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–We use

equivariant cohomology theory and excited Young diagram

to give

a new skew shape hook formula and a generalization.

–We also give K-theory analogue of the formula.

–Finally we propose a further generalization as a conjecture and

give a relation to the representation theory of p-adic groups.

(This part is j/w M.Nakasuji)
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Let λ = (λ1, · · · , λd) ⊃ µ = (µ1, µ2, · · · , µd) be partitions.
STab(λ/µ):The set of standard tableaux of skew shape λ/µ.
Theorem(H.Schubert 1891)

#STab(λ/µ) = |λ/µ|!× det
(
zi,j

)
d×d

where zi,j =


1

(λj−µi−j+i)! if λj − µi − j + i ≥ 0

0 otherwise
.

Example λ = (4,3), µ = (2,0).

1 2
3 4 5 ,

1 3
2 4 5 ,

1 4
2 3 5 ,

1 5
2 3 4 ,

2 3
1 4 5 ,

2 4
1 3 5 ,

2 5
1 3 4 ,

3 4
1 2 5 ,

3 5
1 2 4 5!×

∣∣∣∣∣∣
1
2!

1
0!

1
5!

1
3!

∣∣∣∣∣∣ = 9
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Theorem(Skew shape hook formula) For λ ⊃ µ:partitions,

#STab(λ/µ) =
|λ/µ|!∏

(i,j)∈λ
hi,j

×

 ∑
C∈E(µ,λ)

∏
(p,q)∈C

hp,q


where E(µ, λ) is the set of Excited Young diagrams of µ inside λ.

Example λ = (4,3), µ = (2,0).

E(µ, λ) =
{
□ □ , □ □ , □ □

}
hook length: 5 4 3 1

3 2 1

#STab(λ/µ) = 5!
5·4·3·1·3·2·1 × (5 · 4+ 5 · 1+ 2 · 1) = 27

3 = 9

elementary excitation : □ → □
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Theorem (skew Shifted hook formula)

type D: For λ ⊃ µ: strict partitions,

#STab(S(λ/µ)) =
|λ/µ|!∏

(i,j)∈λ
hDi,j

×

 ∑
C∈ED(µ,λ)

∏
(p,q)∈C

hDp,q


where ED(µ, λ) is the set of type D Excited Young diagrams of

S(µ) inside S(λ). elementary excitation for diagonal
□

→
□

Example λ = (4,3,2), µ = (2) 7!
7·6·4·3·5·3·2·2·1×(7·6+7·3+7·1+2·1) = 12

□ □
,
□

□ ,
□

□
,

□ □
hD :

7 6 4 3
5 3 2

2 1
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type B:

#STab(λ/µ) =
|λ/µ|!∏

(i,j)∈λ
hBi,j

×

 ∑
C∈EB(µ,λ)

∏
(p,q)∈C

hBp,q


where EB(µ, λ) is the set of type B Excited Young diagrams of

S(µ) inside S(λ). elementary excitation for type B diagonal □ → □

Example λ = (4,3,2), µ = (2)

□ □
,
□

□ ,
□

□
, □ □ , □

□
,

□ □

hB :
4 7 6 3

3 5 2
2 1

7!
7·6·4·3·5·3·2·2·1×(4 ·7+4 ·5+4 ·1+3 ·5+3 ·1+2 ·1) = 72

6
= 12
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Excited Young diagram (defined by Ikeda-Naruse 2009,2013)

can calculate many objects by weight sum type formula
∑
C∈E

Wt(C).

• (skew) Schur functions, (skew) factorial Schur functions

• flagged Schur functions

• Vexillary double Schubert (Grothendieck) polynomials

• various determinant, Pfaffian formula

(using lattice path uniformly)
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Equivariant cohomology and localization

For flag manifold G/B or partial flag manifold G/P , we can con-

sider T equivariant cohomology H∗
T (G/B) or H∗

T (G/P ), where

T = (C∗)ℓ is a maximal torus in G.

H∗
T (G/B) and H∗

T (G/P ) are H∗
T (pt) = Z[t1, . . . , tℓ] algebra.

Localization map

Φ : H∗
T (G/B) →

∏
ev∈(G/B)T

H∗
T (ev)

which is induced by the pullback i∗v : H∗
T (G/B) → H∗

T (ev) of the

inclusion map iv : ev ↪→ G/B for each T -fixed point ev. Φ is

injective and we can describe the image using GKM-condition.
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Schubert class and the structure constants

For each Schubert variety Xw = B−wB/B ⊂ G/B of closure of
an orbit of the opposite Borel B− (codim Xw = ℓ(w)), we can
construct Schubert class σw = [Xw] ∈ H∗

T (G/B), where w is an
element in the Weyl group W of G.
These form a basis of H∗

T (G/B) as H∗
T (pt) = Z[t1, . . . , tℓ]-module.

