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Basic determinant evaluation

e One square matrix of (small) fixed dimension:

3 I 9
A=\ -1 -2 7
6 0 1

e Linear Algebra:
det(A) =3 x(—2)x1 + 1 x7x6 + 9x(—1)x0
— 99X (=2)x6—1x(—-1)x1—-7Tx0x3
= 145
e Computer Algebra System [ REPLACES Human]

sage: A=matrix([[3,1,9],[-1,-2,7],[6,0,1]1]1)
sage: A.det()
145
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positive integer
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Advanced determinant calculus

e One square matrix of dimension n X n, where n is an unknown
positive integer

1
v+7+1) 0

e One sequence of matrices:

(Ag, A1, Ag, .. .)



e Leibniz formula. Let A be a n X n square matrix

Then

det(A) = Z sgn(o) a0,5(0) A1,0(1) * "

JEGn

where :
sgn(o) = (—1)™() : signature
inv(o) : the number of inversions

An—1,0(n—1)

inv(o) =#{(4,7) |0<i<j<n—1,00) >0c(j)}



e Computer Algebra System

> def Adet(n):

>  R=range(n)

> F=[[1/(i+j+1) for i in R] for j in R]
> return matrix(QQ, F).det()

> [Adet(0), Adet(1), Adet(2), Adet(3), Adet(4)]
(1, 1, 1/12, 1/2160, 1/6048000]

> Adet (n)
NameError: name ’n’ i1s not defined

e CAS does not replace, but helps Human !




Advanced determinant calculus

You need:



Advanced determinant calculus

You need:

e Computer Algebra System



Advanced determinant calculus

You need:
e Computer Algebra System
e Christian Krattenthaler
1998: Advanced determinant calculus

2005: Advanced determinant calculus: A complement



Advanced determinant calculus

You need:
e Computer Algebra System
e Christian Krattenthaler
1998: Advanced determinant calculus

2005: Advanced determinant calculus: A complement

e Example:
a+b 11 (a+0b+ i)
det —
0§i,j2n—1 ((a — 1 +j)) H (a+)!(b+12)!

1=0




Advanced determinant calculus

Christian Krattenthaler :

“Fvaluating determinants is not difficult!”,

if det(A,) = NICE FORMULA(n).
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e Problem
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Advanced determinant calculus

e Problem

How do we proceed if det(A,,) # NICE FORMULA(n) ?

e Answer
Simple. We just ignore the problem.

Doing Enumerative Combinatorics, we avoid studying any
sequence WITHOUT nice formula.
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Interlude

e Ramanujan 7-function

T H (1 —a™)* = Z T(n)x"

m>1 n>1
—x — 24 2% + 25223 — 1472 2* 4+ 4830 2° — 6048 2% + - - -

e Lehmer Conjecture (1947)

For each n we have 7(n) # 0.

e | refuse to study the Lehmer Conjecture, because there is no
nice formula for 7(n).



Hankel determinant

We identify a sequence
a= (ag,a1,as,...)
and its generating function

f=f(x)=ag+ax+ayx®+--



Hankel determinant

We identify a sequence

a= (ag,a1,as,...)

and its generating function

f:f($)2a0+a1$+a2$2+-~

QA Ag+1 .. Ak4n—1
k41 Ap+2 ... Ak+tn
k k .
HM(a) = HM(f) =
Ak+n—1 Qktn ... Ak42n—-2

(constant skew-diagonals)



Hankel determinant

Two notations. Using sequence and generating function

|
H,,30>((1,1,1,1,1,...)) _ Hg}))( )
1l —2x

Special case k£ =0 :

ao ai az as Up—1
ai az as a4 s
a as a4 as An+1
. 0
Hy (f) = H"g )(f) as a4 as ae An+-2

Up—-1 Ap An41 An42 ... A2pn—-2




2. Hankel determinants of the
Thue-Morse sequence



Thue-Morse sequence
an infinite sequence t = (eg, e1,€2,...) on {1, —1}, defined by:
e Generating function

o o0

H(l—ka):Zenaz":1—:1:—:132+x3—a:4—|—:1:5+---
k=0 n=0

t=(1,-1,-1,1,—1,1,1,-1,...)

e Recurrence relation

€ —
€o2n — €En

€on+1 — —€En
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Thue-Morse sequence

Negation - Concatenation

e starting with (1)

e The negation is (—1)

e Combining those two, we get (1, —1)

e The negation is (—1,1)

e Combining those two, we get (1,—1,—1,1)

e The negation is (—1,1,1,—1)

e Combining those two, we get (1,—1,—1,1,—1,1,1,—1)

e And so on



Thue-Morse sequence

e L-system (Lindenmayer system)

variables 1, -1

constants none

start 1

rules (1 -> 1 -1), (-1 -> -1 1)

-11
-11

1

1-1
1-1
1-1 -111-1



1993

Allouche, Peyriere, Wen, Wen proved:

Theorem [APWW]. Let

Then H, (P>(x)) # 0 for every positive integer n.



Table

n H, n H, n H, n H,
0 1 7T —64 | 14 8192 | 21 28311552
1 1 8 128 | 15 —16384 | 22 —94371840
2 =2 9 —256 | 16 32768 | 23 62914560
3 4 1 10 —1536 | 17  —065536 | 24 8388608
4 8 | 11 —3072 | 18 —393216 | 25 16777216
5 —16 | 12 2048 | 19 —2359296

6 —32 | 13 4096 | 20 14155776

e | resigned, because there is no nice formula for H,,.



Table

n H,/2" ' | n H,/)2"' | n H,/21 | n H,/2"!
0 2 7 —1 14 1 21 27

1 1 8 1 15 —1 22 —45

2 —1 9 —1 16 1 23 15

3 1 10 -3 17 —1 24 1

4 1 11 -3 RS -3 25 1

D —1 12 1 19 -9

6 —1 13 1 20 27




Theorem APWW(i)

Hn(PZ)

-1 Is odd.
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Period-doubling sequence

Recall: The Thue-Morse sequence t

t= 1 —1 —1 1 —1 1 1
d= 1 0 1 1 1 0

The period-doubling sequence d = (1,0,1,1,1,0,...) is de-
rived from the Thue—Morse sequence

1
dk = §‘€]€ — ek_|_1‘ (k > O).

Theorem APWW(ii).

H,(d) is odd.



Theorem APWW(iii)

Let M,, be the n X n matrix derived from the Hankel matrix

of the period-doubling sequence by replace the last column by
(1,1,1,1,...,1)". Then

det(M,) is odd.

e Theorems APWW(i) and APWW(iii) are equivalent.



t=(1,-1,-1,1,-1,1,1,—1,—1,...)
d=(1,0,1,1,1,0,1,0, )

1 -1 -1 1 2 0 =2
-1 -1 1 -1 0 -2 2
Hy(t) = 1 1 =1 1] |-=2 2 =2
1 -1 1 1 2 -2 0
Col(i):=Col(i)-Col(i+1) i=0,1,2]
1 0 1 1
0 1 1 1
H4(t)/23— 1 1 1 1 Edet(M4)El (mod 2)
1 1 0 1
1 0 1 1
0 1 1 1
Hy(d) = L1 10 =1 (mod 2)
1 1 0 1




APWW's Proof

e Sixteen relations

e Sudoku method



Irrationality exponent

Let £ be an irrational, real number. The irrationality exponent
(&) of £ is the supremum of the real numbers i such that the
inequality

has infinitely many solutions in rational numbers p/q.
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Irrationality exponent

Well known:

o (&) > 2

o 1(£) = 2 if £ is algebraic irrational number

e 11(&) = 2 for almost all real numbers & (Lebesgue measure)

e P,(1/m) is transcendental for every integer m > 2

Theorem [Bugeaud, 2011]
p(Pa(l/m)) = 2.

Proof. Using Theorem APWW, ...



Coons (2011)

The Gros sequence [Louis Gros, 1872]

o0 omn

1 T
52(2) = EZ 1 — 2"

n=0

1,2.1,3,1,2,1,4,1,2,1,3,1,2,1,5,1, . ..
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Coons (2011)

The Gros sequence [Louis Gros, 1872]

1 22
S = —
2(2) x%l—x””

1,2.1,3,1,2,1,4,1,2,1,3,1,2,1,5,1, . ..

Theorem
H,(S3) is odd.

Theorem
u(S2(1/m)) = 2.



Coons’s Proof
APWW's method



3. Combinatorial Proof



Combinatorial Proof / Bugeaud-Han
Infinite sets of integers:

N =1{0,1,2,3,4,5,6,7,8,9,10,11,12,...}

J={2n+1)2** —1|n,k € N}
={0,2,3,4,6,8,10,11,12,14, .. .}

K={2n+1)2** —1|n,ke N}
= {1,5,7,9,13,17,...}

Property: N =J + K (disjoint union)



m > 1: integer

S, = 640,1,....m—1} : all permutations on {0,1,...,m — 1}

Theorem J.

(J1):
#{loe &, |i+o(i)e Jfori=0,1,...,m— 1} is odd.

(J2):
#{loe G, |i+o(i)e Jfori=0,1,...,m— 2} is odd.



Enumerative Combinatorics

permutations, involutions, inversion number, major index, the
number of descents, the number of excedances, the number of
fixed points, Denert statistics, Young tableau, charge statistics,
pattern-avoiding permutations, signed permutations, André per-
mutations, derangements, desarrangements, wreath product,
RSK algorithm, dez, maz, pix, two-pix, ides, imaj, rmail, rmal,
cyc, surfix, maf, mak, ...

Today: i+ o (1)



Proof of Theorem J / Notations

Three representations for permutations

e one-line
o€ Sg = 516280374

. _ (012345678
7 =597\ 516280374

e two-lines

e product of disjoint cycles

g€ Gy =1(0,5)(1)(2,6,3)(4,8)(7)



Involution
e An involution is a permutation ¢ such that 0 = o~ 1.

e In the cycle representation of an involution every cycle is either
a fixed point (b) or a transposition (c,d).

e Definition.
For every set A, a transposition (¢, d) is said to be an
A-transposition if:

c+de A and c+d is odd.

e Remark.

There is an even number and an odd number in every A-
transposition. We write the even number before the odd num-
ber.

(Usually the order of the two numbers in a transposition does
not matter)



A: finite set
B: infinite set
f: non-negative integer

Definition.

v(A, f,B) : the number of involutions in & 4 such that
e all transpositions are B-transpositions
e have exactly f fixed points.



Example.

A=10,1,2,3,4,5,6}
K={2n+1)2?**t —1|n,ke N} ={1,5,7,9,13,17,...}

f=1
v(A, f,K)=11



The possible transpositions:
(01), (05), (14), (16), (23), (25), (34), (36), (45)
List of 11 involutions:
(0)(14)(52)(36), (0)(16)(23)(45), (0)(16)(25)(34)

(01)(2)(63)(45), (01)(23)(6)(45), (01)(25)(6)(34), (01)(25)(63)(4)
(05)(14)(2)(36), (05)(14)(23)(6), (05)(16)(2)(34), (05)(16)(23)(4)



Proof of Theorem J / Basic Lemmas

e Two infinite sets of integers:

P={k|k=0,3 (mod4)}
={0,3,4,7,8,11,12,15,16, ...}
Q=1{k|k=1,2 (mod4)}
— {1,2,5,6,9,10,13,14,17,...}

e Property : N =P+ (@ (disjoint union)

e Let Al,, be the set composed of the smallest m integers in A.

Example: P|5; ={0,3,4,7,8}



Transformation:

k/2 if k is even
BN —=N; kH{(k—l)/Q if k is odd
B is extended to the involutions o on N|,, whose transpositions
are K-transpositions, by applying 8 on every number in the
cycle representation of o.

B((7)(0,5)(6,3)(2)(8,1)(4)) = (3)(0,2)(3,1)(1)(4,0)(2).



e 3 for involutions is reversible, even though 5 on IV is not
reversible.

B((7)(0,5)(6,3)(2)(8,1)(4)) = (3)(0,2)(3, 1)(1)(4,0)(2).

We do not know a priori whether the fixed point 3 is obtained
from 6 or from 7.

e We must look at the transposition (3, 1) first. It is obtained
from the permutation (6, 3) since we know that an even number
Is always before an odd number. Thus, we can recover the K-

transpositions (6,3)(0,5)(8,1).
e All the other numbers are fixed points (7)(2)(4).



P={k|k=0,3 (mod4)}

. . k/2 if k is even
B:N—=N; kH{(k—l)/Z if k is odd
k/4 if k is even

v = N kH{(k—B)/ﬁL if k is odd

6:(7)(0,5)(6,3)(2)(8, 1)(4)  — (3)(0,2)(3, 1")(1)(47 0)(2)
v (15)(0,11)(12,7)(4)(16,3)(8) <+ (3)(0,2)(3,1)(1)(4,0)(2)



By the bijection v713,

Lemma. For m > 1 we have

V(N|m,0/1, K) = v(P|m,0/1,J)
V(N|2m—17 17 J) = V(P 2m—1, 17K)
V(N‘Qm,O/Q, J) — U(P Qm,O/Q,K)

where v(A, f/g,B) == v(A, f,B) +v(A,g,B)



Again, by

k+1 If k£ is even

0: N =N, kH{k—l if & is odd

0: P — (@

Lemma. For m > 1 we have

V(N|ms0/1, K) = 0(Ply, 0/1,.J) = 0(Qlm, 0/1, J)
V<N|2m—17 17 J) = V(P 2m—1 17K) = V(Q‘Qm—la 17K)
V(N |2m,0/2,J) = v(Plom,0/2, K) = v(Q|am,0/2, K)




Proof of Theorem J / Proof of (J1)
(J1): #{loe€e S, |i+o(i)e Jforall i} is odd.
We count the permutations in (J1) modulo 2.

Recall

J={@2n+1)2°* —1|n,k e N}
=1{0,2,3,4,6,8,10,11,12,14, ...}

e Factl: J contains all even numbers:
e Fact2: If an odd number z € J, then z =3 (mod 4).
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e Take a permutation o in (J1)

e If o0 contains more than two columns (ggg), select the first

two such columns (;1) and (;z)

e Define permutation 7 obtained from o by exchanging j7; and
J2 In the bottom line.

e This procedure is reversible.
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e Take a permutation o in (J1)

e If o0 contains more than two columns (ZZZ), select the first

two such columns (;1) and (;z)

e Define permutation 7 obtained from o by exchanging j7; and
J2 in the bottom line.

e This procedure is reversible.
e By Factl, 7 is also a valid permutation in (J1).

e So that we can delete the pair o and 7, and there only remain

the permutations containing 0 or 1 column (°%4), in particular,

having 0 or 1 odd fixed point.

e Similarly with an even number, there only remain permuta-

tions containing 0 or 1 column (£°"). Consequently, the only

remaining permutations have 0,1 or 2 fixed points.
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the number of such involutions is v(N|,,, 1, J)



e [hanks to the bijection o — o 1 we only need consider the
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e We can check that all transpositions are .J-transpositions.

e If m is odd, then the involution contains one fixed point, and
the number of such involutions is v(N|,,, 1, J)

e By Fact2 the two numbers in every J-transposition are either
both in P or both in (). This means that no J-transposition
takes one number in P and another in Q).



e Thanks to the bijection o — o~}
involutions .

, we only need consider the

e We can check that all transpositions are .J-transpositions.

e If m is odd, then the involution contains one fixed point, and
the number of such involutions is v(N|,,, 1, J)

e By Fact2 the two numbers in every J-transposition are either
both in P or both in (). This means that no J-transposition
takes one number in P and another in Q).

e The involutions are of type

P Q
(e0)(00)(0e) | (o)(e0)(e0)(e0)(o0)



e Thanks to the bijection o — o~}

involutions .

, we only need consider the

e We can check that all transpositions are .J-transpositions.

e If m is odd, then the involution contains one fixed point, and
the number of such involutions is v(N|,,, 1, J)

e By Fact2 the two numbers in every J-transposition are either
both in P or both in (). This means that no J-transposition
takes one number in P and another in Q).

e The involutions are of type

P Q
(e0)(00)(0e) | (o)(e0)(e0)(e0)(o0)

e The two parts composed by numbers from P and from () are
INDEPENDENT
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o IFm=2k+1, fix(c) =1

V(Nlogt1,1,J) =v(P|g,0/1,J) X v(Q|g+1,0/1,J)
e We need evaluate v(P|g,0/1,J)



o IFm=2k+1, fix(c) =1
v(Nloga1,1,J) = v(Pl|g,0/1,J) x v(Q|r+1,0/1,J)
e We need evaluate v(P|g,0/1,J)
o IF k =2/, fix = 0. Apply v to an involution in v(P|,0/1, J)
7((0,3)(8,7)(4,11)) = (0,0)(2,1)(1,2)
which can be identified with the permutation on {0, 1,2}
0 1 2
0 2 1

V(P|2,0,J) =#{oc €&y |it+0(t) € J for all i}



o IFm=2k+1, fix(c) =1
V(Nl|ogs1,1,J) =v(P|g,0/1,J) x v(Q|r+1,0/1,J)
e We need evaluate v(P|g,0/1,J)
o IF k =2/, fix = 0. Apply v to an involution in v(P|,0/1, J)
v((0,3)(8,7)(4,11)) = (0,0)(2,1)(1,2)
which can be identified with the permutation on {0, 1,2}

0 1 2
0 2 1
V(P|2,0,J) =#{oc €&y |it+0(t) € J for all i}
e By induction, v(P|2,0,J) =1 (mod 2).



o IFm=2k+1, fix(c) =1
V(Nl|ogs1,1,J) =v(P|g,0/1,J) x v(Q|r+1,0/1,J)
e We need evaluate v(P|g,0/1,J)
o IF k =2/, fix = 0. Apply v to an involution in v(P|,0/1, J)
v((0,3)(8,7)(4,11)) = (0,0)(2,1)(1,2)
which can be identified with the permutation on {0, 1,2}

(0 1 2)
0 2 1
V(P|2,0,J) =#{oc €&y |it+0(t) € J for all i}
e By induction, v(P|2,0,J) =1 (mod 2).
e ELSE, ELSE ... ... [ Still 3 pages |
For the complete proof, see Bugeaud-Han, Elec J Comb, 2014.



Theorem.
(J1) = APWW(ii)

(J2) = APWW(iii) = APWW(i)

Proof. Recall:
e the period-doubling sequence d = (1,0,1,1,1,0,...).
e J=1{0,2,3,4,6,8,10,11,12,14,...}
We have
di =1 ifandonlyif je&J



4. t-Extensions

t-Hankel determinants



t-Hankel determinant / Fu-Han

t : an indeterminate

tao aq as as
aq ta2 as a4
an as t&4 as
Hn (av t) — as a4y as ta6

Un—1 Un Un+1 Un+42

e H,(a,t) is a polynomial in t of degree < n
e Whent=1, H,(a,1)= H,(a)

laon—2




Recall : period-doubling sequence d = (1,0,1,1,1,0,...)
Theorem APWW(ii).

Theorem.

The t-Hankel determinant H,,(d,t) is a polynomial in ¢ of de-
gree n, whose leading coefficient is the only one to be an odd

Integer.

H,(d,t) =t" (mod 2)



‘ ... coefficients are even - - -

n| Hy,(d,t) H,(d,t) (mod 2) | H,(d, 1)
0|1 1 1

1|t t 1

2 |t t2 1

3|t — 2t £ —1

4 |t — 4¢2 t -3

5|t — 6t + 2t + 4t to 1

6 |0 — 8t + 4¢3 + 12¢% — 8t £0 1

7 1t7 — 12¢° 4+ 10t* 4 2483 — 2442 | 7 —1

8 | % — 16t° + 16t> + 48t* — 64¢3 | 8 —15




|dea of the Proof.

Using the same combinatorial set-up. The parameter ¢ counts
the number of fixed points of a permutaion.

By Leibniz formula, the t-Hankel determinant
Hi(d,t) =

Z ) (1O gy 0y diro) b1 to (k1)
O'EGk

where fix(o) is the number of fixed points of o.



Regular paperfolding sequence

‘(ill(i(

(Source: Wikipedia)

recg a

1= Left turn, 0=Right turn

r=(1,1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,1,...)



e Generating function

o 2n-1
- n __
Goa(x) = g rpd’ = g Tt
n>0 n=0

e Recurrence relations:

Ugn — 17 Ugn+2 — O, U2n+1 — Up



e String substitution rules

11 — 1101
01 — 1001
10 — 1100
00 — 1000

11

1101

11011001

1101100111001001
11011001110010011101100011001001



Coons and Vrbik conjectured (2012) and Guo, Wu and Wen
(2013) proved

Theorem GWW.

The parities of the Hankel determinants of the regular paper-
folding sequence r are periodic of period 10

(Hk(r))k:(),l,m — (1, 1, 1, O, O, 1, O, O, 1, 1)* (mod 2)



Proof.

APWW's method.



Trying to find a combinatorial proof and t-extension, we obtain:

Theorem FH.

The t-Hankel determinant Hy(r, %) is a polynomial in t of degree
less than or equal to 3.

k Hy(r,t) k Hy(r,t)
0 1 5 — 13 2% 42t — 2
1 t 6 22 — 2t — 4
2 —1 7 3t —6t° — Tt +6
3 —2t 8 —9t? + 12t + 16
4| —t*+2t+1 9| —15t3 + 20t? + 46t — 40




Proof of Theorem FH

R={(4k+1)2"—1|n,k € N} ={0,1,3,4,7,8,9,12,15, 16,...}

Lemma.
For each £ > 0 the integer rp, =1 ifandonly if k € R

Hk(r,t) —

Z tﬁx(d)(_1)inv(0)7a0+0(0)7~1+0(1) CTh 1o (k_1)-
O'EGk



The product

() T'o+o(0)T140(1) """ Tk—1+0(k—1)

isequaltolifi+o0(i) € Rfori =0,1,---,k—1, and is equal
to 0 otherwise.



The product

(*) To+o(0)T140(1) """ Tk—1+0(k—1)
isequaltolifi+o0(i) € Rfori =0,1,---,k—1, and is equal
to 0 otherwise.

e Consider a permutation ¢ such that the product (x) is non-
zero and fix(o) > 4.



The product

() T'o+o(0)T140(1) """ Tk—1+0(k—1)

isequaltolifi+o0(i) € Rfori =0,1,---,k—1, and is equal
to 0 otherwise.

e Consider a permutation ¢ such that the product (x) is non-
zero and fix(o) > 4.

e Thinking the two-line representation of o

516280374

o€ 69 = 516280374 = <012345678>



The product

() T'o+o(0)T140(1) """ Tk—1+0(k—1)

isequaltolifi+o0(i) € Rfori =0,1,---,k—1, and is equal
to 0 otherwise.

e Consider a permutation ¢ such that the product (x) is non-
zero and fix(o) > 4.

e Thinking the two-line representation of o

516280374

o€ 69 = 516280374 = <012345678>

e An even number m € R if and only if m =0 (mod 4), so
that all fixed points are even.



e Since the number of odd integers in {0,1,...,k—1} is equal

to |k/2], there are at least 3 columns of type (Zgg)



e Since the number of odd integers in {0,1,...,k—1} is equal

to |k/2], there are at least 3 columns of type (Zgg)

o Let (;1) (;z) and (;2) be the first three such columns. By

the Pigeonhole Principle, there are at least two numbers among
91, J2, 73 Which are congruent modulo 4.




e Since the number of odd integers in {0,1,...,k—1} is equal

to |k/2], there are at least 3 columns of type (Zgg)

o Let (;1) (;z) and (;2) be the first three such columns. By

the Pigeonhole Principle, there are at least two numbers among
91, J2, 73 Which are congruent modulo 4.

e Without loss of generality, we assume that j; and j5 are
congruent modulo 4.



e Since the number of odd integers in {0,1,...,k—1} is equal

to |k/2], there are at least 3 columns of type (Zgg)

o Let (;1) (;z) and (;2) be the first three such columns. By
the Pigeonhole Principle, there are at least two numbers among

91, J2, 73 Which are congruent modulo 4.

e Without loss of generality, we assume that j; and j5 are
congruent modulo 4.

e We define another permutation 7 obtained from o by ex-
changing j; and js in the bottom line, i.e., 7 = (j1,j2) 0 0.



e Since the number of odd integers in {0,1,...,k—1} is equal

to |k/2], there are at least 3 columns of type (Zgg)

o Let (;1) (;z) and (;2) be the first three such columns. By
the Pigeonhole Principle, there are at least two numbers among

91, J2, 73 Which are congruent modulo 4.

e Without loss of generality, we assume that j; and j5 are
congruent modulo 4.

e We define another permutation 7 obtained from o by ex-
changing j; and js in the bottom line, i.e., 7 = (j1,j2) 0 0.

e This procedure is reversible.



Statistics of o and T:

1nv 1nv



Statistics of o and T:

e inv(c) =inv(7) £ 1, so that sgn(c) = — sgn(7).



Statistics of o and T:

e inv(c) =inv(7) £ 1, so that sgn(c) = — sgn(7).

e +j2 € Rand i3+ j; € R. Since i1 + 51 and i5 + jo are
in R and are even, hence must be congruent to 0 modulo 4.
Consequently, 71 + j2 and i3 + 51 are congruent to 0 modulo 4.



Statistics of o and 7
e inv(c) =inv(7) £ 1, so that sgn(c) = — sgn(7).

e +j2 € Rand i3+ j; € R. Since i1 + 51 and i5 + jo are
in R and are even, hence must be congruent to 0 modulo 4.
Consequently, 71 + j2 and i3 + 51 are congruent to 0 modulo 4.

e fix(0) = fix(7), i.e., no fixed point has been created.



Statistics of o and T:

e inv(c) =inv(7) £ 1, so that sgn(c) = — sgn(7).

e +j2 € Rand i3+ j; € R. Since i1 + 51 and i5 + jo are
in R and are even, hence must be congruent to 0 modulo 4.
Consequently, 71 + j2 and i3 + 51 are congruent to 0 modulo 4.

e fix(0) = fix(7), i.e., no fixed point has been created.

Thus, the contributions by o and 7 compensate each other. We
can delete the pair {0, 7} from &.



Statistics of o and 7
e inv(c) =inv(7) £ 1, so that sgn(c) = — sgn(7).

e +j2 € Rand i3+ j; € R. Since i1 + 51 and i5 + jo are
in R and are even, hence must be congruent to 0 modulo 4.
Consequently, 71 + j2 and i3 + 51 are congruent to 0 modulo 4.

e fix(0) = fix(7), i.e., no fixed point has been created.

Thus, the contributions by o and 7 compensate each other. We
can delete the pair {0, 7} from &.

After deleting all the permutations such that fix(c) > 4, all
remaining permutations have at most 3 fixed points.



Statistics of o and 7
e inv(c) =inv(7) £ 1, so that sgn(c) = — sgn(7).

e +j2 € Rand i3+ j; € R. Since i1 + 51 and i5 + jo are
in R and are even, hence must be congruent to 0 modulo 4.
Consequently, 71 + j2 and i3 + 51 are congruent to 0 modulo 4.

e fix(0) = fix(7), i.e., no fixed point has been created.
Thus, the contributions by o and 7 compensate each other. We
can delete the pair {0, 7} from &.

After deleting all the permutations such that fix(c) > 4, all
remaining permutations have at most 3 fixed points.

Hence, Hy(r,%) is a polynomial in ¢ of degree < 3.



5. Jacobi continued fraction



Jacobi Continued Fraction

u = (uy,us,...)

v = (vg, V1, V2, .. .)

Notation:




How to find and prove the J-Fraction

Example. Let

= (1—2)(1+2z) — /(1 —2)(1 —22)(1 + 32)(1 + 22 — 422)

42%(1 — x)

Find: by computer



The J-fraction of [ is

— (_ _l72)*
/ J[L ,222)* '

—~—~DN0|—=
=

Proof. u and v are periodic. It suffices to check:

QED.



Fundamental relation

between J-fractions and Hankel determinants

Uy, U2, - n,n—1, n—2 2
Hn<J{ = VgV Uy -+ Up _oUp_1

Well known. See, for example:

e Wall: 1948

e Flajolet: 1980

e Viennot : 1983

e Kratthenthaler : 1998



Jacobi Continued Fraction

e Hankel determinants



Jacobi Continued Fraction

e Hankel determinants

e Orthogonal polynomials



Jacobi Continued Fraction

e Hankel determinants
e Orthogonal polynomials

e Stieltjes algorithm



Jacobi Continued Fraction

e Hankel determinants
e Orthogonal polynomials
e Stieltjes algorithm

e Combinatorial aspects (Motzkin paths, Permutations, ...)



J-Fraction of P2

Thue—Morse sequence

Py(z) = ﬁu ~a?) =3| ]

where

u=1-1,1-1,1,-1,1,-1,1,-1,1,-1,1,—1,. ..

v=1,-21-1,-1,-1,1,-1,1,-3,1/3,-1/3,-3,1,-1,1,1, -3,
1,-1,-1/3,-5/3,1/5,—1/5,15,—17,—1/17,1/17, —17, 15,
1/15,—1/15,—15,13,—3/13,3/13,13/3,—19/3,3/19, —3/19, . ..



Too bad

No nice formula for v,,. Even worse, there are rational numbers.

