Some Recent Works on Hankel Determinants

Guoniu Han

IRMA (CNRS/Université de Strasbourg)

73rd SLC, Strobl, Austria

September 7-10, 2014

Summary

Sep. 8

- 1. Determinants
- 2. Hankel determinant of the Thue-Morse sequence
- 3. Combinatorial Proof
- 4. *t*-Extension

Sep. 9

- 5. Jacobi continued fraction
- 6. Grafting technique and Chopping method
- 7. Miscellaneous

Sep. 10

- 8. Evolution of the proofs of the APWW theorem
- 9. Hankel continued fraction
- 10. Periodicity

1. Determinants

Basic determinant evaluation

• One square matrix of (small) fixed dimension:

$$A = \begin{pmatrix} 3 & 1 & 9 \\ -1 & -2 & 7 \\ 6 & 0 & 1 \end{pmatrix}$$

• Linear Algebra:

$$det(A) = 3 \times (-2) \times 1 + 1 \times 7 \times 6 + 9 \times (-1) \times 0$$

-9 \times (-2) \times 6 - 1 \times (-1) \times 1 - 7 \times 0 \times 3
= 145

• Computer Algebra System [REPLACES Human]

sage: A=matrix([[3,1,9],[-1,-2,7],[6,0,1]])
sage: A.det()
145

Basic determinant evaluation

• One square matrix of (small) fixed dimension:

$$A = \begin{pmatrix} 3 & 1 & 9 \\ -1 & -2 & 7 \\ 6 & 0 & 1 \end{pmatrix}$$

• Linear Algebra:

$$det(A) = 3 \times (-2) \times 1 + 1 \times 7 \times 6 + 9 \times (-1) \times 0$$

- 9 \times (-2) \times 6 - 1 \times (-1) \times 1 - 7 \times 0 \times 3
= 145

• Computer Algebra System [REPLACES Human]

sage: A=matrix([[3,1,9],[-1,-2,7],[6,0,1]])
sage: A.det()
145

Basic determinant evaluation

• One square matrix of (small) fixed dimension:

$$A = \begin{pmatrix} 3 & 1 & 9 \\ -1 & -2 & 7 \\ 6 & 0 & 1 \end{pmatrix}$$

• Linear Algebra:

$$det(A) = 3 \times (-2) \times 1 + 1 \times 7 \times 6 + 9 \times (-1) \times 0$$

- 9 \times (-2) \times 6 - 1 \times (-1) \times 1 - 7 \times 0 \times 3
= 145

• Computer Algebra System [REPLACES Human]

sage: A=matrix([[3,1,9],[-1,-2,7],[6,0,1]])
sage: A.det()
145

• One square matrix of dimension $n \times n$, where n is an unknown positive integer

$$A_n = \left(\frac{1}{i+j+1}\right)_{i,j=0..n-1}$$

• One sequence of matrices:

$$(A_0, A_1, A_2, \ldots)$$

• One square matrix of dimension $n \times n$, where n is an unknown positive integer

$$A_n = \left(\frac{1}{i+j+1}\right)_{i,j=0..n-1}$$

• One sequence of matrices:

$$(A_0, A_1, A_2, \ldots)$$

• Leibniz formula. Let A be a $n \times n$ square matrix

$$A = (a_{ij})_{i,j=0,...,n-1}.$$

Then

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \ a_{0,\sigma(0)} \ a_{1,\sigma(1)} \ \cdots \ a_{n-1,\sigma(n-1)}$$

where :

$$sgn(\sigma) = (-1)^{inv(\sigma)}$$
 : signature
 $inv(\sigma)$: the number of inversions

$$inv(\sigma) = \#\{(i,j) \mid 0 \le i < j \le n-1, \sigma(i) > \sigma(j)\}.$$

• Computer Algebra System

```
> def Adet(n):
> R=range(n)
> F=[[1/(i+j+1) for i in R] for j in R]
> return matrix(QQ, F).det()
> [Adet(0), Adet(1), Adet(2), Adet(3), Adet(4)]
[1, 1, 1/12, 1/2160, 1/6048000]
```

> Adet(n)
NameError: name 'n' is not defined

• CAS does not replace, but helps Human !

- Computer Algebra System
- Christian Krattenthaler

1998: Advanced determinant calculus

2005: Advanced determinant calculus: A complement

$$\det_{0\leq i,j\leq n-1}\left(\binom{a+b}{a-i+j}\right) = \prod_{i=0}^{n-1} \frac{(a+b+i)!i!}{(a+i)!(b+i)!}$$

- Computer Algebra System
- Christian Krattenthaler

1998: Advanced determinant calculus

2005: Advanced determinant calculus: A complement

$$\det_{0 \le i, j \le n-1} \left(\binom{a+b}{a-i+j} \right) = \prod_{i=0}^{n-1} \frac{(a+b+i)!i!}{(a+i)!(b+i)!}$$

- Computer Algebra System
- Christian Krattenthaler

1998: Advanced determinant calculus

2005: Advanced determinant calculus: A complement

$$\det_{0 \le i, j \le n-1} \left(\binom{a+b}{a-i+j} \right) = \prod_{i=0}^{n-1} \frac{(a+b+i)!i!}{(a+i)!(b+i)!}$$

- Computer Algebra System
- Christian Krattenthaler

1998: Advanced determinant calculus

2005: Advanced determinant calculus: A complement

$$\det_{0 \le i,j \le n-1} \left(\binom{a+b}{a-i+j} \right) = \prod_{i=0}^{n-1} \frac{(a+b+i)!i!}{(a+i)!(b+i)!}$$

Advanced determinant calculus

Christian Krattenthaler :

"Evaluating determinants is not difficult!",

if $det(A_n) = NICE FORMULA(n)$.

Problem

How do we proceed if $det(A_n) \neq NICE FORMULA(n)$?

• Answer

Simple. We just ignore the problem.

Doing Enumerative Combinatorics, we avoid studying any sequence WITHOUT nice formula.

Problem

How do we proceed if $det(A_n) \neq NICE FORMULA(n)$?

• Answer

Simple. We just ignore the problem.

Doing Enumerative Combinatorics, we avoid studying any sequence WITHOUT nice formula.

Interlude

• Ramanujan τ -function

$$x \prod_{m \ge 1} (1 - x^m)^{24} = \sum_{n \ge 1} \tau(n) x^n$$
$$= x - 24 x^2 + 252 x^3 - 1472 x^4 + 4830 x^5 - 6048 x^6 + \cdots$$

For each n we have $\tau(n) \neq 0$.

• I refuse to study the Lehmer Conjecture, because there is no nice formula for $\tau(n)$.

Interlude

• Ramanujan τ -function

$$x \prod_{m \ge 1} (1 - x^m)^{24} = \sum_{n \ge 1} \tau(n) x^n$$
$$= x - 24 x^2 + 252 x^3 - 1472 x^4 + 4830 x^5 - 6048 x^6 + \cdots$$

For each n we have $\tau(n) \neq 0$.

• I refuse to study the Lehmer Conjecture, because there is no nice formula for $\tau(n)$.

Interlude

• Ramanujan τ -function

$$x \prod_{m \ge 1} (1 - x^m)^{24} = \sum_{n \ge 1} \tau(n) x^n$$
$$= x - 24 x^2 + 252 x^3 - 1472 x^4 + 4830 x^5 - 6048 x^6 + \cdots$$

For each n we have $\tau(n) \neq 0$.

 \bullet I refuse to study the Lehmer Conjecture, because there is no nice formula for $\tau(n).$

Hankel determinant

We identify a sequence

$$\mathbf{a} = (a_0, a_1, a_2, \ldots)$$

and its generating function

$$f = f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$

$$H_n^{(k)}(\mathbf{a}) = H_n^{(k)}(f) := \begin{vmatrix} a_k & a_{k+1} & \dots & a_{k+n-1} \\ a_{k+1} & a_{k+2} & \dots & a_{k+n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k+n-1} & a_{k+n} & \dots & a_{k+2n-2} \end{vmatrix}$$

(constant skew-diagonals)

We identify a sequence

$$\mathbf{a} = (a_0, a_1, a_2, \ldots)$$

and its generating function

$$f = f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$

$$H_n^{(k)}(\mathbf{a}) = H_n^{(k)}(f) := \begin{vmatrix} a_k & a_{k+1} & \dots & a_{k+n-1} \\ a_{k+1} & a_{k+2} & \dots & a_{k+n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k+n-1} & a_{k+n} & \dots & a_{k+2n-2} \end{vmatrix}$$

(constant skew-diagonals)

Hankel determinant

Two notations. Using sequence and generating function

$$H_n^{(0)}\Big((1,1,1,1,1,\ldots)\Big) = H_n^{(0)}\Big(\frac{1}{1-x}\Big)$$

Special case k = 0:

$$H_n(f) = H_n^{(0)}(f) = \begin{vmatrix} a_0 & a_1 & a_2 & a_3 & \dots & a_{n-1} \\ a_1 & a_2 & a_3 & a_4 & \dots & a_n \\ a_2 & a_3 & a_4 & a_5 & \dots & a_{n+1} \\ a_3 & a_4 & a_5 & a_6 & \dots & a_{n+2} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_n & a_{n+1} & a_{n+2} & \dots & a_{2n-2} \end{vmatrix}$$

2. Hankel determinants of the Thue-Morse sequence

an infinite sequence $\mathbf{t} = (e_0, e_1, e_2, \ldots)$ on $\{1, -1\}$, defined by:

• Generating function

$$\prod_{k=0}^{\infty} (1 - x^{2^k}) = \sum_{n=0}^{\infty} e_n x^n = 1 - x - x^2 + x^3 - x^4 + x^5 + \cdots$$
$$\mathbf{t} = (1, -1, -1, 1, -1, 1, 1, -1, \ldots)$$

• Recurrence relation

$$e_0 = 1$$
$$e_{2n} = e_n$$
$$e_{2n+1} = -e_n$$

- starting with (1)
- The negation is (-1)
- Combining those two, we get (1, -1)
- The negation is (-1, 1)
- Combining those two, we get (1, -1, -1, 1)
- The negation is (-1, 1, 1, -1)
- Combining those two, we get (1, -1, -1, 1, -1, 1, 1, -1)
- And so on

- starting with (1)
- The negation is (-1)
- Combining those two, we get (1, -1)
- The negation is (-1, 1)
- Combining those two, we get (1, -1, -1, 1)
- The negation is (-1, 1, 1, -1)
- Combining those two, we get (1, -1, -1, 1, -1, 1, 1, -1)
- And so on

- starting with (1)
- The negation is (-1)
- Combining those two, we get (1, -1)
- The negation is (-1, 1)
- Combining those two, we get (1, -1, -1, 1)
- The negation is (-1, 1, 1, -1)
- Combining those two, we get (1, -1, -1, 1, -1, 1, 1, -1)
- And so on

- starting with (1)
- The negation is (-1)
- \bullet Combining those two, we get (1,-1)
- The negation is (-1, 1)
- Combining those two, we get (1, -1, -1, 1)
- The negation is (-1, 1, 1, -1)
- Combining those two, we get (1, -1, -1, 1, -1, 1, 1, -1)
- And so on

- starting with (1)
- The negation is (-1)
- Combining those two, we get (1, -1)
- The negation is (-1,1)
- Combining those two, we get (1, -1, -1, 1)
- The negation is (-1, 1, 1, -1)
- Combining those two, we get (1, -1, -1, 1, -1, 1, 1, -1)
- And so on

- starting with (1)
- The negation is (-1)
- \bullet Combining those two, we get (1,-1)
- The negation is (-1,1)
- \bullet Combining those two, we get (1,-1,-1,1)
- The negation is (-1, 1, 1, -1)
- Combining those two, we get (1, -1, -1, 1, -1, 1, 1, -1)
- And so on

- starting with (1)
- The negation is (-1)
- \bullet Combining those two, we get (1,-1)
- The negation is (-1,1)
- \bullet Combining those two, we get (1,-1,-1,1)
- \bullet The negation is (-1,1,1,-1)
- Combining those two, we get (1, -1, -1, 1, -1, 1, 1, -1)
- And so on

- starting with (1)
- \bullet The negation is (-1)
- \bullet Combining those two, we get (1,-1)
- The negation is (-1,1)
- \bullet Combining those two, we get (1,-1,-1,1)
- \bullet The negation is (-1,1,1,-1)
- \bullet Combining those two, we get (1,-1,-1,1,-1,1,1,-1)
- And so on

- starting with (1)
- \bullet The negation is (-1)
- \bullet Combining those two, we get (1,-1)
- The negation is (-1,1)
- \bullet Combining those two, we get (1,-1,-1,1)
- \bullet The negation is (-1,1,1,-1)
- \bullet Combining those two, we get (1,-1,-1,1,-1,1,1,-1)
- And so on

• L-system (Lindenmayer system)

```
variables 1, -1
constants none
start 1
rules (1 -> 1 -1), (-1 -> -1 1)
```

```
1
1 -1
1 -1 -1 1
1 -1 -1 1 -1 1 1 -1
.
```

1998

Allouche, Peyrière, Wen, Wen proved:

Theorem [APWW]. Let

$$P_2(x) = \prod_{k=0}^{\infty} (1 - x^{2^k}).$$

Then $H_n(P_2(x)) \neq 0$ for every positive integer n.
Table

n	H_n	n	H_n	n	H_n	n	H_n
0	1	7	-64	14	8192	21	28311552
1	1	8	128	15	-16384	22	-94371840
2	-2	9	-256	16	32768	23	62914560
3	4	10	-1536	17	-65536	24	8388608
4	8	11	-3072	18	-393216	25	16777216
5	-16	12	2048	19	-2359296		
6	-32	13	4096	20	14155776		

• I resigned, because there is no nice formula for H_n .

Table

n	$H_n/2^{n-1}$	$\mid n vert$	$H_n/2^{n-1}$	n .	$H_n/2^{n-1}$	$\mid n$	$H_n/2^{n-1}$
0	2	7	-1	14	1	21	27
1	1	8	1	15	-1	22	-45
2	-1	9	-1	16	1	23	15
3	1	10	-3	17	-1	24	1
4	1	11	-3	18	-3	25	1
5	-1	12	1	19	-9		
6	-1	13	1	20	27		

Theorem APWW(i)

$$\frac{H_n(P_2)}{2^{n-1}} \quad \text{is odd.}$$

Period-doubling sequence

Recall: The Thue-Morse sequence t $\mathbf{t} = 1 \quad -1 \quad -1 \quad 1 \quad -1 \quad 1 \quad 1 \quad 1 \quad \dots$ $\mathbf{d} = 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad \dots$

The *period-doubling sequence* $\mathbf{d} = (1, 0, 1, 1, 1, 0, ...)$ is derived from the Thue–Morse sequence

$$d_k := \frac{1}{2} |e_k - e_{k+1}| \qquad (k \ge 0).$$

Theorem APWW(ii).

 $H_n(\mathbf{d})$ is odd.

Period-doubling sequence

Recall: The Thue-Morse sequence \mathbf{t}

The *period-doubling sequence* $\mathbf{d} = (1, 0, 1, 1, 1, 0, ...)$ is derived from the Thue–Morse sequence

$$d_k := \frac{1}{2} |e_k - e_{k+1}| \qquad (k \ge 0).$$

Theorem APWW(ii).

 $H_n(\mathbf{d})$ is odd.

Period-doubling sequence

Recall: The Thue-Morse sequence \mathbf{t}

The *period-doubling sequence* $\mathbf{d} = (1, 0, 1, 1, 1, 0, ...)$ is derived from the Thue–Morse sequence

$$d_k := \frac{1}{2} |e_k - e_{k+1}| \qquad (k \ge 0).$$

Theorem APWW(ii).

 $H_n(\mathbf{d})$ is odd.

Theorem APWW(iii)

Let M_n be the $n \times n$ matrix derived from the Hankel matrix of the period-doubling sequence by replace the last column by $(1, 1, 1, 1, \ldots, 1)^t$. Then

 $det(M_n)$ is odd.