The structure constants cuw,v ∈ H∗
T (pt) for the multiplication

σwσv =
∑
u∈W

cuw,vσu

are called equivariant Littlewood-Richardson coefficients.

deg(cuw,v) = ℓ(u) + ℓ(v)− ℓ(u) and cuw,v ̸= 0 =⇒ w, v ≤ u.

For the special case of multiplication by σsi, where si is a simple
reflection is the equivariant Chevalley formula.
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We will make a recurrence relation on the structure constants to

prove a ”generalization of hook formula”.

Let Λsi be the fundamental weight i.e. < Λsi, α
∨
j >= δi,j.

The equivariant Chevalley formula is

σsiσw = (Λsi − wΛsi)σw +
∑
w⋖u

< Λsi, γ
∨ > σu

where w ⋖ u means that ℓ(u) = ℓ(w) + 1 and u = wsγ for some

positive root γ.

Note that this formula can be extended to arbitrary Coxeter

group. (We can define ”equivariant Schubert class” without

geometry)
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Example (of equivariant Chevalley formula) of type A.

σs1σs1s2 = (Λs1 − s1s2Λs1)σs1s2+ < Λs1, α
∨
1 > σs1s2s1

= (t2 − t1)σs1s2 + σs1s2s1
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We utilize the associativity relation of the multiplication

(σsiσw)σv = σsi(σwσv)

to get a recurrence relation among cuw,v.

Assume w ≤ v and take the coefficients of σv.

Then we get ∑
w≤z≤v

czsi,wc
v
z,v = cvsi,vc

v
w,v.

Therefore ∑
w<z≤v

czsi,wc
v
z,v = cvsi,vc

v
w,v − cwsi,wc

v
w,v.

If cvsi,v − cwsi,w ̸= 0, we can rewrite this as follows.

cvw,v =
∑

w<z≤v

czsi,w

cvsi,v − cwsi,w
cvz,v.
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cvw,v =
∑

w<z≤v

czsi,w

cvsi,v − cwsi,w
cvz,v.

Continuing this process we get

cvw,v

cvv,v
=

∑
w=z0<z1<···<zr=v

r−1∏
j=0

c
zj+1
f(zj),w

cv
f(zj),v

− c
zj
f(zj),zj

where f : [w, v) → S is an assignment of simple reflection to each

z ∈ [w, v) = {z ∈ W |w ≤ z < v} such that cv
f(z),v − cz

f(z),z ̸= 0.

For partial flag case G/P , we can choose f : [w, v)P → S\SP .

These arguments are essentially due to L.Mihalcea in his paper

on equivariant quantum cohomology. But he did not mention

the relation to hook formula.
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Note that cvw,v = i∗evσw is the value of the localization and can be
calculated by Billey’s formula.

Fix a reduced expression v = si1si2 · · · siℓ of v and assume w ≤ v.

cvw,v =
∑
J

βj1βj2 · · ·βjr

where βj = si1si2 · · · sij−1
(αij) and J = (j1, j2, · · · jr) runs over all

subexpressions of the reduced expression of v = si1si2 · · · siℓ such
that sij1

sij2
· · · sijr = w and r = ℓ(w).

Example (type A) v = s2s1s3s2.

β1 = t3 − t2
β2 = s2(t2 − t1) = t3 − t1
β3 = s2s1(t4 − t3) = t4 − t2
β4 = s2s1s3(t3− t2) = t4− t1

cvs2,v = (t3− t2)+(t4− t1), c
v
v,v = (t3− t2)(t3− t1)(t4− t2)(t4− t1)

14



cvw,v

cvv,v
=

∑
w=z0<z1<···<zr=v

r−1∏
j=0

c
zj+1
f(zj),w

cv
f(zj),v

− c
zj
f(zj),zj

Type A Grassmannian case G/P = Gr(d, n).
d = 2, n = 4 In this case f(z) = s2 for all z.

Set v = s2s1s3s2 i.e. .

cve,v = 1,cvv,v = (t3 − t2)(t3 − t1)(t4 − t2)(t4 − t1)
There are two sequence satisfying the condition.
e < s2 < s1s2 < s3s1s2 < s2s3s1s2 = v and
e < s2 < s3s2 < s1s3s2 < s2s1s3s2 = v.

1
(t3−t2)(t3−t1)(t4−t2)(t4−t1)

= ( 1
(t4−t1)+(t3−t2)

)( 1
t4−t1

)( 1
t4−t2

)( 1
t3−t2

)+( 1
(t4−t1)+(t3−t2)

)( 1
t4−t1

)( 1
t4−t2

)( 1
t3−t2

)

We can specialize ti = i to get
1

1·2·2·3 = 1
4! +

1
4! i.e. 4!