We cannot prove anything about the Hankel determinants.



J-Fraction of S2

The Gros Sequence

oo on

Y DA
n=0

u=-2,7/3,23/3,—167/21,—-169/21,7,7, —629/105, —631 /105,
7.7,—57/7,—55/7,65/9,391/63, —17663 /3255, —17677 /3255,
391/63,65/9, —55/7, —57/7,7,7, —211/35, —209/35, 7, 7,
—73/9,-71/9, ...

v=1-3,-1/9,—63,—1/441,—63,—1,—35,—1/11025, —35, —1,
— 63,—1/49, —63, —49/81, —1395/49, —1/216225, —1395 /49,
— 49/81,—63,—1/49, —63, —1, —35, —1/1225, —35, —1,
—63,—1/81,—63,...



Again, no nice formula for u,,, v,



let p be a prime number and f a sequence. We want to prove
that H,(f) Z0 (mod p).



let p be a prime number and f a sequence. We want to prove
that H,(f) Z0 (mod p).

e No nice formula for the coefficients in the J-fraction of f;



let p be a prime number and f a sequence. We want to prove
that H,(f) Z0 (mod p).

e No nice formula for the coefficients in the J-fraction of f;

e We try to find a “nice” sequence g such that



let p be a prime number and f a sequence. We want to prove
that H,(f) Z0 (mod p).

e No nice formula for the coefficients in the J-fraction of f;

e We try to find a “nice” sequence g such that

e (1) f=g (modp)



let p be a prime number and f a sequence. We want to prove
that H,(f) Z0 (mod p).

e No nice formula for the coefficients in the J-fraction of f;

e We try to find a “nice” sequence g such that

e (1) f=g (modp)

e (2) g has simple J-fraction



let p be a prime number and f a sequence. We want to prove
that H,(f) Z0 (mod p).

e No nice formula for the coefficients in the J-fraction of f;
e We try to find a “nice” sequence g such that

e (1) f=g (modp)

e (2) g has simple J-fraction

By (2) we know H(g).



let p be a prime number and f a sequence. We want to prove
that H,(f) Z0 (mod p).

e No nice formula for the coefficients in the J-fraction of f;
e We try to find a “nice” sequence g such that

e (1) f=g (modp)

e (2) g has simple J-fraction

By (2) we know H(g).

By (1) we know H,,(f) = H,(g) (mod p)



Question
How to find a nice sequence g such that
eg=1

e The coefficients in the J-fraction of g have nice formula 7



Fractional congruence
p: prime number

Let a, b, c be four integers such that (p,b) = 1.
The fraction a/b and the integer c are said to be
congruent modulo p if a =cb (mod p).

We write a/b = ¢ (mod p).

8/9=3/4=-3=2 (mod bH)



means = (mod p)

Lemma

Let J[u,v] = f and J[(, V] = f.

(1) If f =7, then H(f) = H(f).
(2)Ifu=tand v="v, then f=f.
(3) If v=v, then H(f) = H(f).



J-Fraction of S2

1= 227

52252($)2521fx2” :J{:}

n=0

u=-2,7/3,23/3,—167/21,-169/21,7,7, —629/105, —631 /105,
7.7,—57/7,—55/7,65/9,391/63, —17663 /3255, —17677 /3255,
391/63,65/9, —55/7, —57/7,7,7, —211/35, —209/35,7,7 ...

v=1-3,-1/9,—63,—1/441,—63,—1,—35,—1/11025, —35, —1,
— 63, —1/49, —63, —49/81, —1395/49, —1/216225, —1395 /49,
— 49/81,—63,—1/49, —63, —1, —35, —1/1225, —35, —1, . ..



J-Fraction of S2

1= 227

52252($)2521fx2” :J{:}

n—

u=-2,7/3,23/3,—167/21, —169/21,7,7, —629/105, —631 /105,
7.7,—57/7,—55/7,65/9,391/63, —17663 /3255, —17677 /3255,
391/63,65/9, —55/7, —57/7,7,7, —211/35, —209/35,7,7 ...

v=1-3,-1/9,—63,—1/441,—63,—1, 35, —1/11025, —35, —1,
— 63, —1/49, —63, —49/81, —1395/49, —1/216225, —1395 /49,
— 49/81,—63,—1/49, —63, —1, —35, —1/1225, —35, —1, . ..

Only one even number in u and v. Let

0,1,1,1,1,1,...
1,1,1,1,1,1,1

Y Y Y Y Y Y ’3°

g=1J



J-Fraction of S2

| et
_J[ 0,1,1,1,1,1,...}
I=7 11,1011,
Then
1
g_l—x2f7
where 11.1.1.1
f:J{Ll,l,l,l,l,...]
We have 1
le—x—fo
1—3x
l—2—+/1—2x — 322 1=/ 15

J = 212 ’ I = 2x



Let

Since

We have

QED.

Proof of Coons's Theorem

1 & 2"
52 = x nz::() 1 — 2"
1—-3x
1 — 1+4+x
9= 21
H(g) = (1)

g=S2 (mod 2)

H(Ss) = (1)* (mod 2).



Let

Since

We have

QED. (?)

Proof of Coons's Theorem

1 T
52 = Enz::o 1 — 2"
1—-3x
1 — 1+x
9= 2x
H(g) = (1)



Let

Since

(?)
We have

Proof of Coons's Theorem

1 & 2"
S, — —
2 ajnz::()l—:ﬂ”
1—3x
1 — 14+x
9= 21
H(g) = (1)



Crucial Fact

(a+x)P =aP + 2P (mod p)

So that

f(a¥) = f(x)”  (mod p)



We get

QED.

Proof of Coons's Theorem

1
1S5 (2)? = So(z) — T+ 2 (mod 2)
1 — 1-3x
1+x
So(z) = i (mod 2).




New results

Theorem

Let

P3 :Pg(af) — H(l —ZCBk).

k>0

Then H,(P;) = (—1)""!  (mod 3)



New results

Theorem

Let

P3 :Pg(af) — H(l —ZCBk).

k>0

Then H,(P;) = (—1)""!  (mod 3)

Remark

P, = H(l _374k)7 Ps = H(l _335k)7

k>0 k>0

H, (P,,) # 0 for all n NOT TRUE when m > 4



Proof. We successively have

Pi(z) = (1 —2)Ps(2°) = (1 — 2)P3(x)® (mod 3),

1 i v J{L 1(/;%1(/12/)16)} - J{l, —(i)(n} (mod 3)

QED



0. Grafting technique and Chopping method



J-Fraction of P2

Thue—Morse sequece

Py(z) = ﬁu ~a?) =3| ]

u=1-1,1-1,1,-1,1,-1,1,-1,1,-1,1,—1, ...

v=1,-21-1,-1,-1,1,-1,1,-3,1/3,-1/3,-3,1,-1,1,1, -3,
1,-1,-1/3,-5/3,1/5,—-1/5,15,—-17,—1/17,1/17, —17,15, . ..



J-Fraction of P2

Thue—Morse sequece

Po(x) = [[a-=*) =3

u=1-1,1-1,1,-1,1,-1,1,-1,1,-1,1,—1, ...

v=1,-2,1,-1,-1,-1,1,-1,1,-3,1/3,-1/3,-3,1,—1,1,1, -3,
1,-1,-1/3,-5/3,1/5,—-1/5,15,—-17,—-1/17,1/17, —17,15, . ..

| et
_J[1,1,1,1,1,1,...
I=<11.0.1.1.1.1. ...



J-Fraction of P2

k u
Po(x) = [[a-=*) =3
k=0
Let
_y[LLLLLL
I=911,0,1,1,1,1,
We have .
9= 1l —=x

e P, =g (mod 2)
e H,(9)=0forn>1
e so that H,(P,) =0 (mod 2).

e Yes! But we want to prove H,(P)/2" 1 =1

(mod 2)



Grafting technique

Remove Wedge Ft Scioninto Place Yrap Union
from Rootstock and Seal with Y¥ax

Source: http://www.ces.ncsu.edu/depts/hort/hil /grafting. html



Grafting technique

F(:C):J{ U17u27u37---i| G(x):J|: ai,as,0as, - -

Uo,V1,V2,0V3, """ 17[)1’[)27[)37...
The grafting of G(x) into F'(x) of order k:
F‘RGZJ{ u17u2’“.7uk37a17a27a’37"'}
v07vl7v27'”7vk‘7b17b27b37“' .



Grafting technique

Ui, U2, U3, * - ai,aos,as, -
17(10 ::.][ 9 s W3 }, (;(JO ::!]{ , s U3y
Vo, V1,V2,U3, "

The grafting of G(x) into F'(x) of order k:

Pwk(;__.]{ Ul,UQ,"'ka,al,&Q,&g,"'}
007U17v27'"7vk7b17b27b37"'

Advantage:
o Keep u;,v;
e Take a;,b; (mod p).

17b17b27b37"'



Grafting technique

Ui, Ug2,U3, " * - ai,as,as, - -
17(10 ::.][ . s W3 }’ (;(Jﬂ ::!]{ ’ s U3y
Vo, V1,V2,U3, " "

The grafting of G(x) into F'(z) of order k:

Pwk(;::;I[ U&auQv'"7uk7a17a27a37"'}
Uo,Ul,Ug,'“,Uk,bl,bz,bg,°'°

Advantage:
o Keep u;, v;
e Take a;,b; (mod p).

Let F'|G := F|'G and F||G := F|*@, for short.

17b17b27b37'°'



J-Fraction of P2

e The J-fraction of the Thue-Morse sequence:

P2 p— J|: 17 _17 17 _17 17 _17 17 _1, 1, _1, 1, —17 1’ —1’ ¢ o

>3 3

o Let P, = Py|g where

_1717_1717_1717_1717_1717_1717_17°" }

I J{l, 1,-1,-1,-1,1,-1,1,-3,%, -5, -3,1,-1,1,- --

17 _27 17 _17 _17 _17 17 _17 17 -3 . _la _37 17 _17 17 o



J-Fraction of P2

e The J-fraction of the Thue-Morse sequence:

P — J|: 17_1717_1717_1717_1,1,_1,17—1717—1,...
2 — 1, _27 17 _17 _17 _1, ]., _1, 1, —37 g, —%, —3’ 17 —1’ 1, « .o
o Let P, = Py|g where
o] ~1,1,-1,1,-1,1,-1,1,-1,1,—1,1,—1, - - |
I 1’1’_17_17_1717_1717_37 %7_%7_3717_1717”°
e Only odd numbers in g. Let
__ (1)*}
7= 1y

e Finally we define

_ B i1,1,1,1,1,1,1,1,1,1,1,---
P2—P2‘9—J[1,—2,1, 01,1,1,1,1,1, 71,1717...}



J-Fraction of P2

e The J-fraction of the Thue-Morse sequence:

P —J{ 17_1717_1717_1717_1717_1717_1717_17°"
°T 17 _27 17 _17 _17 _17 17 _17 17 _37 %7 _%7 _37 17 _17 17 S
o Let P, = P5|g where
L J|: _1717_1717_1717_1717_1717_1717_17'” }
I 1717_17_17_1717_1717_37 %7_%7_3717_1717“'
e Only odd numbers in g. Let
__ (1)*}
g=14J { (1)*
e Finally we define
_ i 1,1,1,1,1,1,1,1,1,1,1,1, - - -
P2 _Pz‘g_'][la_zala ’ 7171717171717171717”'}

1



Proof of APWW'’s Theorem

Define g by

We have

(7) %2 =+ (1—2)(14+3z) (mod 4),

—s(1te— VT 2)(1+52) (mod2).

212
nghQQJ,

so that H,(g) =1 (mod 2). Hence, H,(P>) # 0.

9



Crucial Lemma

Lemma:

V1—dx = 1—|—22x2k (mod 4).

k=0



Proof of APWW'’s Theorem

Let
1
f_\/(la:)(l—l—Sx)
Then
dor - r |2k
(1—ac)f(ac)=\/ —1+3x:1—|—2]§( +3x) (mod 4)
(1—x)f(x)51+22(1f_x)2k (mod 4)
k=0
and




Proof of APWW'’s Theorem

On the other hand,

(1 - 2)P3(a”) = Pa(2),
1

PQ(ZIZ‘) — (mod 2),




Chopping method
Proposition

Let
2k+1

- —x4Z

Then, H(f)=(1,1,1,1,1,1,0,0)* (mod 2).



Proof. We successively have

0 k1 00 ok+1 4 4
$8f(562) — Z 156'_ ka — Z 137_ ka _1 f 72 — 5134f(33)_ 1 f 12
k=2 k=1
1
2 f(2®) = f(z) — 1 — 2
£U4f(33)2 — f(aj) _ 1 _1$2 (mOd 2)

1 — /1 - 5
f() le (mod 2)




where

44
\/1 12

Qx4

1 —
g f—
By the next Lemma,
H(g)=(1,1,1,1,-1-1,-2,-2,1,1,3,3,—-1, -1, —4,—4,...)

H(f)=Hn(9) =(1,1,1,1,1,1,0,0)"  (mod 2)



Lemma A. Let

1_\/1_ 4:134

Qx4

Then

(0)*

= J{1,1,1,—1 1,2, 1 931

727 ’ 3

Proof. z = 1 in the next Lemma.

1 .
13



Lemma B. Let

_ 1= (22 — )22 — /(1 — 22)(1 — 22 _4334).

f(ﬂ%Z) 2:82((1 _ Z) I (1 — Z—I—Z2)x2 —:134)
Then
(0)*
— J |
f 172:’%’_%’_2’2_'_1’Zil’_Zi17_(Z+1)7~--



Proof of Lemma B. Easy to check that f(x;z) verifies the fol-
lowing functional equation:

f(m§z): 1 >

2

1,2
ya

1,2
y

14+ zz?f(x; 24+ 1)

1+

QED.



The most difficult part for proving Lemma A is to find an ap-
propriate generalization, namely, Lemma B.

_ _ Azt
@) = - V1=

Qx4

7

) = 1— (22— 1)a? — /(1 — 22)(1 — 22 — 4z*)
’ 202((1 — 2) + (1 — 2z 4 22)22 — x4)




Chopping method

e \We need prove that f = f; where

(0)*

fl :J|:17]-717_]‘7_]‘72 l _%7_273 l _%7_37... |

’ 29 ’ 3



Chopping method

e \We need prove that f = f; where

_ (0)* }
fl _J{l,l,l,—l,—l,Q,%,—%,—2,3,%,—%,—3,... .

e Define f5 by deleting the first four pairs u;,v; (1 = 1,2, 3,4)

from the J-fraction of fi:

0)*
f2:J[ 11 ( 11 }
172757_57_2737§7_§7_37"'



Chopping method

e \We need prove that f = f; where

(0)*

leJ[ 11 11 }
171717_17_172757_57_2737§7_§7_37°°°

e Define f5 by deleting the first four pairs u;,v; (1 = 1,2, 3,4)
from the J-fraction of fi:

0)*
f2:J[ 11 ( 11 }
172757_57_2737§7_§7_37"'

o \We get the first coefficients of f5

fo =(1,0,2,0,5,0,12,0,30,0,75,0,190,0,483,0,1235, .. .).



Chopping method

e \We need prove that f = f; where

0)*
leJ[ 1 (1 11 }
171717_17_172757_57_2737§7_§7_37°°'

e Define f5 by deleting the first four pairs u;,v; (1 = 1,2, 3,4)
from the J-fraction of fi:

fa = J{l,Q, %,-%,—2(,03),, %,—%,—3,...]
e \We get the first coefficients of f5

fa =(1,0,2,0,5,0,12,0,30,0,75,0,190,0,483,0,1235, .. .).
e With the help of a CAS, we guess that f5 satisfies the equation

(2 = 32* + 2°)f5 + (=322 + 1) fo — 1 = 0.



e Define f3 by deleting the first four pairs u;,v; (1 = 1,2, 3,4)
from the J-fraction of f5 and guess

(2% — Tzt +22°) f3 + (=5 +1)f3 — 1 =0,
e Repeat these steps,

(z° — 132" + 322 fi + (=T2* + 1) fs — 1 =0,



e Define f3 by deleting the first four pairs u;,v; (1 = 1,2, 3,4)
from the J-fraction of f5 and guess

(2% — Tzt +222)f2 + (=52 + 1) f3 — 1 =0,
e Repeat these steps,

(2% — 132* 4+ 32%) f2 + (=72 + 1) f4 — 1 =0,

e We guess the general equation valid for every z (vertical guess)
(20— (22— 241Dz +(z—1)2*) f2+(— (22 — 1)z*+1)f,—1 = 0.

e Solving the above equation yields the series f(x; 2)



Example. Using the chopping method, we prove that

—2z2% — (s — 2%y — 1) — \/(sx — 22y — 1) — (222)2

202 (x? + 2222 + z(sx — x%y — 1))

where «,, is defined by

o 1+ zx
S oyt - |
- 1+ yx + x?




7. Miscellaneous



Misc 1. Nice formula for v

Thue—Morse sequence

Py(x) = ﬁ(1 2 = Jm
k=0

where

u=1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1, -1, ...

v=1,-21,-1,-1,-1,1,-1,1,-3,1/3,-1/3,-3,1,—1,1,1, -3,
1,-1,-1/3,-5/3,1/5,—1/5,15,—17,—1/17,1/17, —17, 15,
1/15,—1/15,—15,13,—3/13,3/13,13/3,—19/3,3/19, —3/19, . ..



Misc 1. Nice formula for v

Theorem
Let
H(l - 332]6) = -0 2
k=0 I 4+wuix — ot 5
1+ usx — g2t 5
1+ usx — o3t

Then, u, = (—=1)""! foreach n =1,2,3, ...




Misc 2. A magical sequence

1
—1—z+322—723+192* —=512°+ -+
\/(1—x)(1+3x) T+ ox -+ 19z xo +




Misc 2. A magical sequence

1
—1—z+322—723+192* —=512°+ -+
\/(1—x)(1+3x) T+ ox -+ 19z xo +

integral coefficients




Misc 2. A magical sequence

1
—1—z+322—723+192* —=512°+ -+
\/(1—x)(1+3x) T+ ox -+ 19z xo +

integral coefficients

s=1 -1 3 =7 19 =51 141 =393 1107 —-3139



Misc 2. A magical sequence

1
—1—z+322—723+192* —=512°+ -+
\/(1—x)(1+saz) rrer e e el

integral coefficients

s=1 -1 3 =7 19 =51 141 =393 1107 —-3139

s (mod4)=1 -1 -1 1 -1 1 1 -1 -1 1



Misc 2. A magical sequence

1
—1—z+322—723+192* —=512°+ -+
\/(1—x)(1+saz) rrer e e el

integral coefficients

s=1 -1 3 =7 19 =51 141 =393 1107 —-3139

s (mod4)=1 -1 -1 1 -1 1 1 -1 -1 1
= P, (Thue-Morse)



Misc 2. A magical sequence

1
—1—z+322—723+192* —=512°+ -+
\/(1—x)(1+saz) rrer e e el

integral coefficients

s=1 -1 3 =7 19 =51 141 =393 1107 —-3139

s (mod4)=1 -1 -1 1 -1 1 1 -1 -1 1
= P, (Thue-Morse)

s (mod3)=1 -1 0 -1 1 0 0 0 0 -1



Misc 2. A magical sequence

1
—1—z+322—723+192* —=512°+ -+
\/(1—x)(1+saz) rrer e e el

integral coefficients

s=1 -1 3 =7 19 =51 141 =393 1107 —-3139

s (mod4)=1 -1 -1 1 -1 1 1 -1 -1 1
= P, (Thue-Morse)

s (mod3)=1 -1 0 -1 1 0 0 0 0 -1
= Ps



Misc 2. A magical sequence

1
=1—x+32*>—72°4+192* —=512° + -
\/(1x)(1+3x) re v v

1 s ok
\/(1x)(1+3x) EH(l—:E ) (mod 4)

k=0

1 - o
\/(1_x)(1+3x) =[J(1-2") (mod 3)

k=0

Provide proofs of Theorems based on integer congruence in-
stead of fractional congruence



Misc 3. Another magical sequence

) = 141—x H(l_(1ix)2k)

k=0

=1-2x+22° — 62" +202° —482° + 9627 — 1662° + - -



Misc 3. Another magical sequence

o) = 5 T (1= ()7

k=0

—1-2x+22% 62" +202° —482° + 962" — 1662° + - -
Then,

H,(¢(x)) = Hy(¢(z?)) for each n



Misc 3. Another magical sequence

plx)=1—-2x+22* 402 —62* 4 - -
p(x?)=1—-22* +22* +02° —62° + - -

1 —2 2
Hs(d(z)=|-2 2 0 |=4

2 0O —6

1 0o -2




Misc 3. Another magical sequence

plx)=1—-2x+22* 402 —62* 4 - -
p(x?)=1—-22* +22* +02° —62° + - -

1 -2 2
Hy(p(x))=|-2 2 0 |=4

2 0 —6

1 0 =2




Misc 3. Another magical sequence

px)=1—-2x+22* 4+ 02" — 62" 4 - -
p(x?)=1—-22* +22* +02° —62° + - -

1 -2 2
Hi(p(z))=|-2 2 0 |=4
2 0 —6
1 0 =2
Hy(p(z*)=]0 -2 0 |=4
-2 0 2
o) =, =2
1 0



Misc 4. Thue-Morse and Gros

Thue-Morse sequence

Py =Py(z) = [J(1 - 2*)
k=0
Gros sequence
l = 2
32_52(56)_;2 1 — 27

n=0



Misc 4. Thue-Morse and Gros

Thue-Morse sequence

Py = Py(z) = [[ (1 = 2%)
k=0
Gros sequence
l — 2z
g, — § i
’ 2(2) T nE::o 1 —x2"
Trivial sequence
1 oo
= [[+2>)
1l—2x

k=0



Misc 4. Thue-Morse and Gros

o0

f(0) = [ +ba?)

k=0

—b,b,—b,b,—b,b, —b,b, —b.b, ...

=J 4 22
17b o 627 17 _(1 + b+ b2)7 1+gj_b27 1::__2_7_22 ) _(11—"__|_bb—|;bb4) yooe



Misc 4. Thue-Morse and Gros

o

f)=1la+ bz?")

k=0

_b7 b) _b7 b) _b, b, _b, b, _b, b, .« .

1,b— 52,1, —(1 + b+ b?), —+ 14b—b* _ (14b+b%)°

P 1404020 1404020 14b—bt 0"
b=1:
1 { —-1,1,— 1,1, 1,1,-1,. }
—J )
1—x 1,0,1,-3, =4 -9, ...

1,—1,1,—1,1,—1,...}

1,1,-3,5,3,-9,...

(1—x)52(x2):J[ 1

|



Misc 4. Thue-Morse and Gros

Thue-Morse sequence

Py=Py(x)=]](1- 22
k=0
Gros sequence
l — 2
So =25 = —
? 2(2) T ;::O 1 — 2"

Roughly speaking (!)

SQ ~ H(l —I— ZIZQk)
k=0



(. Evolution of the proofs of the APWW theorem



Hankel determinant

aA = (CLQ,CLl,CLQ, .. )

f=flz)=ay+ a1z + ax® + -

Hp(f) =




Allouche, Peyriere, Wen, Wen (1998)

Theorem
Let -
Py = Py(z) = [](1 - %)
k=0

be the Thue-Morse sequence.

Then, the Hankel determinant H, (P;) # 0 for every positive
Integer n.



Coons (2011)

Theorem
| et
1 — 2"
So =S8 = — .

Then H,(S3) =1 (mod 2).

Remark: In fact, it is equivalent to the APWW Theorem



First proof [Allouche, Peyriere, Wen, Wen]

e “Sudoku method”



First proof [Allouche, Peyriere, Wen, Wen]

e “Sudoku method”

e Sixteen recurrence relations between determinants



First proof [Allouche, Peyriere, Wen, Wen]

e “Sudoku method”
e Sixteen recurrence relations between determinants

e 12 pages



Second proof [Bugeaud-Han]

e Combinatorial proof



Second proof [Bugeaud-Han]

e Combinatorial proof

e Count the number of permutations modulo 2



Second proof [Bugeaud-Han]

e Combinatorial proof
e Count the number of permutations modulo 2

e 3 pages



Third proof [H.]

e Using Jacobi continued fraction



Third proof [H.]

e Using Jacobi continued fraction

e 1 page



Fourth proof [H.]

Encore ... ?



Fourth proof [H.]

Encore ... ?

e Automatic computer proof



Regular paperfolding sequence

e Regular paperfolding sequence:

o0 omn

1 T
GO,Q(CE) — E Z 1 — $2n+2 .

H(Go2) (mod 2) = (1,1,1,0,0,1,0,0,1,1)*.

e Guo, Wu and Wen (2013) proved.



Regular paperfolding sequence

e Regular paperfolding sequence:

o0 omn

1 T
GO,Q(CE) — E Z 1 — $2n+2 .

n=0

e Coons and Vrbik (2012) wrote a C++ program for computing
the Hankel determinants H,(Gp2) (mod 2) upto n = 8196

111,0,0,1001,1,111,0,0,10,0,1,1,1,1,1,0,0,1,0,0,1,1,1,...

H(Go2) (mod 2) = (1,1,1,0,0,1,0,0,1,1)*.

e Guo, Wu and Wen (2013) proved.



Regular paperfolding sequence

e Regular paperfolding sequence:

1 — 2"
GO,Q(CE) — E Z 1 — $2n+2 .
n=0

e Coons and Vrbik (2012) wrote a C++ program for computing
the Hankel determinants H,(Gp2) (mod 2) upto n = 8196

111,0,0,1001,1,111,0,0,10,0,1,1,1,1,1,0,0,1,0,0,1,1,1,...

and conjectured the sequence is periodic with period 10:

H(Go2) (mod 2) = (1,1,1,0,0,1,0,0,1,1)*.



Regular paperfolding sequence

e Regular paperfolding sequence:

1 — 2"
GO,Q(CE) — E Z 1 — $2n+2 .
n=0

e Coons and Vrbik (2012) wrote a C++ program for computing
the Hankel determinants H,(Gp2) (mod 2) upto n = 8196

111,0,0,1001,1,111,0,0,10,0,1,1,1,1,1,0,0,1,0,0,1,1,1,...

and conjectured the sequence is periodic with period 10:

H(Go2) (mod 2) = (1,1,1,0,0,1,0,0,1,1)*.

e Guo, Wu and Wen (2013) proved.



Automatic computer proof

My program

e computes the first values of the Hankel determinants H,,(Gy 2)
(mod 2)

11,1,00,1,00,41,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,...

e and proves the periodicity

H(GO)Q) (mod 2) — (1, 1, 1, O, O, 1, O, O, 1, 1)*



New results

Theorem [H, 2014].

For each pair of positive intergers a, b, let

o0 2n—|—a

1 x
Ga,b(x) — an Z on+b

1 —
n=0 X

Then H(G4) (mod 2) is periodic.



The following relations are calculated and proved by a computer
program automatically.

H(GO,O) p— (1)*,
Michael Coons, 2013; APWW, 1998

H(Go1) = 1,1, (0)*;
H(G10) = (1)
H (G ) (1,1,1,0,0,1,0,0,1,1)";

Guo, Wu, Wen, 2013

“=" means “= (mod 2)”



H(G11) = (1,1,0,0,1,1)%;
H(G2 ) — (1,1,0 O)
H(Go3) = (1°0%1'0°1°0°1°0°1%0*1'0*1'0°1"0° 1"

0*1'0*1%0%1%0%1°0°1'0%1%) ;
[period is 74]
H(G12) =1,1,1,(0)";
H(G2,1)

(1,1,1,1,1,1,0,0)";
Chopping method

H(GS,O) (171707070707070)*;



H(Go4) = (190%110%---110%1%)*  [period is 1078];

Oh la I3
H(Gy3) = (1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,1,1,1,1,1)*;
H(Gas) = (1,1,0,0,0,0,0,0,1,1,0,0)*:
H(Gs1) = (1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0)*;
H(Gap) = (



8. Hankel continued fraction



Jacobi Continued Fraction (J-Fraction)

u = (ul,ug,...)

V = (?}Q,Ul,vg, . )

(%
2
V11X
1+ U1t — 5
Vo
1+ usx — 5
V3T
1+ Usxr —
Fundamental relation
Ui, Uz, - n—1 n—2 2
H, (J{ e D — iUy v VS S5U
0 V1 2 —2Un—1
Vg, V1, V2, * - * "



Stieltjes Continued Fraction (S-Fraction)

a — (a(),CLl,CLQ, .. )




Contraction Theorem (Relation between S-fraction and J-fraction):

Uy = ay;
ug = agg—2 +azk—1; (k> 2)
Vo = Ao,

UV = G2k—102k; (k>1)



Contraction Theorem (Relation between S-fraction and J-fraction):

Uy = ang,

Uk = A2k—2 + G2k—1; (k> 2)
Vo = Ao,

vk = agg—102k;  (k>1)

Fundamental relation

Hy,(S(z)) = ag(a1a2)" " (azas)" "% - - - (a2n—302,2)



Real number and continued fraction

Real numbers «+— Continued fractions
1
V2 1+ i
2+ ; 1
™ 1
2+

24



Real number and continued fraction

Real numbers —> Continued fractions
1
V2 1+ i
2 + , 1
T 1
2+
2+ -

Quadratic numbers <+— Periodic continued fractions



Similar result for J-fraction ?

Real numbers —> Continued fractions
1
V2 1+ i
2+ ; 1
T 1
2+
2+

Quadratic numbers <+— Periodic continued fractions

Formal power series <—  Jacobi continued fractions



Similar result for J-fraction ?

Real numbers «— Continued fractions

Quadratic numbers <+— Periodic continued fractions

Formal power series <—  Jacobi continued fractions

Remark: The — 1in the third relation is missing.

Condition: The Jacobi continued fraction of a power series
F(x) exists if and only if all the Hankel determinants of F'(x)
are nonzero.



Similar result for S-fraction ?

Real numbers «— Continued fractions

Quadratic numbers <+— Periodic continued fractions

Formal power series +— S-fractions

Remark: The — 1in the third relation is missing.

Condition: The S-fraction of a power series F(x) exists if
and only if all the Hankel determinants of F'(x) are nonzero.



C-Fraction

Johann Cigler (2013) : A special class of Hankel determinants



C-Fraction

a= (ap,a1,as,...), a; #0
q=1(90,9,9,---), @ >0,¢;, > 1

Frank 1946 :
power series <—> C-fraction



C-Fraction

Conjecture (Paul Barry, 2012.05)

anQO

g1
14 ai1x

a2$QQ

1+

If all a; = +£1, then H,(f) = £1.

Several interesting examples are given !




C-Fraction

Paul Barry, 2012.12 (a second paper)

“We study the Hankel transforms of sequences whose gener-
ating function can be expressed as a C-fraction. In particu-
lar, we relate the index sequence of the non-zero terms of the
Hankel transform to the powers appearing in the monomaials
defining the C- fraction. A closed formula for the Hankel
transforms studied is given. As every power- series can be
represented by a C-fraction, this gives in theory a closed form
formula for the Hankel transform of any sequence. The notion
of multiplicity 1s introduced to differentiate between Hankel
transforms. "



C-Fraction

Paul Barry, 2012.12 (a second paper)

“We study the Hankel transforms of sequences whose gener-
ating function can be expressed as a C-fraction. In particu-
lar, we relate the index sequence of the non-zero terms of the
Hankel transform to the powers appearing in the monomaials
defining the C- fraction. A closed formula for the Hankel
transforms studied 1s given. As every power- series can be
represented by a C-fraction, this gives in theory a closed form
formula for the Hankel transform of any sequence. The notion
of multiplicity is introduced to differentiate between Hankel
transforms. "

This result is exactly we need !



C-Fraction

Paul Barry, 2012.12 (a second paper)

“We study the Hankel transforms of sequences whose gener-
ating function can be expressed as a C-fraction. In particu-
lar, we relate the index sequence of the non-zero terms of the
Hankel transform to the powers appearing in the monomaials
defining the C- fraction. A closed formula for the Hankel
transforms studied 1s given. As every power- series can be
represented by a C-fraction, this gives in theory a closed form
formula for the Hankel transform of any sequence. The notion
of multiplicity is introduced to differentiate between Hankel
transforms. "

This result is exactly we need | But ...



C-Fraction

Johann Cigler (2013)

e found a counter example for “Barry’'s Theorem".



C-Fraction

Johann Cigler (2013)
e found a counter example for “Barry’'s Theorem".

e correctly stated the theorem.



C-Fraction

Theorem (Johann Cigler, 2013)

a:(ao,al,ag,...), CL@#O
b = (bo,b1,b2,...), b_1=-1, bg=0, bpya2—bp>1

Then alll non-vanishing Hankel determinants are given by

br—bo br—b1 br—b br —bg
ku(f):(_l)aok oalk 1a2k 2_”akk_1k1



C-Fraction

Theorem (Buslaev 2010, Cigler, 2013)

a= (ap,a1,as,...), a; #0
b = (bo,b1,b2,...), b1 =-1, bg=0, byyo—0br=>1

Then alll non-vanishing Hankel determinants are given by

br—bo br—b1 br—b br —bg —
ku(f):(_l)aok oalk 1a2k 2_”akk_1k1



After Cigler's correction, every power series has a unique C-
fraction expansion, but not all C-fractions have Hankel deter-
minant formula.

Fraction Fraction | Hankel det.
type existence formula
S, J-fraction No Yes

(C-fraction Yes No




After Cigler's correction, every power series has a unique C-
fraction expansion, but not all C-fractions have Hankel deter-
minant formula.

Fraction Fraction | Hankel det.
type existence formula
S, J-fraction No Yes
('-fraction Yes No
(Today) Yes Yes




Main Definition (H., 2014)

A Hankel continued fraction ( H-fraction) is a continued fraction
of the following form

ko
Vo
F(QZ) - leko—l—kl-i—?
1+ U1 (ZIZ‘)JJ — UQij1+k2+2
1+ (V) (m)ﬂf —
1+ uz(x)r —

where
e v; # 0 are contants,
e k; are nonnegative integers

e u;(z) are polynomials of degree less than or equal to k,_;.
By convention, O is of degree —1.



Fundamental Theorem (H., 2014)

(i) Each H-fraction defines a power series, and conversely, for
each power series F'(x), the H-fraction expansion of F'(x) exists
and Is unique.

power series <— H-fraction



Fundamental Theorem (H., 2014)

(i) Each H-fraction defines a power series, and conversely, for
each power series F'(x), the H-fraction expansion of F'(x) exists
and Is unique.

power series <— H-fraction

(ii) All non-vanishing Hankel determinants of F'(x) are given by
H,, (F(x)) = (=1) v vy’ oy’ ™" oo 97,

where € = Zg;g ki(ki+1)/2and sj = ko+ki+---+kj_1+]
for every 57 > 0.



Proof

(ii)) Well known method: Cigler, Andrews, Wimp, Buslaev, ...

Lemma

Let k£ be a nonnegative integer and let F'(x), G(x) be two power
series satisfying

Cljk

Flz) = 1+ u(x)r — 2*2G (x)’

where u(x) is a polynomial of degree less than or equal to k.
Then,
H,(F) = (-2 1(Q).



Proof of Lemma
Let F(z) = _; fixd.
Let 2% /F(x) = D bjx
Let G(z) = ) _; g’
Define four matrices by
F1 = (fi—jtk)o<ij<n—1,
G = Diag((bi+j—k)0§i,j§ka (gi—l—j)ng',jgn—k—l)a

F = (firj)o<ij<n—1,

B = (bj—i)o<ij<n—1,
We can prove that

F, xG=F x B.

Take determinants.



Example 1

Let
-1 42
f@) = —L " e Q]
Then
1
f(:l?): A
T
1+ x— 1
X
1 —
4
1+ — x 1
X
1 — .
l+2——
Hence

H(f)=(1,1,0,0,—1,—1,0,0)".



Example 2

The number of distinct partitions

g(z) = [[ (1 +2") € Q[[]]

n>1

—1+ 2+ 22 +22° + 22 +32° +42°% + 527 + 62° + 827 + - -
Then g(z) =

1l —x —

Il 4+x+ 5
1l —x+ax%—a3—




Example 2

The number of distinct partitions

g(x) = | [ (1 +2") € Q[la]]

n>1

—1+ax+22+223 +22* +32° + 42 + 527 + 62° + 827 + - -

Then g(x) =

e integral coefficients 7 No



9. Periodicity



Main Theorem (H., 2014)

(Roughly speaking)

The H-fraction of a quadratic power series
e exists, IS unique,
e is ultimately periodic,

e can be entirely calculated by CAS.



Main Theorem (H., 2014)

Let p be a prime number and F(x) € F,[[x]||] be a power series
satisfying the following quadratic equation

A(z) + B(x)F(z) + C(x)F(x)* = 0,

where A(z), B(x),C(x) € F,|z] are three polynomials with one
of the following conditions

(i) B(0) =1, C(0) =0, C(x) # 0;

(i) B(0) =1, C(x) = 0;

(iii) B(0) =1, C(0) £ 0, A(0) = 0;

(iv) B(xz) = 0, C(0) =1, A(x) = —(apx®)? + O(2?**1) for
some k € N and ax # 0 when p # 2.

Then, the Hankel continued fraction expansion of F'(x) exists
and is ultimately periodic. Also, the Hankel determinant se-
quence H(F) is ultimately periodic.



Algorithm NextABC
Prototype: (A*, B*,C*;k, A, D) = NextABC(A, B, C)

Input: A(z), B(x),C(x) € F|x] three polynomials such that
B(0) =1, C(0) =0,C(x) # 0, A(z) # 0;

Output: A*(z), B*(z),C*(x) € Flz], k € NT, A, # 0 € F,
D(x) € F|z] a polynomial of degree less than or equal to k + 1
such that D(0) = 1.



Step 1 [Define k, A;]. Since A(x) # 0, let A(x) = Apa® +
O(z*+1) with Ay # 0.

Step 2. Let

—B+ VB2 —4AC
F(x) = e ;

B —A(x)
F@) = sy e r@)

Get the first terms of

F(z) = —Apz® + - + O(2?F12);




Step 3 [Define D]. Define D(x),G(z) by

—Akxk
F(x)

= D(x) — 2" T2G(x)

where D(x) is a polynomial of degree less than or equal to k+1
such that D(0) =1 and G(x) is a power series.

Step 4 [Define A*, B*, C*]. Let

A*(z) = (-D*A/Ag + BDz" — CAga®) J2*" 2,
B*(x) = 2AD/(A,z") — B;
C*(x) = —Ax? /Ay,



Lemma

Let A(x), B(z),C(x) € F|z] be three polynomials such that
B(0)=1,C(0) =0,C(x) # 0, A(x) # 0 and

(A*, B*,C"; k, A, D) = NextABC(A, B, ().
If F'(x) is the power series defined by
A(z) + B(z)F(z) + C(z)F(x)* = 0,
Then, F(x) can be written as

—Aklbk
D(x) — xFT2G(x)

where G(x) is a power series satisfying

A*(z) + B*(2)G(z) + C*(2)G(x)* = 0.