• Theorems APWW(i) and APWW(iii) are equivalent.

$$\mathbf{t} = (1, -1, -1, 1, -1, 1, 1, -1, -1, \dots)$$

$$\mathbf{d} = (1, 0, 1, 1, 1, 0, 1, 0, \dots)$$

$$H_4(\mathbf{t}) = \begin{vmatrix} 1 & -1 & -1 & 1 \\ -1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 0 & -2 & 1 \\ 0 & -2 & 2 & -1 \\ -2 & 2 & -2 & 1 \\ 2 & -2 & 0 & 1 \end{vmatrix}$$

$$[\operatorname{Col}(\mathbf{i}) := \operatorname{Col}(\mathbf{i}) - \operatorname{Col}(\mathbf{i}+1) \quad \mathbf{i} = 0, 1, 2]$$

$$H_4(\mathbf{t})/2^3 = \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{vmatrix} = \det(M_4) \equiv 1 \pmod{2}$$

$$H_4(\mathbf{d}) = \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{vmatrix} \equiv 1 \pmod{2}$$

APWW's Proof

- Sixteen relations
- Sudoku method

Let ξ be an irrational, real number. The irrationality exponent $\mu(\xi)$ of ξ is the supremum of the real numbers μ such that the inequality

$$\left|\xi - \frac{p}{q}\right| < \frac{1}{q^{\mu}}$$

has infinitely many solutions in rational numbers p/q.

Well known:

- $\bullet \ \mu(\xi) \geq 2$
- $\mu(\xi) = 2$ if ξ is algebraic irrational number
- $\mu(\xi) = 2$ for almost all real numbers ξ (Lebesgue measure)
- $P_2(1/m)$ is transcendental for every integer $m \ge 2$

Theorem [Bugeaud, 2011]

 $\mu(P_2(1/m)) = 2.$

Well known:

- $\mu(\xi) \ge 2$
- $\mu(\xi) = 2$ if ξ is algebraic irrational number
- $\mu(\xi) = 2$ for almost all real numbers ξ (Lebesgue measure)
- $P_2(1/m)$ is transcendental for every integer $m\geq 2$

Theorem [Bugeaud, 2011]

 $\mu(P_2(1/m)) = 2.$

Well known:

- $\mu(\xi) \ge 2$
- $\mu(\xi)=2$ if ξ is algebraic irrational number
- $\mu(\xi) = 2$ for almost all real numbers ξ (Lebesgue measure)
- $P_2(1/m)$ is transcendental for every integer $m\geq 2$

Theorem [Bugeaud, 2011]

 $\mu(P_2(1/m)) = 2.$

Well known:

- $\mu(\xi) \ge 2$
- $\mu(\xi)=2$ if ξ is algebraic irrational number
- $\mu(\xi) = 2$ for almost all real numbers ξ (Lebesgue measure)
- $P_2(1/m)$ is transcendental for every integer $m \geq 2$

Theorem [Bugeaud, 2011]

 $\mu(P_2(1/m)) = 2.$

Well known:

- $\mu(\xi) \ge 2$
- $\mu(\xi)=2$ if ξ is algebraic irrational number
- $\mu(\xi) = 2$ for almost all real numbers ξ (Lebesgue measure)
- $P_2(1/m)$ is transcendental for every integer $m \ge 2$

Theorem [Bugeaud, 2011]

 $\mu(P_2(1/m)) = 2.$

Well known:

- $\mu(\xi) \ge 2$
- $\mu(\xi)=2$ if ξ is algebraic irrational number
- $\mu(\xi) = 2$ for almost all real numbers ξ (Lebesgue measure)
- $P_2(1/m)$ is transcendental for every integer $m \ge 2$

Theorem [Bugeaud, 2011]

 $\mu(P_2(1/m)) = 2.$

Well known:

- $\mu(\xi) \ge 2$
- $\mu(\xi)=2$ if ξ is algebraic irrational number
- $\mu(\xi) = 2$ for almost all real numbers ξ (Lebesgue measure)
- $P_2(1/m)$ is transcendental for every integer $m \ge 2$

Theorem [Bugeaud, 2011]

 $\mu(P_2(1/m)) = 2.$

Coons (2011)

The Gros sequence [Louis Gros, 1872]

$$S_2(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^n}}$$

 $1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, \dots$

Theorem

 $H_n(S_2)$ is odd.

Theorem

 $\mu(S_2(1/m)) = 2.$

Coons (2011)

The Gros sequence [Louis Gros, 1872]

$$S_2(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^n}}$$

 $1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, \ldots$

Theorem

 $H_n(S_2)$ is odd.

Theorem

 $\mu(S_2(1/m)) = 2.$

Coons (2011)

The Gros sequence [Louis Gros, 1872]

$$S_2(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^n}}$$

 $1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, \dots$

Theorem

 $H_n(S_2)$ is odd.

Theorem

 $\mu(S_2(1/m)) = 2.$

Coons's Proof

APWW's method

3. Combinatorial Proof

Combinatorial Proof / Bugeaud-Han

Infinite sets of integers:

$$N = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, \ldots\}$$
$$J = \{(2n+1)2^{2k} - 1 \mid n, k \in N\}$$
$$= \{0, 2, 3, 4, 6, 8, 10, 11, 12, 14, \ldots\}$$
$$K = \{(2n+1)2^{2k+1} - 1 \mid n, k \in N\}$$
$$= \{1, 5, 7, 9, 13, 17, \ldots\}$$

Property: N = J + K (disjoint union)

 $m \geq 1$: integer $\mathfrak{S}_m = \mathfrak{S}_{\{0,1,\ldots,m-1\}}$: all permutations on $\{0,1,\ldots,m-1\}$ Theorem J. (J1): $\#\{\sigma \in \mathfrak{S}_m \mid i + \sigma(i) \in J \text{ for } i = 0, 1, \dots, m-1\}$ is odd. (J2): $\#\{\sigma \in \mathfrak{S}_m \mid i + \sigma(i) \in J \text{ for } i = 0, 1, \dots, m-2\}$ is odd.

Enumerative Combinatorics

permutations, involutions, inversion number, major index, the number of descents, the number of excedances, the number of fixed points, Denert statistics, Young tableau, charge statistics, pattern-avoiding permutations, signed permutations, André permutations, derangements, desarrangements, wreath product, RSK algorithm, dez, maz, pix, two-pix, ides, imaj, rmail, rmal, cyc, surfix, maf, mak, ...

Today: $i + \sigma(i)$

Proof of Theorem J / Notations

Three representations for permutations

• one-line

 $\sigma \in \mathfrak{S}_9 = 516280374$

• two-lines

$$\sigma \in \mathfrak{S}_9 = \begin{pmatrix} 012345678\\516280374 \end{pmatrix}$$

• product of disjoint cycles

$$\sigma \in \mathfrak{S}_9 = (0,5)(1)(2,6,3)(4,8)(7)$$

Involution

• An *involution* is a permutation σ such that $\sigma = \sigma^{-1}$.

• In the cycle representation of an involution every cycle is either a *fixed point* (b) or a *transposition* (c, d).

• Definition.

For every set A, a transposition (c,d) is said to be an $A\mathchar`-transposition$ if:

 $c+d \in A$ and c+d is odd.

• Remark.

There is an even number and an odd number in every *A*-transposition. We write the *even number before the odd number*.

(Usually the order of the two numbers in a transposition does not matter)

- A: finite set
- B: infinite set
- f: non-negative integer

Definition.

 $\nu(A,f,B)$: the number of involutions in \mathfrak{S}_A such that

- \bullet all transpositions are $B\mbox{-transpositions}$
- have exactly f fixed points.

Example.

 $A = \{0, 1, 2, 3, 4, 5, 6\}$ $K = \{(2n+1)2^{2k+1} - 1 \mid n, k \in N\} = \{1, 5, 7, 9, 13, 17, \ldots\}$ f = 1

 $\nu(A, f, K) = 11$

The possible transpositions:

(01), (05), (14), (16), (23), (25), (34), (36), (45)

List of 11 involutions:

(0)(14)(52)(36), (0)(16)(23)(45), (0)(16)(25)(34)(01)(2)(63)(45), (01)(23)(6)(45), (01)(25)(6)(34), (01)(25)(63)(4)(05)(14)(2)(36), (05)(14)(23)(6), (05)(16)(2)(34), (05)(16)(23)(4)

Proof of Theorem J / Basic Lemmas

• Two infinite sets of integers:

$$P = \{k \mid k \equiv 0, 3 \pmod{4}\}$$

= $\{0, 3, 4, 7, 8, 11, 12, 15, 16, \ldots\}$
$$Q = \{k \mid k \equiv 1, 2 \pmod{4}\}$$

= $\{1, 2, 5, 6, 9, 10, 13, 14, 17, \ldots\}$

• Property : N = P + Q (disjoint union)

• Let $A|_m$ be the set composed of the smallest m integers in A.

Example: $P|_5 = \{0, 3, 4, 7, 8\}$

Transformation:

$$\beta: N \to N; \qquad k \mapsto \begin{cases} k/2 & \text{if } k \text{ is even} \\ (k-1)/2 & \text{if } k \text{ is odd} \end{cases}$$

 β is extended to the involutions σ on $N|_m$ whose transpositions are K-transpositions, by applying β on every number in the cycle representation of σ .

 $\beta((7)(0,5)(6,3)(2)(8,1)(4)) = (3)(0,2)(3,1)(1)(4,0)(2).$

• β for involutions is reversible, even though β on N is not reversible.

 $\beta((?)(0,5)(6,3)(2)(8,1)(4)) = (3)(0,2)(3,1)(1)(4,0)(2).$

We do not know a priori whether the fixed point 3 is obtained from 6 or from 7.

• We must look at the transposition (3,1) first. It is obtained from the permutation (6,3) since we know that an even number is always *before* an odd number. Thus, we can recover the Ktranspositions (6,3)(0,5)(8,1).

• All the other numbers are fixed points (7)(2)(4).

 $P = \{k \mid k \equiv 0, 3 \pmod{4}\}$

$$\begin{split} \beta: N \to N; & k \mapsto \begin{cases} k/2 & \text{if } k \text{ is even} \\ (k-1)/2 & \text{if } k \text{ is odd} \end{cases} \\ \gamma: P \to N; & k \mapsto \begin{cases} k/4 & \text{if } k \text{ is even} \\ (k-3)/4 & \text{if } k \text{ is odd} \end{cases} \end{split}$$

 $\beta: (7)(0,5)(6,3)(2)(8,1)(4) \rightarrow (3)(0,2)(3,1)(1)(4,0)(2)$ $|| \\ \gamma^{-1}: (15)(0,11)(12,7)(4)(16,3)(8) \leftarrow (3)(0,2)(3,1)(1)(4,0)(2)$

By the bijection $\gamma^{-1}\beta$,

Lemma. For $m \ge 1$ we have

$$\nu(N|_m, 0/1, K) \equiv \nu(P|_m, 0/1, J)$$

$$\nu(N|_{2m-1}, 1, J) \equiv \nu(P|_{2m-1}, 1, K)$$

$$\nu(N|_{2m}, 0/2, J) \equiv \nu(P|_{2m}, 0/2, K)$$

where $\nu(A,f/g,B):=\nu(A,f,B)+\nu(A,g,B)$

Again, by

$$\begin{split} \delta: N \to N; & k \mapsto \begin{cases} k+1 & \text{if } k \text{ is even} \\ k-1 & \text{if } k \text{ is odd} \end{cases} \\ \delta: P \to Q \end{split}$$

Lemma. For $m \geq 1$ we have

$$\nu(N|_m, 0/1, K) \equiv \nu(P|_m, 0/1, J) \equiv \nu(Q|_m, 0/1, J)$$

$$\nu(N|_{2m-1}, 1, J) \equiv \nu(P|_{2m-1}, 1, K) \equiv \nu(Q|_{2m-1}, 1, K)$$

$$\nu(N|_{2m}, 0/2, J) \equiv \nu(P|_{2m}, 0/2, K) \equiv \nu(Q|_{2m}, 0/2, K)$$
Proof of Theorem J / Proof of (J1) (J1): $\#\{\sigma \in \mathfrak{S}_m \mid i + \sigma(i) \in J \text{ for all } i\}$ is odd. We count the permutations in (J1) modulo 2. Recall

$$J = \{(2n+1)2^{2k} - 1 \mid n, k \in N\}$$

= {0, 2, 3, 4, 6, 8, 10, 11, 12, 14, ...}

- Fact1: *J* contains all even numbers;
- Fact2: If an odd number $x \in J$, then $x \equiv 3 \pmod{4}$.

• Take a permutation σ in (J1)

• If σ contains more than two columns $\binom{odd}{odd}$, select the first two such columns $\binom{i_1}{j_1}$ and $\binom{i_2}{j_2}$.

• Define permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line.

- This procedure is reversible.
- By Fact1, τ is also a valid permutation in (J1).

• So that we can delete the pair σ and τ , and there only remain the permutations containing 0 or 1 column $\binom{odd}{odd}$, in particular, having 0 or 1 odd fixed point.

- Take a permutation σ in (J1)
- If σ contains more than two columns $\binom{odd}{odd}$, select the first two such columns $\binom{i_1}{j_1}$ and $\binom{i_2}{j_2}$.
- Define permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line.
- This procedure is reversible.
- By Fact1, τ is also a valid permutation in (J1).

• So that we can delete the pair σ and τ , and there only remain the permutations containing 0 or 1 column $\binom{odd}{odd}$, in particular, having 0 or 1 odd fixed point.

• Take a permutation σ in (J1)

• If σ contains more than two columns $\binom{odd}{odd}$, select the first two such columns $\binom{i_1}{j_1}$ and $\binom{i_2}{j_2}$.

• Define permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line.

- This procedure is reversible.
- By Fact1, τ is also a valid permutation in (J1).

• So that we can delete the pair σ and τ , and there only remain the permutations containing 0 or 1 column $\binom{odd}{odd}$, in particular, having 0 or 1 odd fixed point.

• Take a permutation σ in (J1)

• If σ contains more than two columns $\binom{odd}{odd}$, select the first two such columns $\binom{i_1}{j_1}$ and $\binom{i_2}{j_2}$.

• Define permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line.

- This procedure is reversible.
- By Fact1, τ is also a valid permutation in (J1).

• So that we can delete the pair σ and τ , and there only remain the permutations containing 0 or 1 column $\binom{odd}{odd}$, in particular, having 0 or 1 odd fixed point.

• Take a permutation σ in (J1)

• If σ contains more than two columns $\binom{odd}{odd}$, select the first two such columns $\binom{i_1}{j_1}$ and $\binom{i_2}{j_2}$.

• Define permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line.

- This procedure is reversible.
- By Fact1, τ is also a valid permutation in (J1).

• So that we can delete the pair σ and τ , and there only remain the permutations containing 0 or 1 column $\binom{odd}{odd}$, in particular, having 0 or 1 odd fixed point.

• Take a permutation σ in (J1)

• If σ contains more than two columns $\binom{odd}{odd}$, select the first two such columns $\binom{i_1}{j_1}$ and $\binom{i_2}{j_2}$.

• Define permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line.

- This procedure is reversible.
- By Fact1, τ is also a valid permutation in (J1).

• So that we can delete the pair σ and τ , and there only remain the permutations containing 0 or 1 column $\binom{odd}{odd}$, in particular, having 0 or 1 odd fixed point.

• Take a permutation σ in (J1)

• If σ contains more than two columns $\binom{odd}{odd}$, select the first two such columns $\binom{i_1}{j_1}$ and $\binom{i_2}{j_2}$.

• Define permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line.

- This procedure is reversible.
- By Fact1, τ is also a valid permutation in (J1).

• So that we can delete the pair σ and τ , and there only remain the permutations containing 0 or 1 column $\binom{odd}{odd}$, in particular, having 0 or 1 odd fixed point.

 \bullet Thanks to the bijection $\sigma\mapsto\sigma^{-1},$ we only need consider the involutions .