1·2·2·3 = 1+ 1 = 2 the hook formula

15



cvw,v

cvv,v
=

∑
w=z0<z1<···<zr=v

r−1∏
j=0

c
zj+1
f(zj),w

cv
f(zj),v

− c
zj
f(zj),zj

Theorem

cvw,v

cvv,v
=

∏
α:positive root,w≤vsα<v

1

α
⇐⇒ Xw is smooth at ev

Xe = G/B is smooth at every ev (v ∈ W )

cve,v = 1, cvv,v =
∏
α>0,≤vsα<v α

In general cvw,v is calculated using Excited Young diagram.
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Equivariant Chevalley formula for K-theory

(Lenart-Postnikov 2007, Lenart-Shimozono 2012)

Let Ow be the structure sheaf of the Schubert variety Xw. We

define affine hyperplane Hα,k := {x ∈ h∗R; ⟨x, α
∨⟩ = k} for k ∈ Z.

Λsi-chain is an ordered sequence of affine hyperplanes Hα,k corre-

sponding to a reduced alcove path from the fundamental alcove

A0 to A0−Λsi. A0 = {λ ∈ h∗R; 0 < ⟨λ, α∨⟩ < 1,∀α : positive root}

[Osi][Oz] = E(Λsi − z(Λsi))[Oz] +∑
reverse subsequence

h1 > · · · > hq
of Λsi-chain s.t.

(1+tE(Λsi−zs̃h1 · · · s̃hq(Λsi)))t
q−1[Ozsh1···shq]

z ⋖ zsh1
⋖ zsh1

sh2
⋖ · · · ⋖ zsh1

sh2
· · · shq

where E(α) :=
etα − 1

t
i.e.1 + tE(α) = etα. (t = −1)
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Hecke algebra and Yang-Baxter basis

Let W be a Weyl group with simple reflections S = {s1, . . . , sr}.

Hecke algebra associated to W is a non-commutative Z[q]-algebra
with

generators t1, t2, ..., tr and

relations (ti − q)(ti +1) = 0, titjti · · · = tjtitj · · · braid relation

tw := ti1 · · · tiℓ for w = si1 · · · siℓ ∈ W a reduced expression.

{tw}w∈W form a standard basis.

There is another basis called Yang-Baxter basis.
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Yang-Baxter basis {Yw}w∈W was defined by
Lascoux-Leclerc-Thibon (1997) for the case of type A.

It is inductively defined by

Ye = 1

Ywsi = Yw
(
hi +

1
E(w(αi))

)
if wsi > w ,

where hi =
ti
q and E(αi) =

etαi − 1

t
for t = 1− 1/q.

This is well defined because of the Yang-Baxter relations.

For example, if sisjsi = sjsisj

(hi+
1

E(x))(hj+
1

E(x+y))(hi+
1

E(y)) = (hj+
1

E(y))(hi+
1

E(x+y))(hj+
1

E(x)).
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We can define p(w, v) and p̃(w, v) as the coefficients of

Yv =
∑
w≤v

p(w, v)hw (1)

and

hv =
∑
w≤v

p̃(w, v)Yw. (2)

Theorem [Nakasuji-N.] Assume that W is a finite group and let

w0 be the longest element of W . Then we have, for w ≤ v,

p̃(w, v) = (−1)ℓ(v)−ℓ(w)p(vw0, ww0).

For the case of type A was proved by Lascoux-Leclerc-Thibon.
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Casselman’s problem on Iwahori fixed vectors for unraified princi-
palceries representation of a p-adic group is interpreted in Hecke
algebra as follows.

natural basis ϕ(w) = tw

Casselman basis fv is dual to the intertwining operator Mu.

Casselman’s problem is to express fv in terms of ϕ(w).

The answer is as follows.
Proposition[Nakasuji-N.]

ϕ(w) =
∑
w≤v

p(w−1, v−1)fv

fw =
∑
w≤v

p̃(w−1, v−1)ϕ(v)
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We have a conjectural formula of p(w, v) using λ-chain.

Conjecture 1

p(w, v) =
∑

v=v0
J1→v1

J2→···Jr→vr=w

r∏
i=1

wtJi(vi−1, vi)

where w′ J→ w means that there is a (not necessary saturated)
path w′ = z0 > z1 > · · · > zk = w with the property that
zi−1sγji

= zi for a subsequence J = (j1, j2, · · · , jk) of a Λf(w)-
chain γ1, γ2, · · · , γm .

and wt(w′, w)J =
ta(J)(1−t)b(J)(1+tE(−ws̃−1

J (0)))
tE(wΛf(w)−vΛf(w))

a(J) = |J | and b(J) = ℓ(w′)−ℓ(w)−|J |
2 .
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Conjecture 2

Xw is smooth at ev ⇐⇒
∏

w≤sβv<v;β>0

(
1+

1

E(β)

)
=

∑
w≤z≤v

p(z, v)

When w = e this conjecture holds.

We can prove ⇐ using the criterion given by equivariant coho-

mology.
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Thank you!
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