F(x) =



Lemma (continued)

Furthermore, A*(x), B*(x), C*(x) are three polynomials in IF|z]
such that B*(0) = 1,C*(0) = 0,C*(x) # 0 and

deg(A*) < d; deg(B”") < d+1; deg(C™) < d+ 2,
where

d=d(A,B,C) =max(deg(A),deg(B) — 1,deg(C) — 2).



Algorithm HFrac

Prototype: (ar,dy, Di)r—0,1,... = HFrac(A, B,C;p)

goee

Input: p a prime number;

A(x),B(x),C(x) € F,|z] three polynomials such that
B(0) =1, C(0) =0 and C(x) # 0;

Output: a finite or periodic sequence (a, dy, Di)r=0.1

goee



Step 1. j:=0, AU .= A, BU =B, CU) .=
Step 2. If AU =0, then return the finite sequence

(aka dp, Dk)k:O,l,...,j—l-

The algorithm terminates.
Step 3. If AU) £ 0, then let

(A(j+1),B(j+1),0(j+1);dj,aj,Dj) — NextABC(A(j),B(j), C’(j))).

Let j := 7+ 1.



Step 4. If there exits 0 < 7 < j such that
(A(i)’B(’i)yc(i)) — (A(j)jg(j)’c(ﬂ),
then return the infinite sequence

((akadlka)k:O,l ..... i—17(ak7dk7Dk)Z:7j,z’+1

.....

The algorithm terminates. Else, go to Step 2.



Remark 1.

The loop Steps 2-4 will be broken at Step 2 or Step 4, since the
degrees of the polynomials A B C() are bounded, and the
coefficients are taken from [F,,. The number of different triplets
(AW BW CW) s finite.

Remark 2.
A(z) + B(z)F(z) + C(2)F(x)* = 0,

F(x) is well defined with the condition
B(0)=1, C(0)=0and C(z) #0
In fact,




Proof of the Main Theorem
(i) If B(0) = 1,C(0) = 0,C(x) # 0, let

(ak, dk, Dk)kzo,l’m == HFrac(A, B, C;p).

By Lemma,
do
—Qaogpx
F(x) - a1Id0+d1+2
D()(Q?) T aopdltdz—+2
2L
Dy (33) T a3$d2+d3-|—2

Do(x) +

and the above H-fraction is ultimately periodic.



(i) B(0) =1, C(x) = 0;
(iii) B(0) =1, C(0) # 0, A(0) = 0;

(iv) B(xz) = 0, C(0) =1, A(x) = —(arx®)? + O(2?**1) for
some k£ € N and ax # 0 when p # 2.

Using (i) with some modifications.



For example,

(iv) B(xz) = 0, C(0) =1, A(x) = —(arx®)? + O(2x?**1) for
some k£ € N and ax # 0 when p # 2.

F(x) exists:




et
k

Fle) = D(zx) — 2+*+2G(x)

Then, G(x) satisfies
A*(x) + B*(2)G(z) + C*(2)G(z)* = 0
with A*, B*, C* defined by:
A*(z) = (D?*A 4 Caiz?") /x5 +2;
B*(2) = —2ADzk+2 /33k+2,
C* (1) = Ag2h+a /g3k+2
If p # 2, then A*, B*, C'* are polynomials such that
B*(0) #0,C*(0) =0,C"(x) # 0.
Apply (i) for (A*, B*,C™).



Lemma

If the H-fraction expansion of a power series F' is ultimately pe-
riodic, then the Hankel determinant sequece H (F') is ultimately
periodic.



Lemma

If the H-fraction expansion of a power series F' is ultimately pe-
riodic, then the Hankel determinant sequece H (F') is ultimately
periodic.

Proof. By the Fundamental Theorem
Hy, (F(z)) = (—1) % vy” oy 70277,

where € = Z‘Z;g ki(ki+1)/2and s; = ko+ki+---+kj_1+J
for every 7 > 0.

s, v periodic implies H,, periodic.



Notation

Vo U1 U2 U3 Uo

U_1—I-U_2—|—u3—|—u4—|-”




Example 1
Let p = 5 and

1— /1 — 2%,
F = \/Qx € F 5[]

or
1+ (1—-2YYF + (—x+2°)F* =0.

A:=—-1;, B:=1—-z% C:=—z+2z°
B(0)=1, C(0)=0, C(x)#0



By Algorithm HFrac, F' has the following H-fraction expansion

1 412 312 A3
14+ 4x + (1+3a; + 1+2 + 1+ 3z -+ 222
A3 312 A2 Ag:? *
+ 1+2 + 143z + 143z + 14+ 32 +) |

H(g)=(1,1,1,2,0,2,4,1,4,1,4,2,0,2,1,1)".



Example 2
Same F' as Example 1, but with p = 2

F —
14+x +

H(F)=(1,1,1,0,0,1,0,0,1,1)*.



Example 3
Let p = 2 and GG = xF where F' is defined in Example 2.

1 — 1 — 1%;4
G = \/2 € F[[a]]

—z+ (1 —2YG+ (-1 +2")G* =0 with G(0) =0.

Since C(x) = (=1 +2*), C(0) = 1, we cannot apply Algo-
rithm HFrac directly Let

T
14422+ 233G

z + (1 + 224Gy +2°G3 = 0.



By Algorithm HFrac, we get the following H-fraction expansion

o ZCS (1,6 334 334 ZC6 ) *
P14t N1 1422+ 1 4 142t 4+

Hence

6 6 4 4

B X (az X X X )*
o l4 x4z 2\l 1 142+ 1 /)



By Examples 2 and 3 ( 2 F =G )

1 (:132 x? 26 €T
x —_ —_ —_ —_
142 +\1 + 1 4+ 1 4+ 1
T

XL €Z
T 14+ x422 + (1+az4 + 1 4+ 1422

T (x T
l+2 +\1 + 1 +




Super s-fraction
Definition.

For each positive integer 0 = 1,2,3,..., a super continued
fraction associated with 9, called super o-fraction for short, is
defined to be a continued fraction of the following form

ko
F(z) = - vy pRoTk1+0
14+ ui(x)r — R
1+ us(x)x — =
1 4 u3(x)x —
where

e v; # 0 are contants,
e k; are nonnegative integers

e u;(x) are polynomials of degree less than or equal to k;_; +
0 — 2. By convention, 0O is of degree —1.



Special cases

e When 0 = 1 and all k; = 0, the super d-fraction is the
traditional S-fraction.

e When 0 = 2 and all k; = 0, the super o-fraction is the
traditional J-fraction.

e The super 2-fraction is Hankel continued fraction.

e When 0 =1 and u;(x) = 0, the super 1-fraction is a special
C'-fraction (set bj —ko+ k1 + - kj_l -+ L]/QJ In [CI].3])



Theorem (super 1-fraction)
Let p be a prime number and F(x) € F,[[x|| be a power series
satisfying the following quadratic equation

A(z) + B(z)F(z) + C(x)F(x)* = 0,

where A(z), B(x),C(x) € F,[z] are three polynomials with one
of the following conditions

(i) B(0) =1, C(0) =0, C(x) # 0;

(i) B(0) =1, C(x) = 0;

(iii) B(0) =1, C(0) # 0, A(0) = 0;

(iv) B(z) = 0, C(0) =1, A(x) = —(arpz®)? + O(2***1) for
some k£ € N and ai # 0 when p £ 2.

Then, the super 1-fraction expansion of F'(x) exists and is ul-
timately periodic.



The super d-fraction expansion of F'(x) exists and is ultimately
periodic.

True for 0 = 1,2
False for 6 > 3



Theorem [H, 2014].

For each pair of positive intergers a, b, let

o0 n—+a
G ( ) 1 x?
b\L) — o E -
“ T2 1 — g2"*°
n=0

Then H(G4p) (mod 2) is periodic.



o0 n-+a
2 f(x) -
I =3 T
L on—+b )
— 1l —=x
+1 > $2n+a
29 2
N COEDY -
. on—+b )
— 1l —=x
1

o f(a?) = fla) = T

By the Main Theorem, the Hankel determinant sequence H( f)

Is ultimately periodic.
QED.



Stern sequence (1858)

(Gn)n=0.1,... is defined by ag = 0,a; =1 and for n > 1

A2n = Qnp, A2n+1 — An + An+1-

The generating function for Stern’s sequence is denoted by

S(x) = Z Apa1x”
n=0



Stern sequence (1858)

(Gn)n=0.1,... is defined by ag = 0,a; =1 and for n > 1

ao2n = Qnp, A2n+1 — An + An+41-

The generating function for Stern’s sequence is denoted by

S(x) = Z Api1z"”
n=0

Theorem

H,(5)/2" % =(0,0,1,1)* (mod 2).



Proof

It is well known
S(z) = (1+z +2%)S(2%) € Q[z]].

Since S(z) (mod 2) is rational, there exists a positive integer
N such that Hi(S) =0 (mod 2) for all £ > N. We must
use the grafting technique. First, the H-fraction of S(x) is

S(x) = ! 5

l —2x—

212
213

1+ 2x +
1 —

1 —3/2x 4+ 11/422 + .



The even number 2 occurs in the sequence (v;), in particular
at position vy. Define G(x) by

S(:l?) — 72

Il —x —
1+ 22 + 22°G(x)

The power series GG(x) satisfies the following relation
l+z+25)+(1+2+2)G(2)+2*'G(@*) =0 (mod 2).

By Algorithm HFrac, we get H(G) = (1,1,0,0)* (mod 2).
Hence
H,(9)/2" % =(0,0,1,1)* (mod 2).

QED



Conclusion

Known New

Traditional result for real number Result for formal power series
Definition with exception No exception
Results obtained case by case Unified result

Lengthy human proof Automatic computer proof
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