- We can check that all transpositions are J-transpositions.
- \bullet If m is odd, then the involution contains one fixed point, and the number of such involutions is $\nu(N|_m,1,J)$
- By Fact2 the two numbers in every J-transposition are either both in P or both in Q. This means that no J-transposition takes one number in P and another in Q.
- The involutions are of type

 \bullet Thanks to the bijection $\sigma\mapsto\sigma^{-1},$ we only need consider the involutions .

• We can check that all transpositions are J-transpositions.

 \bullet If m is odd, then the involution contains one fixed point, and the number of such involutions is $\nu(N|_m,1,J)$

• By Fact2 the two numbers in every J-transposition are either both in P or both in Q. This means that no J-transposition takes one number in P and another in Q.

• The involutions are of type

 \bullet Thanks to the bijection $\sigma\mapsto\sigma^{-1},$ we only need consider the involutions .

- We can check that all transpositions are J-transpositions.
- \bullet If m is odd, then the involution contains one fixed point, and the number of such involutions is $\nu(N|_m,1,J)$
- By Fact2 the two numbers in every J-transposition are either both in P or both in Q. This means that no J-transposition takes one number in P and another in Q.
- The involutions are of type

• Thanks to the bijection $\sigma\mapsto\sigma^{-1},$ we only need consider the involutions .

- We can check that all transpositions are J-transpositions.
- \bullet If m is odd, then the involution contains one fixed point, and the number of such involutions is $\nu(N|_m,1,J)$
- By Fact2 the two numbers in every J-transposition are either both in P or both in Q. This means that no J-transposition takes one number in P and another in Q.
- The involutions are of type

• Thanks to the bijection $\sigma\mapsto\sigma^{-1},$ we only need consider the involutions .

- We can check that all transpositions are J-transpositions.
- \bullet If m is odd, then the involution contains one fixed point, and the number of such involutions is $\nu(N|_m,1,J)$
- By Fact2 the two numbers in every J-transposition are either both in P or both in Q. This means that no J-transposition takes one number in P and another in Q.
- The involutions are of type

• Thanks to the bijection $\sigma\mapsto\sigma^{-1},$ we only need consider the involutions .

- We can check that all transpositions are J-transpositions.
- \bullet If m is odd, then the involution contains one fixed point, and the number of such involutions is $\nu(N|_m,1,J)$
- By Fact2 the two numbers in every J-transposition are either both in P or both in Q. This means that no J-transposition takes one number in P and another in Q.
- The involutions are of type

• IF
$$m = 2k + 1$$
, $fix(\sigma) = 1$

 $\nu(N|_{2k+1}, 1, J) \equiv \nu(P|_k, 0/1, J) \times \nu(Q|_{k+1}, 0/1, J)$

• We need evaluate $u(P|_k, 0/1, J)$

• IF $k = 2\ell$, fix = 0. Apply γ to an involution in $\nu(P|_k, 0/1, J)$ $\gamma((0,3)(8,7)(4,11)) = (0,0)(2,1)(1,2)$

which can be identified with the permutation on $\{0,1,2\}$

$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

 $\nu(P|_{2\ell}, 0, J) = \#\{\sigma \in \mathfrak{S}_{\ell} \mid i + \sigma(i) \in J \text{ for all } i\}$

- By induction, $\nu(P|_{2\ell}, 0, J) \equiv 1 \pmod{2}$.
- ELSE, ELSE [Still 3 pages]

• IF
$$m = 2k + 1$$
, $fix(\sigma) = 1$

 $\nu(N|_{2k+1}, 1, J) \equiv \nu(P|_k, 0/1, J) \times \nu(Q|_{k+1}, 0/1, J)$

- We need evaluate $\nu(P|_k, 0/1, J)$
- IF $k = 2\ell$, fix = 0. Apply γ to an involution in $\nu(P|_k, 0/1, J)$ $\gamma((0,3)(8,7)(4,11)) = (0,0)(2,1)(1,2)$
- which can be identified with the permutation on $\{0,1,2\}$

$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

 $\nu(P|_{2\ell}, 0, J) = \#\{\sigma \in \mathfrak{S}_{\ell} \mid i + \sigma(i) \in J \text{ for all } i\}$

- By induction, $\nu(P|_{2\ell}, 0, J) \equiv 1 \pmod{2}$.
- ELSE, ELSE [Still 3 pages]

• IF
$$m = 2k + 1$$
, $fix(\sigma) = 1$

 $\nu(N|_{2k+1}, 1, J) \equiv \nu(P|_k, 0/1, J) \times \nu(Q|_{k+1}, 0/1, J)$

- We need evaluate $\nu(P|_k, 0/1, J)$
- IF $k = 2\ell$, fix = 0. Apply γ to an involution in $\nu(P|_k, 0/1, J)$ $\gamma((0, 3)(8, 7)(4, 11)) = (0, 0)(2, 1)(1, 2)$

which can be identified with the permutation on $\{0,1,2\}$

$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

 $\nu(P|_{2\ell}, 0, J) = \#\{\sigma \in \mathfrak{S}_\ell \mid i + \sigma(i) \in J \text{ for all } i\}$

• By induction, $\nu(P|_{2\ell}, 0, J) \equiv 1 \pmod{2}$.

• ELSE, ELSE [Still 3 pages]

• IF
$$m = 2k + 1$$
, $fix(\sigma) = 1$

 $\nu(N|_{2k+1}, 1, J) \equiv \nu(P|_k, 0/1, J) \times \nu(Q|_{k+1}, 0/1, J)$

- We need evaluate $\nu(P|_k, 0/1, J)$
- IF $k = 2\ell$, fix = 0. Apply γ to an involution in $\nu(P|_k, 0/1, J)$ $\gamma((0,3)(8,7)(4,11)) = (0,0)(2,1)(1,2)$

which can be identified with the permutation on $\{0,1,2\}$

$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

 $\nu(P|_{2\ell}, 0, J) = \#\{\sigma \in \mathfrak{S}_\ell \mid i + \sigma(i) \in J \text{ for all } i\}$

- By induction, $\nu(P|_{2\ell}, 0, J) \equiv 1 \pmod{2}$.
- ELSE, ELSE [Still 3 pages]

• IF
$$m = 2k + 1$$
, $fix(\sigma) = 1$

 $\nu(N|_{2k+1}, 1, J) \equiv \nu(P|_k, 0/1, J) \times \nu(Q|_{k+1}, 0/1, J)$

- We need evaluate $\nu(P|_k, 0/1, J)$
- IF $k = 2\ell$, fix = 0. Apply γ to an involution in $\nu(P|_k, 0/1, J)$ $\gamma((0,3)(8,7)(4,11)) = (0,0)(2,1)(1,2)$

which can be identified with the permutation on $\{0,1,2\}$

$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

 $\nu(P|_{2\ell}, 0, J) = \#\{\sigma \in \mathfrak{S}_\ell \mid i + \sigma(i) \in J \text{ for all } i\}$

- By induction, $\nu(P|_{2\ell}, 0, J) \equiv 1 \pmod{2}$.
- ELSE, ELSE ... [Still 3 pages]

Theorem.

$$(J1) = APWW(ii)$$

 $(J2) = APWW(iii) = APWW(i)$

Proof. Recall:

- the period-doubling sequence $\mathbf{d} = (1, 0, 1, 1, 1, 0, \ldots)$.
- $J = \{0, 2, 3, 4, 6, 8, 10, 11, 12, 14, \ldots\}$

We have

$$d_j = 1$$
 if and only if $j \in J$

4. t-Extensions t-Hankel determinants

t-Hankel determinant / Fu-Han

t : an indeterminate

$$H_n(\mathbf{a}, \boldsymbol{t}) = \begin{vmatrix} ta_0 & a_1 & a_2 & a_3 & \dots & a_{n-1} \\ a_1 & ta_2 & a_3 & a_4 & \dots & a_n \\ a_2 & a_3 & ta_4 & a_5 & \dots & a_{n+1} \\ a_3 & a_4 & a_5 & ta_6 & \dots & a_{n+2} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_n & a_{n+1} & a_{n+2} & \dots & ta_{2n-2} \end{vmatrix}$$

• $H_n(\mathbf{a}, \mathbf{t})$ is a polynomial in \mathbf{t} of degree $\leq n$ • When $\mathbf{t} = 1$, $H_n(\mathbf{a}, 1) = H_n(\mathbf{a})$ Recall : period-doubling sequence $\mathbf{d} = (1, 0, 1, 1, 1, 0, ...)$ Theorem APWW(ii).

$$H_n(\mathbf{d}) \equiv 1 \pmod{2}$$

Theorem.

The *t*-Hankel determinant $H_n(\mathbf{d}, t)$ is a polynomial in *t* of degree *n*, whose leading coefficient is the only one to be an odd integer.

$$H_n(\mathbf{d}, t) \equiv t^n \pmod{2}$$

n	$H_n(\mathbf{d},t)$	$H_n(\mathbf{d},t) \pmod{2}$	$H_n(\mathbf{d},1)$
0	1	1	1
1	t	t	1
2	t^2	t^2	1
3	$t^3 - 2t$	t^3	-1
4	$t^4 - 4t^2$	t^4	-3
5	$t^5 - 6t^3 + 2t^2 + 4t$	t^5	1
6	$t^6 - 8t^4 + 4t^3 + 12t^2 - 8t$	t^6	1
7	$t^7 - 12t^5 + 10t^4 + 24t^3 - 24t^2$	t^7	-1
8	$t^8 - 16t^6 + 16t^5 + 48t^4 - 64t^3$	t^8	-15
	$ \cdots$ coefficients are even $\cdots $. '

Idea of the Proof.

Using the same combinatorial set-up. The parameter t counts the number of fixed points of a permutaion.

By Leibniz formula, the *t*-Hankel determinant

$$H_k(\mathbf{d}, \mathbf{t}) =$$

$$\sum_{\sigma \in \mathfrak{S}_k} t^{\operatorname{fix}(\sigma)} (-1)^{\operatorname{inv}(\sigma)} d_{0+\sigma(0)} d_{1+\sigma(1)} \cdots d_{k-1+\sigma(k-1)}$$

where $fix(\sigma)$ is the number of fixed points of σ .

Regular paperfolding sequence

(Source: Wikipedia)

 $1 = Left turn, \quad 0 = Right turn$

 $\mathbf{r} = (1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, \ldots)$

• Generating function

$$G_{0,2}(x) = \sum_{n \ge 0} r_n x^n = \sum_{n=0}^{\infty} \frac{x^{2^n - 1}}{1 - x^{2^{n+2}}}.$$

• Recurrence relations:

$$u_{4n} = 1, \quad u_{4n+2} = 0, \quad u_{2n+1} = u_n$$

• String substitution rules

11	\rightarrow	1101
01	\rightarrow	1001
10	\rightarrow	1100
00	\rightarrow	1000

 Coons and Vrbik conjectured (2012) and Guo, Wu and Wen (2013) proved

Theorem GWW.

The parities of the Hankel determinants of the regular paper-folding sequence ${\bf r}$ are periodic of period 10

$$(H_k(\mathbf{r}))_{k=0,1,\ldots} \equiv (1,1,1,0,0,1,0,0,1,1)^* \pmod{2}.$$

APWW's method.

Trying to find a combinatorial proof and t-extension, we obtain:

Theorem FH.

The *t*-Hankel determinant $H_k(\mathbf{r}, t)$ is a polynomial in *t* of degree less than or equal to 3.

k	$H_k(\mathbf{r},t)$	k	$H_k({f r},t)$
0	1	5	$-t^3 + 2t^2 + 2t - 2$
1	t	6	$2t^2 - 2t - 4$
2	-1	7	$3t^3 - 6t^2 - 7t + 6$
3	-2t	8	$-9t^2 + 12t + 16$
4	$-t^2 + 2t + 1$	9	$-15t^3 + 20t^2 + 46t - 40$

Proof of Theorem FH

$$R = \{(4k+1)2^n - 1 \mid n, k \in N\} = \{0, 1, 3, 4, 7, 8, 9, 12, 15, 16, \ldots\}$$

Lemma.

For each $k \ge 0$ the integer $r_k = 1$ if and only if $k \in R$

$$H_k(\mathbf{r},t) = \sum_{\sigma \in \mathfrak{S}_k} t^{\operatorname{fix}(\sigma)} (-1)^{\operatorname{inv}(\sigma)} r_{0+\sigma(0)} r_{1+\sigma(1)} \cdots r_{k-1+\sigma(k-1)}.$$

The product

(*)
$$r_{0+\sigma(0)}r_{1+\sigma(1)}\cdots r_{k-1+\sigma(k-1)}$$

is equal to 1 if $i + \sigma(i) \in R$ for $i = 0, 1, \dots, k-1$, and is equal to 0 otherwise.

• Consider a permutation σ such that the product (*) is non-zero and $fix(\sigma) \ge 4$.

 \bullet Thinking the two-line representation of σ

$$\sigma \in \mathfrak{S}_9 = 516280374 = \begin{pmatrix} 012345678\\516280374 \end{pmatrix}$$

The product

(*)
$$r_{0+\sigma(0)}r_{1+\sigma(1)}\cdots r_{k-1+\sigma(k-1)}$$

is equal to 1 if $i + \sigma(i) \in R$ for $i = 0, 1, \dots, k-1$, and is equal to 0 otherwise.

• Consider a permutation σ such that the product (*) is non-zero and $fix(\sigma) \ge 4$.

 \bullet Thinking the two-line representation of σ

$$\sigma \in \mathfrak{S}_9 = 516280374 = \begin{pmatrix} 012345678\\516280374 \end{pmatrix}$$

The product

(*)
$$r_{0+\sigma(0)}r_{1+\sigma(1)}\cdots r_{k-1+\sigma(k-1)}$$

is equal to 1 if $i + \sigma(i) \in R$ for $i = 0, 1, \dots, k-1$, and is equal to 0 otherwise.

- Consider a permutation σ such that the product (*) is non-zero and $fix(\sigma) \ge 4$.
- \bullet Thinking the two-line representation of σ

$$\sigma \in \mathfrak{S}_9 = 516280374 = \begin{pmatrix} 012345678\\516280374 \end{pmatrix}$$

The product

(*)
$$r_{0+\sigma(0)}r_{1+\sigma(1)}\cdots r_{k-1+\sigma(k-1)}$$

is equal to 1 if $i + \sigma(i) \in R$ for $i = 0, 1, \dots, k-1$, and is equal to 0 otherwise.

- Consider a permutation σ such that the product (*) is non-zero and $fix(\sigma) \ge 4$.
- \bullet Thinking the two-line representation of σ

$$\sigma \in \mathfrak{S}_9 = 516280374 = \begin{pmatrix} 012345678\\516280374 \end{pmatrix}$$
• Since the number of odd integers in $\{0, 1, \ldots, k-1\}$ is equal to $\lfloor k/2 \rfloor$, there are at least 3 columns of type $\binom{odd}{odd}$

- Let $\binom{i_1}{j_1}$, $\binom{i_2}{j_2}$ and $\binom{i_3}{j_3}$ be the first three such columns. By the Pigeonhole Principle, there are at least two numbers among j_1, j_2, j_3 which are congruent modulo 4.
- Without loss of generality, we assume that j_1 and j_2 are congruent modulo 4.
- We define another permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line, i.e., $\tau = (j_1, j_2) \circ \sigma$.
- This procedure is reversible.

• Since the number of odd integers in $\{0, 1, \ldots, k-1\}$ is equal to $\lfloor k/2 \rfloor$, there are at least 3 columns of type $\binom{odd}{odd}$

• Let $\binom{i_1}{j_1}$, $\binom{i_2}{j_2}$ and $\binom{i_3}{j_3}$ be the first three such columns. By the Pigeonhole Principle, there are at least two numbers among j_1, j_2, j_3 which are congruent modulo 4.

• Without loss of generality, we assume that j_1 and j_2 are congruent modulo 4.

• We define another permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line, i.e., $\tau = (j_1, j_2) \circ \sigma$.

