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—We use

equivariant cohomology theory and excited Young diagram

to give

a new skew shape hook formula and a generalization.

—We also give K-theory analogue of the formula.

—Finally we propose a further generalization as a conjecture and
give a relation to the representation theory of p-adic groups.
(This part is j/w M.Nakasuji)



Let A = (A]_) n 7>‘d) O M= (:ulalu27 T 7:ud) be partitions.
STab(A/p): The set of standard tableaux of skew shape \/pu.
Theorem(H.Schubert 1891)

#STab(\/p) = |/ pl! x det ()

dxd
1 . . .
—— ifA\;i—p;,—73+1>0
i — i — ! J ( -
where ij,j — ( T H ]‘I’Z)
0] otherwise

Example A = (4,3), n = (2,0).
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Theorem(Skew shape hook formula) For A D u:partitions,

A !

#STab(\/p) = |/M|h X Z H hp,q
Il Rii \cezgun waec
(i.)EN

where E(u, \) is the set of Excited Young diagrams of p inside \.

Example A = (4,3), n = (2,0).

_ g [] . 15431
E(M,)\)_{ , Sl }hooklength. 31511

#STab(A\/p) = 5.4.3.51!.3.2.1 Xx(5-4+5-14+2-1)= 2?7 =9

elementary excitation : |
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Theorem (skew Shifted hook formula)
type D: For A D u: strict partitions,

A/l
#STab(S(\/p)) = A |hD X 3 [T rb,
I nij \cedptum warec
(2,5)EA
where E€p(u, A) is the set of type D Excited Young diagrams of
]
S(u) inside S()\). elementary excitation for diagonal —
[

Example A = (4,3,2),u = (2) 7 x(7-64+7-3+7-142-1) =12
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type B:

#STab(\/p) =

A/ 1!

X
II »7
(4,7)EA

B
Il 7

ceEp(p,N) (p,g)eC

where Eg(u, A) is the set of type B Excited Young diagrams of

[l

S(w) inside S()). elementary excitation for type B diagonal — 5
Example A = (4,3,2),u = (2)
L1 [] []
, [] : L1 [] :
[] [] 110

7!

764353221

x(4-7T4+4-5+4-143.543.142-1) =2 =12



Excited Young diagram (defined by Ikeda-Naruse 2009,2013)

can calculate many objects by weight sum type formula ) Wt(C).
cee&

e (skew) Schur functions, (skew) factorial Schur functions

e flagged Schur functions

e Vexillary double Schubert (Grothendieck) polynomials

e various determinant, Pfaffian formula
(using lattice path uniformly)



Equivariant cohomology and localization

For flag manifold G/B or partial flag manifold G/P, we can con-
sider T' equivariant cohomology H7(G/B) or H.(G/P), where
T = (C*)* is a maximal torus in G.

H%(G/B) and H%(G/P) are Hy(pt) = Z[t1,...,ts] algebra.

Localization map

& :H(G/B)— || Hilev)
eve(G/B)T
which is induced by the pullback i}, : H7(G/B) — Hx.(ey) Of the
inclusion map iy : ey — G/B for each T-fixed point e,. &P is
injective and we can describe the image using GKM-condition.
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Schubert class and the structure constants

For each Schubert variety Xy = B_wB/B C G/B of closure of
an orbit of the opposite Borel B_ (codim X, = ¢(w)), we can
construct Schubert class oy = [Xw] € H7(G/B), where w is an
element in the Weyl group W of G.

These form a basis of H7.(G/B) as Hi(pt) = Z[t1,...,ts]-module.
The structure constants cy, , € Hp(pt) for the multiplication

e Z C%,vau
uceW
are called equivariant Littlewood-Richardson coefficients.

deg(cy ) = €(u) + £(v) — £(u) and ¢, 7 0 = w,v < u.

For the special case of multiplication by os,, where s; is a simple
reflection is the equivariant Chevalley formula.



We will make a recurrence relation on the structure constants to
prove a "generalization of hook formula’ .

Let As; be the fundamental weight i.e. < /\37;704}/ >=6; ;.

The equivariant Chevalley formula is

O-SZ'O-’UJ = (/\SZ — wASZ)O-’LU —I_ Z < /\Sz,,fyv > Oy

w<u

where w < v means that ¢(u) = ¢(w) + 1 and u = ws~ for some
positive root ~.

Note that this formula can be extended to arbitrary Coxeter
group. (We can define "equivariant Schubert class” without
geometry)
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Example (of equivariant Chevalley formula) of type A.

05105180 — (/\81 - 8182/\31)03132+ < Nsq, C‘f¥ > 0518281

(to —t1)0s1s5 + Tsys0sq
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We utilize the associativity relation of the multiplication

(O'Sio'w)a'v — O'SZ'(O'wO'v)

i U
to get a recurrence relation among ¢y .

Assume w < v and take the coefficients of oy.

Then we get
z () - () ()
Z CSZ',’U}CZ,’U CSZ,’UC?,U,’U
w<z<v

T herefore

z () - v (V) w v

Z Csi,wcz,v - Csi,vcw,v o Csi,wcw,v'
w<z<v

If ¢5., — s, w 7 0, we can rewrite this as follows.

CZ

- Sq,Ww )
Cwv — E: : Cru-
9 {9 _C’LU 9

C:. s
w<z<v SV Si,W
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CU _ Sg,Ww Cv
W,V E : v Y Z,0"

w<z<v Cs;v S5, W
Continuing this process we get
r—1 VAR

(V) C
w,v 2 : f(Z'),’UJ

cv . — i~ CY —c7
v,V w=zp<21 < <2r=v j53=0 f(zj),v f(2),2;

where f : [w,v) — S is an assignment of simple reflection to each
—_ v -
z € [w,v) = {z € W]w < z < v} such that Hw ~ CH) .z # 0.

For partial flag case G/P, we can choose f : [w,v)p — S\Sp.

These arguments are essentially due to L.Mihalcea in his paper
on equivariant quantum cohomology. But he did not mention

the relation to hook formula.
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Note that ¢y, , = i¢, ow IS the value of the localization and can be
calculated by Billey's formula.

Fix a reduced expression v = s;;s;, - $;, