarly as α = 1 with a bit more work ;

Case of rectangular Young diagram is perhaps tractable (Lassalle
proved his conjecture in this case);

An extension?

What about (shifted) Macdonald polynomials and multirectangular
coordinates?

V. Féray (with P.A.) (I-Math, UZH)Multirectangular shifted Jack SLC, 2014–09 16 / 16



Conclusion

Conclusion

A bridge between KS theorem and Lassalle’s conjecture:

Our conjecture involves shifted symmetric functions and
multirectangular coordinates and implies KS theorem ;

Our partial results use (partial) results to both questions.

Other partial results?

α = 2 works similarly as α = 1 with a bit more work ;

Case of rectangular Young diagram is perhaps tractable (Lassalle
proved his conjecture in this case);

An extension?

What about (shifted) Macdonald polynomials and multirectangular
coordinates?

V. Féray (with P.A.) (I-Math, UZH)Multirectangular shifted Jack SLC, 2014–09 16 / 16



Conclusion

Conclusion

A bridge between KS theorem and Lassalle’s conjecture:

Our conjecture involves shifted symmetric functions and
multirectangular coordinates and implies KS theorem ;

Our partial results use (partial) results to both questions.

Other partial results?

α = 2 works similarly as α = 1 with a bit more work ;

Case of rectangular Young diagram is perhaps tractable (Lassalle
proved his conjecture in this case);

An extension?

What about (shifted) Macdonald polynomials and multirectangular
coordinates?

V. Féray (with P.A.) (I-Math, UZH)Multirectangular shifted Jack SLC, 2014–09 16 / 16


	Symmetric functions and Jack polynomials
	Knop Sahi combinatorial formula
	Lassalle's dual approach
	Unifying both ? Two new conjectures…
	Partial results