• Since the number of odd integers in $\{0, 1, \ldots, k-1\}$ is equal to $\lfloor k/2 \rfloor$, there are at least 3 columns of type $\binom{odd}{odd}$

• Let $\binom{i_1}{j_1}$, $\binom{i_2}{j_2}$ and $\binom{i_3}{j_3}$ be the first three such columns. By the Pigeonhole Principle, there are at least two numbers among j_1, j_2, j_3 which are congruent modulo 4.

• Without loss of generality, we assume that j_1 and j_2 are congruent modulo 4.

• We define another permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line, i.e., $\tau = (j_1, j_2) \circ \sigma$.

• Since the number of odd integers in $\{0, 1, \ldots, k-1\}$ is equal to $\lfloor k/2 \rfloor$, there are at least 3 columns of type $\binom{odd}{odd}$

• Let $\binom{i_1}{j_1}$, $\binom{i_2}{j_2}$ and $\binom{i_3}{j_3}$ be the first three such columns. By the Pigeonhole Principle, there are at least two numbers among j_1, j_2, j_3 which are congruent modulo 4.

• Without loss of generality, we assume that j_1 and j_2 are congruent modulo 4.

• We define another permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line, i.e., $\tau = (j_1, j_2) \circ \sigma$.

• Since the number of odd integers in $\{0, 1, \ldots, k-1\}$ is equal to $\lfloor k/2 \rfloor$, there are at least 3 columns of type $\binom{odd}{odd}$

• Let $\binom{i_1}{j_1}$, $\binom{i_2}{j_2}$ and $\binom{i_3}{j_3}$ be the first three such columns. By the Pigeonhole Principle, there are at least two numbers among j_1, j_2, j_3 which are congruent modulo 4.

• Without loss of generality, we assume that j_1 and j_2 are congruent modulo 4.

• We define another permutation τ obtained from σ by exchanging j_1 and j_2 in the bottom line, i.e., $\tau = (j_1, j_2) \circ \sigma$.

Statistics of σ and τ :

• $\operatorname{inv}(\sigma) = \operatorname{inv}(\tau) \pm 1$, so that $\operatorname{sgn}(\sigma) = -\operatorname{sgn}(\tau)$.

• $i_1 + j_2 \in R$ and $i_2 + j_1 \in R$. Since $i_1 + j_1$ and $i_2 + j_2$ are in R and are even, hence must be congruent to 0 modulo 4. Consequently, $i_1 + j_2$ and $i_2 + j_1$ are congruent to 0 modulo 4.

• $fix(\sigma) = fix(\tau)$, i.e., no fixed point has been created.

Thus, the contributions by σ and τ compensate each other. We can delete the pair $\{\sigma, \tau\}$ from \mathfrak{S}_k .

```
Hence, H_k(\mathbf{r}, t) is a polynomial in t of degree \leq 3.
```

Statistics of σ and τ :

• $\operatorname{inv}(\sigma) = \operatorname{inv}(\tau) \pm 1$, so that $\operatorname{sgn}(\sigma) = -\operatorname{sgn}(\tau)$.

• $i_1 + j_2 \in R$ and $i_2 + j_1 \in R$. Since $i_1 + j_1$ and $i_2 + j_2$ are in R and are even, hence must be congruent to 0 modulo 4. Consequently, $i_1 + j_2$ and $i_2 + j_1$ are congruent to 0 modulo 4.

• $fix(\sigma) = fix(\tau)$, i.e., no fixed point has been created.

Thus, the contributions by σ and τ compensate each other. We can delete the pair $\{\sigma, \tau\}$ from \mathfrak{S}_k .

```
Hence, H_k(\mathbf{r}, t) is a polynomial in t of degree \leq 3.
```

Statistics of σ and τ :

• $\operatorname{inv}(\sigma) = \operatorname{inv}(\tau) \pm 1$, so that $\operatorname{sgn}(\sigma) = -\operatorname{sgn}(\tau)$.

• $i_1 + j_2 \in R$ and $i_2 + j_1 \in R$. Since $i_1 + j_1$ and $i_2 + j_2$ are in R and are even, hence must be congruent to 0 modulo 4. Consequently, $i_1 + j_2$ and $i_2 + j_1$ are congruent to 0 modulo 4.

• $fix(\sigma) = fix(\tau)$, i.e., no fixed point has been created.

Thus, the contributions by σ and τ compensate each other. We can delete the pair $\{\sigma, \tau\}$ from \mathfrak{S}_k .

```
Hence, H_k(\mathbf{r}, t) is a polynomial in t of degree \leq 3.
```

Statistics of σ and τ :

• $\operatorname{inv}(\sigma) = \operatorname{inv}(\tau) \pm 1$, so that $\operatorname{sgn}(\sigma) = -\operatorname{sgn}(\tau)$.

• $i_1 + j_2 \in R$ and $i_2 + j_1 \in R$. Since $i_1 + j_1$ and $i_2 + j_2$ are in R and are even, hence must be congruent to 0 modulo 4. Consequently, $i_1 + j_2$ and $i_2 + j_1$ are congruent to 0 modulo 4.

• $fix(\sigma) = fix(\tau)$, i.e., no fixed point has been created.

Thus, the contributions by σ and τ compensate each other. We can delete the pair $\{\sigma, \tau\}$ from \mathfrak{S}_k .

```
Hence, H_k(\mathbf{r}, t) is a polynomial in t of degree \leq 3.
```

Statistics of σ and τ :

• $\operatorname{inv}(\sigma) = \operatorname{inv}(\tau) \pm 1$, so that $\operatorname{sgn}(\sigma) = -\operatorname{sgn}(\tau)$.

• $i_1 + j_2 \in R$ and $i_2 + j_1 \in R$. Since $i_1 + j_1$ and $i_2 + j_2$ are in R and are even, hence must be congruent to 0 modulo 4. Consequently, $i_1 + j_2$ and $i_2 + j_1$ are congruent to 0 modulo 4.

• $fix(\sigma) = fix(\tau)$, i.e., no fixed point has been created.

Thus, the contributions by σ and τ compensate each other. We can delete the pair $\{\sigma, \tau\}$ from \mathfrak{S}_k .

```
Hence, H_k(\mathbf{r}, t) is a polynomial in t of degree \leq 3.
```

Statistics of σ and τ :

• $\operatorname{inv}(\sigma) = \operatorname{inv}(\tau) \pm 1$, so that $\operatorname{sgn}(\sigma) = -\operatorname{sgn}(\tau)$.

• $i_1 + j_2 \in R$ and $i_2 + j_1 \in R$. Since $i_1 + j_1$ and $i_2 + j_2$ are in R and are even, hence must be congruent to 0 modulo 4. Consequently, $i_1 + j_2$ and $i_2 + j_1$ are congruent to 0 modulo 4.

• $fix(\sigma) = fix(\tau)$, i.e., no fixed point has been created.

Thus, the contributions by σ and τ compensate each other. We can delete the pair $\{\sigma, \tau\}$ from \mathfrak{S}_k .

After deleting all the permutations such that $fix(\sigma) \ge 4$, all remaining permutations have at most 3 fixed points.

Hence, $H_k(\mathbf{r}, t)$ is a polynomial in t of degree ≤ 3 .

Statistics of σ and τ :

• $\operatorname{inv}(\sigma) = \operatorname{inv}(\tau) \pm 1$, so that $\operatorname{sgn}(\sigma) = -\operatorname{sgn}(\tau)$.

• $i_1 + j_2 \in R$ and $i_2 + j_1 \in R$. Since $i_1 + j_1$ and $i_2 + j_2$ are in R and are even, hence must be congruent to 0 modulo 4. Consequently, $i_1 + j_2$ and $i_2 + j_1$ are congruent to 0 modulo 4.

• $fix(\sigma) = fix(\tau)$, i.e., no fixed point has been created.

Thus, the contributions by σ and τ compensate each other. We can delete the pair $\{\sigma, \tau\}$ from \mathfrak{S}_k .

```
Hence, H_k(\mathbf{r}, t) is a polynomial in t of degree \leq 3.
```

5. Jacobi continued fraction

$$\mathbf{u} = (u_1, u_2, \ldots)$$

 $\mathbf{v} = (v_0, v_1, v_2, \ldots)$

Notation:

$$\mathbf{J}\begin{bmatrix}\mathbf{u}\\\mathbf{v}\end{bmatrix} = \mathbf{J}\begin{bmatrix}u_1, u_2, \cdots\\v_0, v_1, v_2, \cdots\end{bmatrix}$$

How to find and prove the J-Fraction

Example. Let

$$f = \frac{(1-x)(1+2x) - \sqrt{(1-x)(1-2x)(1+3x)(1+2x-4x^2)}}{4x^2(1-x)}$$

Find: by computer

The J-fraction of f is

$$f = \mathbf{J} \begin{bmatrix} (-\frac{1}{2}, -\frac{1}{2}, 2)^* \\ 1, (\frac{1}{4}, 2, 2)^* \end{bmatrix}.$$

Proof. \mathbf{u} and \mathbf{v} are periodic. It suffices to check:

QED.

Fundamental relation

between J-fractions and Hankel determinants

$$H_n\left(\mathbf{J}\begin{bmatrix}u_1, u_2, \cdots\\v_0, v_1, v_2, \cdots\end{bmatrix}\right) = v_0^n v_1^{n-1} v_2^{n-2} \cdots v_{n-2}^2 v_{n-1}$$

Well known. See, for example:

- Wall: 1948
- Flajolet: 1980
- Viennot : 1983
- Kratthenthaler : 1998

• Hankel determinants

- Orthogonal polynomials
- Stieltjes algorithm
- Combinatorial aspects (Motzkin paths, Permutations, ...)

- Hankel determinants
- Orthogonal polynomials
- Stieltjes algorithm
- Combinatorial aspects (Motzkin paths, Permutations, ...)

- Hankel determinants
- Orthogonal polynomials
- Stieltjes algorithm
- Combinatorial aspects (Motzkin paths, Permutations, ...)

- Hankel determinants
- Orthogonal polynomials
- Stieltjes algorithm
- Combinatorial aspects (Motzkin paths, Permutations, ...)

J-Fraction of P2

Thue–Morse sequence

$$P_2(x) = \prod_{k=0}^{\infty} (1 - x^{2^k}) = \mathbf{J} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

where

 $\mathbf{u} = 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, \dots$

 $\mathbf{v} = 1, -2, 1, -1, -1, -1, 1, -1, 1, -3, 1/3, -1/3, -3, 1, -1, 1, 1, -3, 1/3, -1, -1/3, -5/3, 1/5, -1/5, 15, -17, -1/17, 1/17, -17, 15, 1/15, -1/$

Too bad

No nice formula for v_n . Even worse, there are rational numbers.

We cannot prove anything about the Hankel determinants.

J-Fraction of S2

The Gros Sequence

$$S_2 = S_2(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^n}} = \mathbf{J} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

 $\mathbf{u} = -2, 7/3, 23/3, -167/21, -169/21, 7, 7, -629/105, -631/105,$ 7, 7, -57/7, -55/7, 65/9, 391/63, -17663/3255, -17677/3255,391/63, 65/9, -55/7, -57/7, 7, 7, -211/35, -209/35, 7, 7,-73/9, -71/9, ...

$$\mathbf{v} = 1, -3, -1/9, -63, -1/441, -63, -1, -35, -1/11025, -35, -1, \\ -63, -1/49, -63, -49/81, -1395/49, -1/216225, -1395/49, \\ -49/81, -63, -1/49, -63, -1, -35, -1/1225, -35, -1, \\ -63, -1/81, -63, \dots$$

Again, no nice formula for u_n, v_n

let p be a prime number and f a sequence. We want to prove that $H_n(f) \not\equiv 0 \pmod{p}$.

- No nice formula for the coefficients in the J-fraction of f;
- \bullet We try to find a "nice" sequence g such that
- (1) $f \equiv g \pmod{p}$
- (2) g has simple J-fraction

By (2) we know H(g).

let p be a prime number and f a sequence. We want to prove that $H_n(f) \not\equiv 0 \pmod{p}$.

- No nice formula for the coefficients in the J-fraction of f;
- \bullet We try to find a "nice" sequence g such that
- (1) $f \equiv g \pmod{p}$
- (2) g has simple J-fraction

By (2) we know H(g).

let p be a prime number and f a sequence. We want to prove that $H_n(f) \not\equiv 0 \pmod{p}$.

- No nice formula for the coefficients in the J-fraction of f;
- \bullet We try to find a "nice" sequence g such that
- (1) $f \equiv g \pmod{p}$
- (2) g has simple J-fraction

By (2) we know H(g).

let p be a prime number and f a sequence. We want to prove that $H_n(f) \not\equiv 0 \pmod{p}$.

- No nice formula for the coefficients in the J-fraction of f;
- \bullet We try to find a "nice" sequence g such that
- (1) $f \equiv g \pmod{p}$
- (2) g has simple J-fraction

By (2) we know H(g).

let p be a prime number and f a sequence. We want to prove that $H_n(f) \not\equiv 0 \pmod{p}$.

- No nice formula for the coefficients in the J-fraction of f;
- \bullet We try to find a "nice" sequence g such that
- (1) $f \equiv g \pmod{p}$
- (2) g has simple J-fraction

By (2) we know H(g).

let p be a prime number and f a sequence. We want to prove that $H_n(f) \not\equiv 0 \pmod{p}$.

- No nice formula for the coefficients in the J-fraction of f;
- \bullet We try to find a "nice" sequence g such that
- (1) $f \equiv g \pmod{p}$
- (2) g has simple J-fraction

By (2) we know H(g).

let p be a prime number and f a sequence. We want to prove that $H_n(f) \not\equiv 0 \pmod{p}$.

- No nice formula for the coefficients in the J-fraction of f;
- \bullet We try to find a "nice" sequence g such that
- (1) $f \equiv g \pmod{p}$
- (2) g has simple J-fraction

By (2) we know H(g).

Question

How to find a *nice* sequence g such that

- $g \equiv f$
- The coefficients in the J-fraction of g have nice formula ?

Fractional congruence

p: prime number

Let a, b, c be four integers such that (p, b) = 1. The fraction a/b and the integer c are said to be congruent modulo p if $a \equiv cb \pmod{p}$. We write $a/b \equiv c \pmod{p}$.

$$8/9 \equiv 3/4 \equiv -3 \equiv 2 \pmod{5}$$

 \equiv : means \equiv (mod p)

Lemma

Let $\mathbf{J}[\mathbf{u}, \mathbf{v}] = f$ and $\mathbf{J}[\hat{\mathbf{u}}, \hat{\mathbf{v}}] = \hat{f}$. (1) If $f \equiv \hat{f}$, then $H(f) \equiv H(\hat{f})$. (2) If $\mathbf{u} \equiv \hat{\mathbf{u}}$ and $\mathbf{v} \equiv \hat{\mathbf{v}}$, then $f \equiv \hat{f}$. (3) If $\mathbf{v} \equiv \hat{\mathbf{v}}$, then $H(f) \equiv H(\hat{f})$.

J-Fraction of S2

$$S_2 = S_2(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^n}} = \mathbf{J} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

 $\mathbf{u} = -2, 7/3, 23/3, -167/21, -169/21, 7, 7, -629/105, -631/105,$ 7, 7, -57/7, -55/7, 65/9, 391/63, -17663/3255, -17677/3255,391/63, 65/9, -55/7, -57/7, 7, 7, -211/35, -209/35, 7, 7...

$$\mathbf{v} = 1, -3, -1/9, -63, -1/441, -63, -1, -35, -1/11025, -35, -1, -63, -1/49, -63, -49/81, -1395/49, -1/216225, -1395/49, -49/81, -63, -1/49, -63, -1, -35, -1/1225, -35, -1, \dots$$
$$S_2 = S_2(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^n}} = \mathbf{J} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

 $\mathbf{u} = -2, 7/3, 23/3, -167/21, -169/21, 7, 7, -629/105, -631/105,$ 7, 7, -57/7, -55/7, 65/9, 391/63, -17663/3255, -17677/3255,391/63, 65/9, -55/7, -57/7, 7, 7, -211/35, -209/35, 7, 7...

$$\mathbf{v} = 1, -3, -1/9, -63, -1/441, -63, -1, -35, -1/11025, -35, -1, -63, -1/49, -63, -49/81, -1395/49, -1/216225, -1395/49, -49/81, -63, -1/49, -63, -1, -35, -1/1225, -35, -1, \dots$$

Only one even number in \mathbf{u} and \mathbf{v} . Let

$$g = \mathbf{J} \begin{bmatrix} 0, 1, 1, 1, 1, 1, \dots \\ 1, 1, 1, 1, 1, 1, \dots \end{bmatrix}$$

Let

$$S_{2} = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^{n}}}{1 - x^{2^{n}}}$$
$$g = \frac{1 - \sqrt{\frac{1 - 3x}{1 + x}}}{2x}$$

$$g = \frac{1 - \sqrt{\frac{1 - 3x}{1 + x}}}{2x}$$

Since

$$H(g) = (1)^*$$
$$g \equiv S_2 \pmod{2}$$

We have

$$H(S_2) \equiv (1)^* \pmod{2}.$$

QED.

Let

$$S_{2} = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^{n}}}{1 - x^{2^{n}}}$$
$$g = \frac{1 - \sqrt{\frac{1 - 3x}{1 + x}}}{2x}$$

Since

$$H(g) = (1)^*$$
$$g \equiv S_2 \pmod{2}$$

We have

$$H(S_2) \equiv (1)^* \pmod{2}.$$

QED. (?)

Let

$$S_{2} = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^{n}}}{1 - x^{2^{n}}}$$
$$g = \frac{1 - \sqrt{\frac{1 - 3x}{1 + x}}}{2x}$$

Since

$$H(g) = (1)^*$$

We have

$$H(S_2) \equiv (1)^* \pmod{2}.$$

Crucial Fact

$$(a+x)^p \equiv a^p + x^p \pmod{p}$$

So that

$$f(x^p) \equiv f(x)^p \pmod{p}$$

$$x^{2}S_{2}(x^{2}) = \sum_{n=1}^{\infty} \frac{x^{2^{n}}}{1+x^{2^{n}}} = xS_{2}(x) - \frac{x}{1+x} \pmod{2}$$

$$xS_2(x)^2 \equiv S_2(x) - \frac{1}{1+x} \pmod{2}$$

We get

$$S_2(x) \equiv \frac{1 - \sqrt{\frac{1 - 3x}{1 + x}}}{2x} \pmod{2}.$$

QED.

Theorem

Let

$$P_3 = P_3(x) = \prod_{k \ge 0} (1 - x^{3^k}).$$

Then $H_n(P_3) \equiv (-1)^{n-1} \pmod{3}$

Remark

$$P_4 = \prod_{k \ge 0} (1 - x^{4^k}), \quad P_5 = \prod_{k \ge 0} (1 - x^{5^k}), \quad \cdots$$
$$H_n(P_m) \neq 0 \text{ for all } n \qquad \text{NOT TRUE} \qquad \text{when } m \ge 4$$

Theorem

Let

$$P_3 = P_3(x) = \prod_{k \ge 0} (1 - x^{3^k}).$$

Then $H_n(P_3) \equiv (-1)^{n-1} \pmod{3}$

Remark

$$P_4 = \prod_{k \ge 0} (1 - x^{4^k}), \quad P_5 = \prod_{k \ge 0} (1 - x^{5^k}), \quad \cdots$$
$$H_n(P_m) \neq 0 \text{ for all } n \qquad \text{NOT TRUE} \qquad \text{when } m \ge 4$$

Proof. We successively have

$$P_{3}(x) = (1 - x)P_{3}(x^{3}) \equiv (1 - x)P_{3}(x)^{3} \pmod{3},$$
$$P_{3}(x)^{2} \equiv \frac{1}{1 - x} \pmod{3},$$
$$P_{3}(x) \equiv \sqrt{\frac{1}{1 - x}} \pmod{3}.$$

$$\sqrt{\frac{1}{1-x}} = \mathbf{J} \begin{bmatrix} (-1/2)^* \\ 1, 1/8, (1/16)^* \end{bmatrix} \equiv \mathbf{J} \begin{bmatrix} (1)^* \\ 1, -1, (1)^* \end{bmatrix} \pmod{3}$$

QED

6. Grafting technique and Chopping method

Thue–Morse sequece

$$P_2(x) = \prod_{k=0}^{\infty} (1 - x^{2^k}) = \mathbf{J} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

 $\mathbf{u} = 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, \dots$

Thue–Morse sequece

$$P_2(x) = \prod_{k=0}^{\infty} (1 - x^{2^k}) = \mathbf{J} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

 $\mathbf{u} = 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, \dots$

Let

$$g = \mathbf{J} \begin{bmatrix} 1, 1, 1, 1, 1, 1, 1, \dots \\ 1, 0, 1, 1, 1, 1, \dots \end{bmatrix}$$

$$P_2(x) = \prod_{k=0}^{\infty} (1 - x^{2^k}) = \mathbf{J} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

Let

$$g = \mathbf{J} \begin{bmatrix} 1, 1, 1, 1, 1, 1, 1, \dots \\ 1, 0, 1, 1, 1, 1, \dots \end{bmatrix}$$

We have

$$g = \frac{1}{1-x}$$

•
$$P_2 \equiv g \pmod{2}$$

•
$$H_n(g) = 0$$
 for $n \ge 1$

• so that
$$H_n(P_2) \equiv 0 \pmod{2}$$
.

• Yes! But we want to prove $H_n(P_2)/2^{n-1} \equiv 1 \pmod{2}$

Source: http://www.ces.ncsu.edu/depts/hort/hil/grafting.html

$$F(x) = \mathbf{J} \begin{bmatrix} u_1, u_2, u_3, \cdots \\ v_0, v_1, v_2, v_3, \cdots \end{bmatrix}, \quad G(x) = \mathbf{J} \begin{bmatrix} a_1, a_2, a_3, \cdots \\ 1, b_1, b_2, b_3, \cdots \end{bmatrix}$$

The grafting of G(x) into F(x) of order k:

$$F|^{k}G = \mathbf{J} \begin{bmatrix} u_{1}, u_{2}, \cdots, u_{k}, a_{1}, a_{2}, a_{3}, \cdots \\ v_{0}, v_{1}, v_{2}, \cdots, v_{k}, b_{1}, b_{2}, b_{3}, \cdots \end{bmatrix}.$$

$$F(x) = \mathbf{J} \begin{bmatrix} u_1, u_2, u_3, \cdots \\ v_0, v_1, v_2, v_3, \cdots \end{bmatrix}, \quad G(x) = \mathbf{J} \begin{bmatrix} a_1, a_2, a_3, \cdots \\ 1, b_1, b_2, b_3, \cdots \end{bmatrix}$$

The grafting of G(x) into F(x) of order k:

$$F|^{k}G = \mathbf{J} \begin{bmatrix} u_{1}, u_{2}, \cdots, u_{k}, a_{1}, a_{2}, a_{3}, \cdots \\ v_{0}, v_{1}, v_{2}, \cdots, v_{k}, b_{1}, b_{2}, b_{3}, \cdots \end{bmatrix}.$$

Advantage:

- Keep u_i, v_i
- Take $a_i, b_i \pmod{p}$.

$$F(x) = \mathbf{J} \begin{bmatrix} u_1, u_2, u_3, \cdots \\ v_0, v_1, v_2, v_3, \cdots \end{bmatrix}, \quad G(x) = \mathbf{J} \begin{bmatrix} a_1, a_2, a_3, \cdots \\ 1, b_1, b_2, b_3, \cdots \end{bmatrix}$$

The grafting of G(x) into F(x) of order k:

$$F|^{k}G = \mathbf{J} \begin{bmatrix} u_{1}, u_{2}, \cdots, u_{k}, a_{1}, a_{2}, a_{3}, \cdots \\ v_{0}, v_{1}, v_{2}, \cdots, v_{k}, b_{1}, b_{2}, b_{3}, \cdots \end{bmatrix}.$$

Advantage:

- Keep u_i, v_i
- Take $a_i, b_i \pmod{p}$.

Let $F|G := F|^1G$ and $F||G := F|^2G$, for short.

• The *J*-fraction of the Thue-Morse sequence:

• Let $P_2 = P_2 | g$ where

• The *J*-fraction of the Thue-Morse sequence:

• Let $P_2 = P_2 | g$ where

$$g = \mathbf{J} \begin{bmatrix} -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 0, 0 \\ 1, 1, -1, -1, -1, -1, 1, -1, 1, -3, \frac{1}{3}, -\frac{1}{3}, -3, 1, -1, 1, \cdots \end{bmatrix}$$

 \bullet Only odd numbers in g. Let

$$\bar{g} = \mathbf{J} \begin{bmatrix} (1)^* \\ (1)^* \end{bmatrix}$$

• Finally we define

• The *J*-fraction of the Thue-Morse sequence:

• Let
$$P_2 = P_2 | g$$
 where

• Only odd numbers in g. Let

$$\bar{g} = \mathbf{J} \begin{bmatrix} (1)^* \\ (1)^* \end{bmatrix}$$

• Finally we define

• $H_n(P_2) \neq 0 \Leftrightarrow H_n(\bar{P}_2) \neq 0.$

Proof of APWW's Theorem

Define g by

$$P_2 = \frac{1}{1 + x + 2x^2g}, \qquad g = \frac{1}{2x^2}(\frac{1}{P_2} - 1 - x).$$

We have

$$H_n(P_2) = (-2)^{n-1} H_{n-1}(g)$$

(?)
$$\frac{1}{P_2} \equiv \sqrt{(1-x)(1+3x)} \pmod{4},$$
$$g \equiv \frac{1}{2x^2} \left(1 + x - \sqrt{(1-x)(1+3x)} \right) \pmod{2}.$$
$$g = \mathbf{J} \begin{bmatrix} (1)^* \\ (-1)^* \end{bmatrix},$$
so that $H_n(g) \equiv 1 \pmod{2}.$ Hence, $H_n(P_2) \neq 0.$

Crucial Lemma

Lemma:

$$\sqrt{1-4x} \equiv 1+2\sum_{k=0}^{\infty} x^{2^k} \pmod{4}.$$

Proof of APWW's Theorem

Let

$$f = \sqrt{\frac{1}{(1-x)(1+3x)}}$$

Then

$$(1-x)f(x) = \sqrt{1 - \frac{4x}{1+3x}} \equiv 1 + 2\sum_{k=0}^{\infty} \left(\frac{x}{1+3x}\right)^{2^k} \pmod{4}$$

$$(1-x)f(x) \equiv 1 + 2\sum_{k=0}^{\infty} \left(\frac{x}{1+x}\right)^{2^k} \pmod{4}$$

 $\quad \text{and} \quad$

$$(1-x^2)f(x^2) \equiv (1-x)f(x) - \frac{2x}{1+x} \pmod{4}.$$

Proof of APWW's Theorem

On the other hand,

$$(1-x)P_2(x^2) = P_2(x),$$

$$P_2(x) = \frac{1}{1+x} \pmod{2},$$

$$(1-x^2)P_2(x^2) = (1+x)(1-x)P_2(x^2) = (1+x)P_2(x).$$

$$(1-x^2)P_2(x^2) \equiv (1-x)P_2(x) + \frac{2x}{1+x} \pmod{4}.$$

Hence,

$$f \equiv P_2 \pmod{4}$$
.

QED

Proposition

Let

$$f = f(x) = \frac{1}{x^4} \sum_{k=1}^{\infty} \frac{x^{2^{k+1}}}{1 - x^{2^k}}.$$

Then, $H(f) \equiv (1, 1, 1, 1, 1, 1, 0, 0)^* \pmod{2}$.

Proof. We successively have

$$x^{8}f(x^{2}) = \sum_{k=2}^{\infty} \frac{x^{2^{k+1}}}{1-x^{2^{k}}} = \sum_{k=1}^{\infty} \frac{x^{2^{k+1}}}{1-x^{2^{k}}} - \frac{x^{4}}{1-x^{2}} = x^{4}f(x) - \frac{x^{4}}{1-x^{2}}$$
$$x^{4}f(x^{2}) = f(x) - \frac{1}{1-x^{2}}$$
$$x^{4}f(x)^{2} \equiv f(x) - \frac{1}{1-x^{2}} \pmod{2}$$
$$f(x) \equiv \frac{1 - \sqrt{1 - \frac{4x^{4}}{1-x^{2}}}}{2x^{4}} \pmod{2}$$

$$f \equiv g \pmod{2}$$

where

$$g = \frac{1 - \sqrt{1 - \frac{4x^4}{1 - x^2}}}{2x^4}$$

By the next Lemma,

H(g) = (1, 1, 1, 1, -1 - 1, -2, -2, 1, 1, 3, 3, -1, -1, -4, -4, ...) $H(f) \equiv H_n(g) \equiv (1, 1, 1, 1, 1, 1, 0, 0)^* \pmod{2}$ QED.

Lemma A. Let

$$f(x) = \frac{1 - \sqrt{1 - \frac{4x^4}{1 - x^2}}}{2x^4}.$$

Then

$$f = \mathbf{J} \begin{bmatrix} (0)^* \\ 1, 1, 1, -1, -1, 2, \frac{1}{2}, -\frac{1}{2}, -2, 3, \frac{1}{3}, -\frac{1}{3}, -3, \dots \end{bmatrix}.$$

Proof. z = 1 in the next Lemma.

Lemma B. Let

$$f(x;z) = \frac{1 - (2z - 1)x^2 - \sqrt{(1 - x^2)(1 - x^2 - 4x^4)}}{2x^2((1 - z) + (1 - z + z^2)x^2 - x^4)}$$

Then

$$f = \mathbf{J} \begin{bmatrix} (0)^* \\ 1, z, \frac{1}{z}, -\frac{1}{z}, -z, z+1, \frac{1}{z+1}, -\frac{1}{z+1}, -(z+1), \dots \end{bmatrix}.$$

٠

Proof of Lemma B. Easy to check that f(x; z) verifies the following functional equation:

QED.

The most difficult part for proving Lemma A is to find an appropriate generalization, namely, Lemma B.

$$f(x) = \frac{1 - \sqrt{1 - \frac{4x^4}{1 - x^2}}}{2x^4}$$

$$f(x;z) = \frac{1 - (2z - 1)x^2 - \sqrt{(1 - x^2)(1 - x^2 - 4x^4)}}{2x^2((1 - z) + (1 - z + z^2)x^2 - x^4)}$$

• We need prove that $f = f_1$ where

$$f_1 = \mathbf{J} \begin{bmatrix} (0)^* \\ 1, 1, 1, -1, -1, 2, \frac{1}{2}, -\frac{1}{2}, -2, 3, \frac{1}{3}, -\frac{1}{3}, -3, \dots \end{bmatrix}.$$

• We need prove that $f = f_1$ where

$$f_1 = \mathbf{J} \begin{bmatrix} (0)^* \\ 1, 1, 1, -1, -1, 2, \frac{1}{2}, -\frac{1}{2}, -2, 3, \frac{1}{3}, -\frac{1}{3}, -3, \dots \end{bmatrix}.$$

• Define f_2 by deleting the first four pairs u_i, v_i (i = 1, 2, 3, 4) from the *J*-fraction of f_1 :

$$f_2 = \mathbf{J} \begin{bmatrix} (0)^* \\ 1, 2, \frac{1}{2}, -\frac{1}{2}, -2, 3, \frac{1}{3}, -\frac{1}{3}, -3, \dots \end{bmatrix}.$$

• We need prove that $f = f_1$ where

$$f_1 = \mathbf{J} \begin{bmatrix} (0)^* \\ 1, 1, 1, -1, -1, 2, \frac{1}{2}, -\frac{1}{2}, -2, 3, \frac{1}{3}, -\frac{1}{3}, -3, \dots \end{bmatrix}.$$

• Define f_2 by deleting the first four pairs u_i, v_i (i = 1, 2, 3, 4) from the *J*-fraction of f_1 :

$$f_2 = \mathbf{J} \begin{bmatrix} (0)^* \\ 1, 2, \frac{1}{2}, -\frac{1}{2}, -2, 3, \frac{1}{3}, -\frac{1}{3}, -3, \dots \end{bmatrix}.$$

• We get the first coefficients of f_2

 $f_2 = (1, 0, 2, 0, 5, 0, 12, 0, 30, 0, 75, 0, 190, 0, 483, 0, 1235, \ldots).$

• We need prove that $f = f_1$ where

$$f_1 = \mathbf{J} \begin{bmatrix} (0)^* \\ 1, 1, 1, -1, -1, 2, \frac{1}{2}, -\frac{1}{2}, -2, 3, \frac{1}{3}, -\frac{1}{3}, -3, \dots \end{bmatrix}.$$

• Define f_2 by deleting the first four pairs u_i, v_i (i = 1, 2, 3, 4) from the *J*-fraction of f_1 :

$$f_2 = \mathbf{J} \begin{bmatrix} (0)^* \\ 1, 2, \frac{1}{2}, -\frac{1}{2}, -2, 3, \frac{1}{3}, -\frac{1}{3}, -3, \dots \end{bmatrix}$$

• We get the first coefficients of f_2

 $f_2 = (1, 0, 2, 0, 5, 0, 12, 0, 30, 0, 75, 0, 190, 0, 483, 0, 1235, \ldots).$

• With the help of a CAS, we guess that f_2 satisfies the equation

$$(x^6 - 3x^4 + x^2)f_2^2 + (-3x^2 + 1)f_2 - 1 = 0.$$
• Define f_3 by deleting the first four pairs u_i, v_i (i = 1, 2, 3, 4) from the *J*-fraction of f_2 and guess

$$(x^6 - 7x^4 + 2x^2)f_3^2 + (-5x^2 + 1)f_3 - 1 = 0,$$

• Repeat these steps,

$$(x^6 - 13x^4 + 3x^2)f_4^2 + (-7x^2 + 1)f_4 - 1 = 0,$$

• Define f_3 by deleting the first four pairs u_i, v_i (i = 1, 2, 3, 4) from the *J*-fraction of f_2 and guess

$$(x^{6} - 7x^{4} + 2x^{2})f_{3}^{2} + (-5x^{2} + 1)f_{3} - 1 = 0,$$

• Repeat these steps,

$$(x^{6} - 13x^{4} + 3x^{2})f_{4}^{2} + (-7x^{2} + 1)f_{4} - 1 = 0,$$

• We guess the general equation valid for every z (vertical guess)

$$(x^{6} - (z^{2} - z + 1)x^{4} + (z - 1)x^{2})f_{z}^{2} + (-(2z - 1)x^{2} + 1)f_{z} - 1 = 0.$$

• Solving the above equation yields the series f(x; z)

Example. Using the chopping method, we prove that

$$\frac{-2zx^2 - (sx - x^2y - 1) - \sqrt{(sx - x^2y - 1)^2 - (2x^2)^2}}{2x^2(x^2 + x^2z^2 + z(sx - x^2y - 1))}$$

where α_n is defined by

$$\sum_{n} \alpha_n x^n = \frac{1+zx}{1+yx+x^2}$$

7. Miscellaneous

Misc 1. Nice formula for v

Thue–Morse sequence

$$P_2(x) = \prod_{k=0}^{\infty} (1 - x^{2^k}) = \mathbf{J} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

where

 $\mathbf{u} = 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, \dots$

 $\mathbf{v} = 1, -2, 1, -1, -1, -1, 1, -1, 1, -3, 1/3, -1/3, -3, 1, -1, 1, 1, -3, 1/3, -1, -1/3, -5/3, 1/5, -1/5, 15, -17, -1/17, 1/17, -17, 15, 1/15, -1/$

Misc 1. Nice formula for v

Theorem

Let

Then, $u_n = (-1)^{n-1}$ for each n = 1, 2, 3, ...

$$\sqrt{\frac{1}{(1-x)(1+3x)}} = 1 - x + 3x^2 - 7x^3 + 19x^4 - 51x^5 + \cdots$$

integral coefficients

s = 1 -1 3 -7 19 -51 141 -393 1107 -3139

 $s \pmod{4} \equiv 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 = P_2$ (Thue-Morse)

$$\sqrt{\frac{1}{(1-x)(1+3x)}} = 1 - x + 3x^2 - 7x^3 + 19x^4 - 51x^5 + \cdots$$

integral coefficients

s = 1 -1 3 -7 19 -51 141 -393 1107 -3139

 $s \pmod{4} \equiv 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 = P_2$ (Thue-Morse)

$$\sqrt{\frac{1}{(1-x)(1+3x)}} = 1 - x + 3x^2 - 7x^3 + 19x^4 - 51x^5 + \cdots$$

integral coefficients

s = 1 -1 3 -7 19 -51 141 -393 1107 -3139

 $s \pmod{4} \equiv 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 = P_2$ (Thue-Morse)

$$\sqrt{\frac{1}{(1-x)(1+3x)}} = 1 - x + 3x^2 - 7x^3 + 19x^4 - 51x^5 + \cdots$$

integral coefficients

s = 1 -1 3 -7 19 -51 141 -393 1107 -3139

 $s \pmod{4} \equiv 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 = P_2$ (Thue-Morse)

$$s \pmod{3} \equiv 1 -1 \ 0 -1 \ 1 \ 0 \ 0 \ 0 \ -1$$

= P_3

$$\sqrt{\frac{1}{(1-x)(1+3x)}} = 1 - x + 3x^2 - 7x^3 + 19x^4 - 51x^5 + \cdots$$

integral coefficients

s = 1 -1 3 -7 19 -51 141 -393 1107 -3139

 $s \pmod{4} \equiv 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 = P_2$ (Thue-Morse)

$$\sqrt{\frac{1}{(1-x)(1+3x)}} = 1 - x + 3x^2 - 7x^3 + 19x^4 - 51x^5 + \cdots$$

integral coefficients

s = 1 -1 3 -7 19 -51 141 -393 1107 -3139

$$s \pmod{4} \equiv 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 = P_2$$
 (Thue-Morse)

$$s \pmod{3} \equiv 1 -1 \ 0 -1 \ 1 \ 0 \ 0 \ 0 \ -1$$

= P_3

$$\sqrt{\frac{1}{(1-x)(1+3x)}} = 1 - x + 3x^2 - 7x^3 + 19x^4 - 51x^5 + \cdots$$

integral coefficients

s = 1 -1 3 -7 19 -51 141 -393 1107 -3139

 $s \pmod{4} \equiv 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 = P_2$ (Thue-Morse)

$$s \pmod{3} \equiv 1 -1 \ 0 -1 \ 1 \ 0 \ 0 \ 0 \ -1$$
$$= P_3$$

$$\sqrt{\frac{1}{(1-x)(1+3x)}} = 1 - x + 3x^2 - 7x^3 + 19x^4 - 51x^5 + \cdots$$

$$\sqrt{\frac{1}{(1-x)(1+3x)}} \equiv \prod_{k=0}^{\infty} (1-x^{2^k}) \pmod{4}$$

$$\sqrt{\frac{1}{(1-x)(1+3x)}} \equiv \prod_{k=0}^{\infty} (1-x^{3^k}) \pmod{3}$$

Provide proofs of Theorems based on integer congruence instead of fractional congruence

$$\phi(x) = \frac{1}{1+x} \prod_{k=0}^{\infty} \left(1 - \left(\frac{x}{1+x}\right)^{2^k} \right)$$

 $= 1 - 2x + 2x^{2} - 6x^{4} + 20x^{5} - 48x^{6} + 96x^{7} - 166x^{8} + \cdots$

$$\begin{split} \phi(x) &= \frac{1}{1+x} \prod_{k=0}^{\infty} \left(1 - \left(\frac{x}{1+x}\right)^{2^k} \right) \\ &= 1 - 2x + 2x^2 - 6x^4 + 20x^5 - 48x^6 + 96x^7 - 166x^8 + \cdots \end{split} \end{split}$$
 Then,

$$H_n(\phi(x)) = H_n(\phi(x^2))$$
 for each n

$$\phi(x) = 1 - 2x + 2x^{2} + 0x^{3} - 6x^{4} + \cdots$$

$$\phi(x^{2}) = 1 - 2x^{2} + 2x^{4} + 0x^{6} - 6x^{8} + \cdots$$

$$H_{3}(\phi(x)) = \begin{vmatrix} 1 & -2 & 2 \\ -2 & 2 & 0 \\ 2 & 0 & -6 \end{vmatrix} = 4$$
$$H_{3}(\phi(x^{2})) = \begin{vmatrix} 1 & 0 & -2 \\ 0 & -2 & 0 \\ -2 & 0 & 2 \end{vmatrix} = 4$$

$$\phi(x) = 1 - 2x + 2x^{2} + 0x^{3} - 6x^{4} + \cdots$$

$$\phi(x^{2}) = 1 - 2x^{2} + 2x^{4} + 0x^{6} - 6x^{8} + \cdots$$

$$H_{3}(\phi(x)) = \begin{vmatrix} 1 & -2 & 2 \\ -2 & 2 & 0 \\ 2 & 0 & -6 \end{vmatrix} = 4$$
$$H_{3}(\phi(x^{2})) = \begin{vmatrix} 1 & 0 & -2 \\ 0 & -2 & 0 \\ -2 & 0 & 2 \end{vmatrix} = 4$$

$$\phi(x) = 1 - 2x + 2x^{2} + 0x^{3} - 6x^{4} + \cdots$$

$$\phi(x^{2}) = 1 - 2x^{2} + 2x^{4} + 0x^{6} - 6x^{8} + \cdots$$

$$H_{3}(\phi(x)) = \begin{vmatrix} 1 & -2 & 2 \\ -2 & 2 & 0 \\ 2 & 0 & -6 \end{vmatrix} = 4$$

$$H_{3}(\phi(x^{2})) = \begin{vmatrix} 1 & 0 & -2 \\ 0 & -2 & 0 \\ -2 & 0 & 2 \end{vmatrix} = 4$$

$$H_{2}(\phi(x)) = \begin{vmatrix} 1 & -2 \\ -2 & 2 \\ -2 & 2 \end{vmatrix} = -2$$

$$H_{2}(\phi(x^{2})) = \begin{vmatrix} 1 & 0 \\ 0 & -2 \end{vmatrix} = -2$$

Thue-Morse sequence

$$P_2 = P_2(x) = \prod_{k=0}^{\infty} (1 - x^{2^k})$$

Gros sequence

$$S_2 = S_2(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^n}}$$

Thue-Morse sequence

$$P_2 = P_2(x) = \prod_{k=0}^{\infty} (1 - x^{2^k})$$

Gros sequence

$$S_2 = S_2(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^n}}$$

Trivial sequence

$$\frac{1}{1-x} = \prod_{k=0}^{\infty} (1+x^{2^k})$$

$$f(b) := \prod_{k=0}^{\infty} (1 + bx^{2^k})$$

$$= \mathbf{J} \begin{bmatrix} -b, b, -b, b, -b, b, -b, b, -b, b, \dots \\ 1, b - b^2, 1, -(1 + b + b^2), \frac{-1}{1 + b + b^2}, \frac{1 + b - b^4}{1 + b + b^2}, -\frac{(1 + b + b^2)^2}{1 + b - b^4}, \dots \end{bmatrix}$$

$$f(b) := \prod_{k=0}^{\infty} (1 + bx^{2^k})$$

$$= \mathbf{J} \begin{bmatrix} -b, b, -b, b, -b, b, -b, b, -b, b, \dots \\ 1, b - b^2, 1, -(1 + b + b^2), \frac{-1}{1 + b + b^2}, \frac{1 + b - b^4}{1 + b + b^2}, -\frac{(1 + b + b^2)^2}{1 + b - b^4}, \dots \end{bmatrix}$$

b = 1:

$$\frac{1}{1-x} = \mathbf{J} \begin{bmatrix} -1, 1, -1, 1, -1, 1, -1, \dots \\ 1, 0, 1, -3, \frac{-1}{3}, \frac{1}{3}, -9, \dots \end{bmatrix}$$
$$(1-x)S_2(x^2) = \mathbf{J} \begin{bmatrix} 1, -1, 1, -1, 1, -1, \dots \\ 1, 1, -3, \frac{-1}{3}, \frac{1}{3}, -9, \dots \end{bmatrix}$$

Thue-Morse sequence

$$P_2 = P_2(x) = \prod_{k=0}^{\infty} (1 - x^{2^k})$$

Gros sequence

$$S_2 = S_2(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^n}}$$

Roughly speaking (!)

$$S_2 \simeq \prod_{k=0}^{\infty} (1 + x^{2^k})$$

7. Evolution of the proofs of the APWW theorem

Hankel determinant

$$\mathbf{a} = (a_0, a_1, a_2, \ldots)$$

$$f = f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$

$$H_n(f) := \begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_1 & a_2 & \dots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_n & \dots & a_{2n-2} \end{vmatrix}$$

Allouche, Peyrière, Wen, Wen (1998)

Theorem

Let

$$P_2 = P_2(x) = \prod_{k=0}^{\infty} (1 - x^{2^k})$$

be the Thue-Morse sequence.

Then, the Hankel determinant $H_n(P_2) \neq 0$ for every positive integer n.

Coons (2011)

Theorem

Let $S_2 = S_2(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^n}}.$ Then $H_n(S_2) \equiv 1 \pmod{2}$.

Remark: In fact, it is equivalent to the APWW Theorem

First proof [Allouche, Peyrière, Wen, Wen]

• "Sudoku method"

- Sixteen recurrence relations between determinants
- 12 pages

First proof [Allouche, Peyrière, Wen, Wen]

- "Sudoku method"
- Sixteen recurrence relations between determinants
- 12 pages

First proof [Allouche, Peyrière, Wen, Wen]

- "Sudoku method"
- Sixteen recurrence relations between determinants
- 12 pages

Second proof [Bugeaud-Han]

• Combinatorial proof

- Count the number of permutations modulo 2
- 8 pages

Second proof [Bugeaud-Han]

- Combinatorial proof
- Count the number of permutations modulo 2
- 8 pages

Second proof [Bugeaud-Han]

- Combinatorial proof
- Count the number of permutations modulo 2
- 8 pages

Third proof [H.]

- Using Jacobi continued fraction
- 1 page

Third proof [H.]

- Using Jacobi continued fraction
- 1 page
Encore ... ?

• Automatic computer proof

Encore ... ?

• Automatic computer proof

• Regular paperfolding sequence:

$$G_{0,2}(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^{n+2}}}.$$

• Coons and Vrbik (2012) wrote a C++ program for computing the Hankel determinants $H_n(G_{0,2}) \pmod{2}$ upto n = 8196

1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,...

and conjectured the sequence is periodic with period 10:

 $H(G_{0,2}) \pmod{2} = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)^*.$

• Regular paperfolding sequence:

$$G_{0,2}(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^{n+2}}}.$$

• Coons and Vrbik (2012) wrote a C++ program for computing the Hankel determinants $H_n(G_{0,2}) \pmod{2}$ upto n = 8196

1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,...

and conjectured the sequence is periodic with period 10:

 $H(G_{0,2}) \pmod{2} = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)^*.$

• Regular paperfolding sequence:

$$G_{0,2}(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^{n+2}}}.$$

• Coons and Vrbik (2012) wrote a C++ program for computing the Hankel determinants $H_n(G_{0,2}) \pmod{2}$ upto n = 8196

1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,...

and conjectured the sequence is periodic with period 10:

 $H(G_{0,2}) \pmod{2} = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)^*.$

• Regular paperfolding sequence:

$$G_{0,2}(x) = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^{n+2}}}.$$

• Coons and Vrbik (2012) wrote a C++ program for computing the Hankel determinants $H_n(G_{0,2}) \pmod{2}$ upto n = 8196

and conjectured the sequence is periodic with period 10:

 $H(G_{0,2}) \pmod{2} = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)^*.$

Automatic computer proof

My program

• computes the first values of the Hankel determinants $H_n(G_{0,2}) \pmod{2}$

1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,...

• and proves the periodicity

 $H(G_{0,2}) \pmod{2} = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)^*.$

New results

Theorem [H, 2014].

For each pair of positive intergers a, b, let

$$G_{a,b}(x) = \frac{1}{x^{2^a}} \sum_{n=0}^{\infty} \frac{x^{2^{n+a}}}{1 - x^{2^{n+b}}}.$$

Then $H(G_{a,b}) \pmod{2}$ is periodic.

The following relations are calculated and proved by a computer program automatically.

 $H(G_{0,0}) \equiv (1)^*;$ Michael Coons, 2013; APWW, 1998 $H(G_{0,1}) \equiv 1, 1, (0)^*;$ $H(G_{1,0}) \equiv (1)^*;$ $H(G_{0,2}) \equiv (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)^*;$ Guo, Wu, Wen, 2013

" \equiv " means " $\equiv \pmod{2}$ "

$$H(G_{1,1}) \equiv (1,1,0,0,1,1)^{*};$$

$$H(G_{2,0}) \equiv (1,1,0,0)^{*};$$

$$H(G_{0,3}) \equiv (1^{5}0^{2}1^{1}0^{6}1^{3}0^{2}1^{2}0^{2}1^{2}0^{4}1^{1}0^{4}1^{1}0^{2}1^{1}0^{2}1^{1})^{*};$$

$$0^{4}1^{1}0^{4}1^{2}0^{2}1^{2}0^{2}1^{3}0^{6}1^{1}0^{2}1^{4})^{*};$$

[period is 74]

 $H(G_{1,2}) \equiv 1, 1, 1, (0)^*;$ $H(G_{2,1}) \equiv (1, 1, 1, 1, 1, 1, 0, 0)^*;$ Chopping method

 $H(G_{3,0}) \equiv (1, 1, 0, 0, 0, 0, 0, 0)^*;$

8. Hankel continued fraction

Jacobi Continued Fraction (J-Fraction)

$$\mathbf{u} = (u_1, u_2, \ldots)$$
$$\mathbf{v} = (v_0, v_1, v_2, \ldots)$$

Fundamental relation

$$H_n\left(\mathbf{J}\begin{bmatrix}u_1, u_2, \cdots\\v_0, v_1, v_2, \cdots\end{bmatrix}\right) = v_0^n v_1^{n-1} v_2^{n-2} \cdots v_{n-2}^2 v_{n-1}$$

Stieltjes Continued Fraction (S-Fraction)

$$\mathbf{a} = (a_0, a_1, a_2, \ldots)$$

$$\frac{a_0}{1 + \frac{a_1 x}{1 + \frac{a_2 x}{1 + \frac{a_3 x}{1 + \frac{a_3$$

· .

Contraction Theorem (Relation between S-fraction and J-fraction):

$$u_{1} = a_{1};$$

$$u_{k} = a_{2k-2} + a_{2k-1}; \quad (k \ge 2)$$

$$v_{0} = a_{0};$$

$$v_{k} = a_{2k-1}a_{2k}; \quad (k \ge 1)$$

Contraction Theorem (Relation between S-fraction and J-fraction):

$$u_{1} = a_{1};$$

$$u_{k} = a_{2k-2} + a_{2k-1}; \quad (k \ge 2)$$

$$v_{0} = a_{0};$$

$$v_{k} = a_{2k-1}a_{2k}; \quad (k \ge 1)$$

Fundamental relation

$$H_n(S(x)) = a_0^n (a_1 a_2)^{n-1} (a_3 a_4)^{n-2} \cdots (a_{2n-3} a_{2n-2})$$

Real number and continued fraction

Real number and continued fraction

Quadratic numbers $\leftrightarrow \rightarrow$ Periodic continued fractions

Similar result for J-fraction ?

Quadratic numbers $\leftrightarrow \rightarrow$ Periodic continued fractions

Formal power series \leftarrow Jacobi continued fractions

Similar result for J-fraction ?

Real numbers \longleftrightarrow Continued fractions Quadratic numbers \longleftrightarrow Periodic continued fractions Formal power series \leftarrow Jacobi continued fractions Remark: The \rightarrow in the third relation is missing. Condition: The Jacobi continued fraction of a power series F(x) exists if and only if all the Hankel determinants of F(x)are nonzero.

Similar result for S-fraction ?

Real numbers \leftrightarrow Continued fractions Quadratic numbers \leftrightarrow Periodic continued fractions

Formal power series \leftarrow S-fractions

Remark: The \longrightarrow in the third relation is missing. Condition: The S-fraction of a power series F(x) exists if and only if all the Hankel determinants of F(x) are nonzero.

Johann Cigler (2013) : A special class of Hankel determinants

$$\mathbf{a} = (a_0, a_1, a_2, \ldots), \ a_i \neq 0$$

$$\mathbf{q} = (q_0, q_1, q_2, \ldots), \ q_0 \ge 0, q_i \ge 1$$

Frank 1946 :

power series \longleftrightarrow C-fraction

Conjecture (Paul Barry, 2012.05)

If all $a_i = \pm 1$, then $H_n(f) = \pm 1$.

Several interesting examples are given !

Paul Barry, 2012.12 (a second paper)

"We study the Hankel transforms of sequences whose generating function can be expressed as a C-fraction. In particular, we relate the index sequence of the non-zero terms of the Hankel transform to the powers appearing in the monomials defining the C- fraction. A closed formula for the Hankel transforms studied is given. As every power- series can be represented by a C-fraction, this gives in theory a closed form formula for the Hankel transform of any sequence. The notion of multiplicity is introduced to differentiate between Hankel transforms."

Paul Barry, 2012.12 (a second paper)

"We study the Hankel transforms of sequences whose generating function can be expressed as a C-fraction. In particular, we relate the index sequence of the non-zero terms of the Hankel transform to the powers appearing in the monomials defining the C- fraction. A closed formula for the Hankel transforms studied is given. As every power- series can be represented by a C-fraction, this gives in theory a closed form formula for the Hankel transform of any sequence. The notion of multiplicity is introduced to differentiate between Hankel transforms."

This result is exactly we need !

Paul Barry, 2012.12 (a second paper)

"We study the Hankel transforms of sequences whose generating function can be expressed as a C-fraction. In particular, we relate the index sequence of the non-zero terms of the Hankel transform to the powers appearing in the monomials defining the C- fraction. A closed formula for the Hankel transforms studied is given. As every power- series can be represented by a C-fraction, this gives in theory a closed form formula for the Hankel transform of any sequence. The notion of multiplicity is introduced to differentiate between Hankel transforms."

This result is exactly we need ! But ...

Johann Cigler (2013)

• found a counter example for "Barry's Theorem".

Johann Cigler (2013)

- found a counter example for "Barry's Theorem".
- correctly stated the theorem.

Theorem (Johann Cigler, 2013)

$$\mathbf{a} = (a_0, a_1, a_2, \ldots), \quad a_i \neq 0$$

$$\mathbf{b} = (b_0, b_1, b_2, \ldots), \quad b_{-1} = -1, \quad b_0 = 0, \quad b_{k+2} - b_k \ge 1$$

$$f = \frac{1}{1 - \frac{a_0 x^{b_1 - b_{-1}}}{1 - \frac{a_1 x^{b_2 - b_0}}{1 - \frac{a_2 x^{b_3 - b_1}}{1 - \frac{a_2 x^{b_3 - b_1}}{1 - \frac{a_2 x^{b_3 - b_1}}{1 - \frac{a_3 x^{b_3 - b_1}}{1 - \frac{a$$

.

Then all non-vanishing Hankel determinants are given by

$$H_{b_k}(f) = (-1)a_0^{b_k - b_0}a_1^{b_k - b_1}a_2^{b_k - b_2} \cdots a_{k-1}^{b_k - b_{k-1}}$$

Theorem (Buslaev 2010, Cigler, 2013)

$$\mathbf{a} = (a_0, a_1, a_2, \ldots), \quad a_i \neq 0$$

$$\mathbf{b} = (b_0, b_1, b_2, \ldots), \quad b_{-1} = -1, \quad b_0 = 0, \quad b_{k+2} - b_k \ge 1$$

$$f = \frac{1}{1 - \frac{a_0 x^{b_1 - b_{-1}}}{1 - \frac{a_1 x^{b_2 - b_0}}{1 - \frac{a_2 x^{b_3 - b_1}}{1 - \frac{a_3 x^{b_3 - b_1}}{1 - \frac{a$$

•

Then all non-vanishing Hankel determinants are given by

$$H_{b_k}(f) = (-1)a_0^{b_k - b_0}a_1^{b_k - b_1}a_2^{b_k - b_2} \cdots a_{k-1}^{b_k - b_{k-1}}$$

After Cigler's correction, every power series has a unique C-fraction expansion, but not all C-fractions have Hankel determinant formula.

Fraction type	Fraction existence	Hankel det. formula
S, J-fraction	No	Yes
C-fraction	Yes	No

After Cigler's correction, every power series has a unique C-fraction expansion, but not all C-fractions have Hankel determinant formula.

Fraction type	Fraction existence	Hankel det. formula
S, J-fraction	No	Yes
C-fraction	Yes	No
(Today)	Yes	Yes

Main Definition (H., 2014)

A Hankel continued fraction (H-fraction) is a continued fraction of the following form

$$F(x) = \frac{v_0 x^{k_0}}{1 + u_1(x)x - \frac{v_1 x^{k_0 + k_1 + 2}}{1 + u_2(x)x - \frac{v_2 x^{k_1 + k_2 + 2}}{1 + u_3(x)x - \cdot \cdot}}$$

where

- $v_j \neq 0$ are contants,
- k_j are nonnegative integers
- $u_j(x)$ are polynomials of degree less than or equal to k_{j-1} . By convention, 0 is of degree -1.

Fundamental Theorem (H., 2014)

(i) Each H-fraction defines a power series, and conversely, for each power series F(x), the H-fraction expansion of F(x) exists and is unique.

power series \longleftrightarrow *H*-fraction

Fundamental Theorem (H., 2014)

(i) Each H-fraction defines a power series, and conversely, for each power series F(x), the H-fraction expansion of F(x) exists and is unique.

power series \longleftrightarrow *H*-fraction

(ii) All non-vanishing Hankel determinants of F(x) are given by

$$H_{s_j}(F(x)) = (-1)^{\epsilon} v_0^{s_j} v_1^{s_j - s_1} v_2^{s_j - s_2} \cdots v_{j-1}^{s_j - s_{j-1}},$$

where $\epsilon = \sum_{i=0}^{j-1} k_i (k_i + 1)/2$ and $s_j = k_0 + k_1 + \dots + k_{j-1} + j$ for every $j \ge 0$.
Proof

(ii) Well known method: Cigler, Andrews, Wimp, Buslaev, ...

Lemma

Let k be a nonnegative integer and let $F(\boldsymbol{x}), G(\boldsymbol{x})$ be two power series satisfying

$$F(x) = \frac{x^k}{1 + u(x)x - x^{k+2}G(x)},$$

where u(x) is a polynomial of degree less than or equal to k. Then,

$$H_n(F) = (-1)^{k(k+1)/2} H_{n-k-1}(G).$$

Proof of Lemma

Let
$$F(x) = \sum_{j} f_{j} x^{j}$$
.
Let $x^{k}/F(x) = \sum_{j} b_{j} x^{j}$
Let $G(x) = \sum_{j} g_{j} x^{j}$.

Define four matrices by

$$\begin{aligned} \mathbf{F}_{1} &= (f_{i-j+k})_{0 \leq i,j \leq n-1}, \\ \mathbf{G} &= \text{Diag}((b_{i+j-k})_{0 \leq i,j \leq k}, \ (g_{i+j})_{0 \leq i,j \leq n-k-1}), \\ \mathbf{F} &= (f_{i+j})_{0 \leq i,j \leq n-1}, \\ \mathbf{B} &= (b_{j-i})_{0 \leq i,j \leq n-1}, \end{aligned}$$

We can prove that

$$\mathbf{F}_1 imes \mathbf{G} = \mathbf{F} imes \mathbf{B}.$$

Take determinants.

Let

$$f(x) = \frac{1 - \sqrt{1 - \frac{4x^4}{1 + x}}}{2x^4} \in \mathbb{Q}[[x]].$$

Then

Hence

$$H(f) = (1, 1, 0, 0, -1, -1, 0, 0)^*.$$

The number of distinct partitions

$$g(x) = \prod_{n \ge 1} (1 + x^k) \in \mathbb{Q}[[x]]$$

=1 + x + x² + 2x³ + 2x⁴ + 3x⁵ + 4x⁶ + 5x⁷ + 6x⁸ + 8x⁹ + ...
Then $g(x) = \frac{1}{1 - x - \frac{x^3}{1 + x + \frac{x^5}{1 - x + x^2 - x^3 - \frac{x^5}{1 + x + x^2 + \frac{x^3}{1 - x + \frac{x^3}{x^3}}}}$

•

The number of distinct partitions

$$g(x) = \prod_{n \ge 1} (1 + x^k) \in \mathbb{Q}[[x]]$$

=1 + x + x² + 2x³ + 2x⁴ + 3x⁵ + 4x⁶ + 5x⁷ + 6x⁸ + 8x⁹ + ...
Then g(x) =
$$\frac{1}{1 - x - \frac{x^3}{1 + x + \frac{x^3}{1 - x + x^2 - x^3 - \frac{x^5}{1 + x + x^2 + \frac{x^3}{1 - x + \frac{x^3}{x^3}}}}$$

• integral coefficients ? No

9. Periodicity

Main Theorem (H., 2014)

(Roughly speaking)

The H-fraction of a quadratic power series

- exists, is unique,
- is ultimately periodic,
- can be *entirely* calculated by CAS.

Main Theorem (H., 2014)

Let p be a prime number and $F(x) \in \mathbb{F}_p[[x]]$ be a power series satisfying the following quadratic equation

$$A(x) + B(x)F(x) + C(x)F(x)^{2} = 0,$$

where $A(x), B(x), C(x) \in \mathbb{F}_p[x]$ are three polynomials with one of the following conditions

(i)
$$B(0) = 1$$
, $C(0) = 0$, $C(x) \neq 0$;
(ii) $B(0) = 1$, $C(x) = 0$;
(iii) $B(0) = 1$, $C(0) \neq 0$, $A(0) = 0$;
(iv) $B(x) = 0$, $C(0) = 1$, $A(x) = -(a_k x^k)^2 + O(x^{2k+1})$ for
some $k \in \mathbb{N}$ and $a_k \neq 0$ when $p \neq 2$.

Then, the Hankel continued fraction expansion of F(x) exists and is ultimately periodic. Also, the Hankel determinant sequence H(F) is ultimately periodic.

Algorithm NextABC

Prototype: $(A^*, B^*, C^*; k, A_k, D) = \text{NextABC}(A, B, C)$

Input: $A(x), B(x), C(x) \in \mathbb{F}[x]$ three polynomials such that $B(0) = 1, C(0) = 0, C(x) \neq 0, A(x) \neq 0;$

Output: $A^*(x), B^*(x), C^*(x) \in \mathbb{F}[x], k \in \mathbb{N}^+, A_k \neq 0 \in \mathbb{F},$ $D(x) \in \mathbb{F}[x]$ a polynomial of degree less than or equal to k+1 such that D(0) = 1. Step 1 [Define k, A_k]. Since $A(x) \neq 0$, let $A(x) = A_k x^k + O(x^{k+1})$ with $A_k \neq 0$. Step 2. Let

$$F(x) = \frac{-B + \sqrt{B^2 - 4AC}}{2C};$$

or

$$F(x) = \frac{-A(x)}{B(x) + C(x)F(x)}.$$

Get the first terms of

$$F(x) = -A_k x^k + \dots + O(x^{2k+2});$$

$$\frac{-A_k x^k}{F(x)} = 1 + \dots + O(x^{k+2}).$$

Step 3 [Define D]. Define D(x), G(x) by

$$\frac{-A_k x^k}{F(x)} = D(x) - x^{k+2} G(x)$$

where D(x) is a polynomial of degree less than or equal to k+1 such that D(0) = 1 and G(x) is a power series.

Step 4 [Define A^*, B^*, C^*]. Let

$$A^{*}(x) = \left(-D^{2}A/A_{k} + BDx^{k} - CA_{k}x^{2k}\right)/x^{2k+2};$$

$$B^{*}(x) = 2AD/(A_{k}x^{k}) - B;$$

$$C^{*}(x) = -Ax^{2}/A_{k}.$$

Lemma

Let $A(x), B(x), C(x) \in \mathbb{F}[x]$ be three polynomials such that $B(0) = 1, C(0) = 0, C(x) \neq 0, A(x) \neq 0$ and

 $(A^*, B^*, C^*; k, A_k, D) = \operatorname{NextABC}(A, B, C).$

If F(x) is the power series defined by

$$A(x) + B(x)F(x) + C(x)F(x)^{2} = 0,$$

Then, F(x) can be written as

$$F(x) = \frac{-A_k x^k}{D(x) - x^{k+2} G(x)}$$

where G(x) is a power series satisfying

$$A^*(x) + B^*(x)G(x) + C^*(x)G(x)^2 = 0.$$

./..

Lemma (continued)

Furthermore, $A^*(x), B^*(x), C^*(x)$ are three polynomials in $\mathbb{F}[x]$ such that $B^*(0) = 1, C^*(0) = 0, C^*(x) \neq 0$ and

 $\deg(A^*) \le d; \ \deg(B^*) \le d+1; \ \deg(C^*) \le d+2,$

where

$$d = d(A, B, C) = \max(\deg(A), \deg(B) - 1, \deg(C) - 2).$$

Algorithm HFrac

Prototype: $(a_k, d_k, D_k)_{k=0,1,\ldots} = \operatorname{HFrac}(A, B, C; p)$

Input: p a prime number;

 $A(x),B(x),C(x)\in \mathbb{F}_p[x] \text{ three polynomials such that } B(0)=1,\ C(0)=0 \text{ and } C(x)\neq 0;$

Output: a finite or periodic sequence $(a_k, d_k, D_k)_{k=0,1,...}$

Step 1. j := 0, $A^{(j)} := A$, $B^{(j)} := B$, $C^{(j)} := C$. Step 2. If $A^{(j)} = 0$, then return the finite sequence

$$(a_k, d_k, D_k)_{k=0,1,\dots,j-1}.$$

The algorithm terminates. Step 3. If $A^{(j)} \neq 0$, then let

 $(A^{(j+1)}, B^{(j+1)}, C^{(j+1)}; d_j, a_j, D_j) := \mathsf{NextABC}(A^{(j)}, B^{(j)}, C^{(j)})).$

Let j := j + 1.

Step 4. If there exits $0 \le i < j$ such that

$$(A^{(i)}, B^{(i)}, C^{(i)}) = (A^{(j)}, B^{(j)}, C^{(j)}),$$

then return the infinite sequence

$$((a_k, d_k, D_k)_{k=0,1,\ldots,i-1}, (a_k, d_k, D_k)_{k=i,i+1,\ldots,j-1}^*).$$

The algorithm terminates. Else, go to Step 2.

Remark 1.

The loop Steps 2-4 will be broken at Step 2 or Step 4, since the degrees of the polynomials $A^{(i)}, B^{(i)}, C^{(i)}$ are bounded, and the coefficients are taken from \mathbb{F}_p . The number of different triplets $(A^{(i)}, B^{(i)}, C^{(i)})$ is finite.

Remark 2.

$$A(x) + B(x)F(x) + C(x)F(x)^{2} = 0,$$

F(x) is well defined with the condition $B(0) = 1, C(0) = 0 \text{ and } C(x) \neq 0$

In fact,

$$F(x) = \frac{-A(x) - C(x)F(x)^2}{B(x)}$$

Proof of the Main Theorem (i) If $B(0) = 1, C(0) = 0, C(x) \neq 0$, let $(a_k, d_k, D_k)_{k=0,1,...} = \mathsf{HFrac}(A, B, C; p).$

By Lemma,

$$F(x) = \frac{-a_0 x^{d_0}}{D_0(x) + \frac{a_1 x^{d_0 + d_1 + 2}}{D_1(x) + \frac{a_2 x^{d_1 + d_2 + 2}}{D_2(x) + \frac{a_3 x^{d_2 + d_3 + 2}}{\dots}}}$$

and the above H-fraction is ultimately periodic.

۰.

(ii)
$$B(0) = 1$$
, $C(x) = 0$;
(iii) $B(0) = 1$, $C(0) \neq 0$, $A(0) = 0$;
(iv) $B(x) = 0$, $C(0) = 1$, $A(x) = -(a_k x^k)^2 + O(x^{2k+1})$ for
some $k \in \mathbb{N}$ and $a_k \neq 0$ when $p \neq 2$.

Using (i) with some modifications.

For example,

(iv) B(x) = 0, C(0) = 1, $A(x) = -(a_k x^k)^2 + O(x^{2k+1})$ for some $k \in \mathbb{N}$ and $a_k \neq 0$ when $p \neq 2$.

F(x) exists:

$$F(x) = \sqrt{\frac{-A(x)}{C(x)}} = \sqrt{\frac{(a_k x^k)^2 + \dots}{C(x)}} = a_k x^k \sqrt{\frac{1 + \dots}{C(x)}}$$

Let

$$F(x) = \frac{a_k x^k}{D(x) - x^{k+2} G(x)}.$$

Then, G(x) satisfies

$$A^*(x) + B^*(x)G(x) + C^*(x)G(x)^2 = 0$$

with A^*, B^*, C^* defined by:

$$\begin{split} A^*(x) &= (D^2A + Ca_k^2 x^{2k})/x^{3k+2}; \\ B^*(x) &= -2ADx^{k+2}/x^{3k+2}; \\ C^*(x) &= Ax^{2k+4}/x^{3k+2}. \end{split}$$

If $p \neq 2$, then A^*, B^*, C^* are polynomials such that $B^*(0) \neq 0, C^*(0) = 0, C^*(x) \neq 0.$

Apply (i) for (A^*, B^*, C^*) .

Lemma

If the H-fraction expansion of a power series F is ultimately periodic, then the Hankel determinant sequece H(F) is ultimately periodic.

Lemma

If the H-fraction expansion of a power series F is ultimately periodic, then the Hankel determinant sequece H(F) is ultimately periodic.

Proof. By the Fundamental Theorem

$$H_{s_j}(F(x)) = (-1)^{\epsilon} v_0^{s_j} v_1^{s_j - s_1} v_2^{s_j - s_2} \cdots v_{j-1}^{s_j - s_{j-1}},$$

where $\epsilon = \sum_{i=0}^{j-1} k_i (k_i + 1)/2$ and $s_j = k_0 + k_1 + \dots + k_{j-1} + j$ for every $j \ge 0$.

 \mathbf{s}, \mathbf{v} periodic implies H_n periodic.

Notation

Let p = 5 and

$$F = \frac{1 - \sqrt{1 - \frac{4x}{1 - x^4}}}{2x} \in \mathbb{F}_5[[x]]$$

or

$$-1 + (1 - x^4)F + (-x + x^5)F^2 = 0.$$

$$A := -1; \quad B := 1 - x^4; \quad C := -x + x^5;$$

 $B(0) = 1, \quad C(0) = 0, \quad C(x) \neq 0$

By Algorithm HFrac, F has the following H-fraction expansion

$$\frac{1}{1+4x} + \left(\frac{4x^2}{1+3x} + \frac{3x^2}{1+x} + \frac{4x^3}{1+3x+2x^2} + \frac{4x^3}{1+3x} + \frac{4x^2}{1+3x} + \frac{4x^2}{1$$

 $H(g) = (1, 1, 1, 2, 0, 2, 4, 1, 4, 1, 4, 2, 0, 2, 1, 1)^*.$

Same ${\cal F}$ as Example 1, but with p=2

$$F = \frac{1 - \sqrt{1 - \frac{4x}{1 - x^4}}}{2x} \in \mathbb{F}_2[[x]]$$

$$F = \frac{1}{1+x} + \left(\frac{x^2}{1} + \frac{x^4}{1} + \frac{x^6}{1} + \frac{x^4}{1} + \frac{x^4}{1} + \frac{x^2}{1} + \frac{x^2}{1} + \frac{x^2}{1} + \right)^*.$$
$$H(F) = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1)^*.$$

Let p = 2 and G = xF where F is defined in Example 2.

$$G = \frac{1 - \sqrt{1 - \frac{4x}{1 - x^4}}}{2} \in \mathbb{F}_2[[x]]$$

$$-x + (1 - x^4)G + (-1 + x^4)G^2 = 0 \quad \text{with} \quad G(0) = 0.$$

Since $C(x) = (-1 + x^4)$, C(0) = 1, we cannot apply Algorithm HFrac directly Let

$$G = \frac{x}{1 + x + x^2 + x^3 G_1}.$$
$$x^3 + (1 + x^4)G_1 + x^3G_1^2 = 0.$$

By Algorithm HFrac, we get the following H-fraction expansion

$$G_1 = \frac{x^3}{1+x^4} + \left(\frac{x^6}{1} + \frac{x^4}{1+x^2} + \frac{x^4}{1} + \frac{x^6}{1+x^4} + \right)^*.$$

Hence

$$G = \frac{x}{1+x+x^2} + \left(\frac{x^6}{1+x^4} + \frac{x^6}{1} + \frac{x^4}{1+x^2} + \frac{x^4}{1} + \right)^*.$$

By Examples 2 and 3 (
$$xF = G$$
)

$$\begin{aligned} x\left(\frac{1}{1+x} + \left(\frac{x^2}{1} + \frac{x^4}{1} + \frac{x^6}{1} + \frac{x^4}{1} + \frac{x^2}{1} + \frac{x^2}{1} + \frac{x^2}{1} + \right)^*\right) \\ &= \frac{x}{1+x+x^2} + \left(\frac{x^6}{1+x^4} + \frac{x^6}{1} + \frac{x^4}{1+x^2} + \frac{x^4}{1} + \right)^*.\end{aligned}$$

Remark. The H-fraction of xF is G, but not

$$\frac{x}{1+x} + \left(\frac{x^2}{1} + \frac{x^4}{1} + \frac{x^6}{1} + \frac{x^4}{1} + \frac{x^2}{1} + \frac{$$

Super δ -fraction

Definition.

For each positive integer $\delta = 1, 2, 3, \ldots$, a *super continued fraction* associated with δ , called *super* δ *-fraction* for short, is defined to be a continued fraction of the following form

$$F(x) = \frac{v_0 x^{k_0}}{1 + u_1(x)x - \frac{v_1 x^{k_0 + k_1 + \delta}}{1 + u_2(x)x - \frac{v_2 x^{k_1 + k_2 + \delta}}{1 + u_3(x)x - \frac{1 + u_3($$

where

- $v_j \neq 0$ are contants,
- k_j are nonnegative integers
- $u_j(x)$ are polynomials of degree less than or equal to $k_{j-1} + \delta 2$. By convention, 0 is of degree -1.

Special cases

• When $\delta = 1$ and all $k_j = 0$, the super δ -fraction is the traditional S-fraction.

• When $\delta = 2$ and all $k_j = 0$, the super δ -fraction is the traditional *J*-fraction.

• The super 2-fraction is *Hankel continued fraction*.

• When $\delta = 1$ and $u_j(x) = 0$, the super 1-fraction is a special *C*-fraction (set $b_j = k_0 + k_1 + \cdots + k_{j-1} + \lfloor j/2 \rfloor$ in [Ci13]). Theorem (super 1-fraction) Let p be a prime number and $F(x) \in \mathbb{F}_p[[x]]$ be a power series satisfying the following quadratic equation

$$A(x) + B(x)F(x) + C(x)F(x)^{2} = 0,$$

where $A(x), B(x), C(x) \in \mathbb{F}_p[x]$ are three polynomials with one of the following conditions

(i)
$$B(0) = 1$$
, $C(0) = 0$, $C(x) \neq 0$;
(ii) $B(0) = 1$, $C(x) = 0$;
(iii) $B(0) = 1$, $C(0) \neq 0$, $A(0) = 0$;
(iv) $B(x) = 0$, $C(0) = 1$, $A(x) = -(a_k x^k)^2 + O(x^{2k+1})$ for
some $k \in \mathbb{N}$ and $a_k \neq 0$ when $p \neq 2$.

Then, the super 1-fraction expansion of F(x) exists and is ultimately periodic.

The super δ -fraction expansion of F(x) exists and is ultimately periodic.

True for $\delta = 1, 2$ False for $\delta \geq 3$ Theorem [H, 2014].

For each pair of positive intergers a, b, let

$$G_{a,b}(x) = \frac{1}{x^{2^a}} \sum_{n=0}^{\infty} \frac{x^{2^{n+a}}}{1 - x^{2^{n+b}}}.$$

Then $H(G_{a,b}) \pmod{2}$ is periodic.

Proof

Let $f(x) = G_{a,b}(x) \in \mathbb{F}_2[[x]]$. Then

$$x^{2^{a}}f(x) = \sum_{n=0}^{\infty} \frac{x^{2^{n+a}}}{1 - x^{2^{n+b}}};$$
$$x^{2^{a+1}}f(x^{2}) = \sum_{n=1}^{\infty} \frac{x^{2^{n+a}}}{1 - x^{2^{n+b}}};$$
$$x^{2^{a}}f(x^{2}) = f(x) - \frac{1}{1 - x^{2^{b}}};$$
$$1 + (1 + x^{2^{b}})f(x) + x(1 + x^{2^{b}})x^{2^{a} - 1}f(x)^{2} = 0.$$

By the Main Theorem, the Hankel determinant sequence H(f) is ultimately periodic. QED.
Stern sequence (1858)

 $(a_n)_{n=0,1,\ldots}$ is defined by $a_0 = 0, a_1 = 1$ and for $n \ge 1$

$$a_{2n} = a_n, \qquad a_{2n+1} = a_n + a_{n+1}.$$

The generating function for Stern's sequence is denoted by

$$S(x) = \sum_{n=0}^{\infty} a_{n+1} x^n$$

Stern sequence (1858)

 $(a_n)_{n=0,1,\ldots}$ is defined by $a_0 = 0, a_1 = 1$ and for $n \ge 1$

$$a_{2n} = a_n, \qquad a_{2n+1} = a_n + a_{n+1}.$$

The generating function for Stern's sequence is denoted by

$$S(x) = \sum_{n=0}^{\infty} a_{n+1} x^n$$

Theorem

$$H_n(S)/2^{n-2} \equiv (0, 0, 1, 1)^* \pmod{2}.$$

Proof

It is well known

$$S(x) = (1 + x + x^2)S(x^2) \in \mathbb{Q}[[x]].$$

Since $S(x) \pmod{2}$ is rational, there exists a positive integer N such that $H_k(S) \equiv 0 \pmod{2}$ for all $k \geq N$. We must use the grafting technique. First, the H-fraction of S(x) is

The even number 2 occurs in the sequence (v_j) , in particular at position v_2 . Define G(x) by

$$S(x) = \frac{1}{1 - x - \frac{x^2}{1 + 2x + 2x^2 G(x)}}.$$

The power series G(x) satisfies the following relation

$$(1 + x + x^2) + (1 + x + x^2)G(x) + x^4G(x^2) \equiv 0 \pmod{2}.$$

By Algorithm HFrac, we get $H(G) \equiv (1, 1, 0, 0)^* \pmod{2}$. Hence

$$H_n(S)/2^{n-2} \equiv (0, 0, 1, 1)^* \pmod{2}.$$

QED

Conclusion

	Known	New
1.	Traditional result for real number	Result for formal power series
2.	Definition with exception	No exception
3.	Results obtained case by case	Unified result
4.	Lengthy human proof	Automatic computer proof

Special thanks to:

- Christian Krattenthaler (SLC73 Organizer)
- All SLC73 participants
- Dominique Foata, Zhixiong Wen, Yingjun Guo, Guoce Xin (Helpful discussions)
- Yann Bugeaud, Hao Fu, Wen Wu, Zhiying Wen, Jiayan Yao (Co-authors)

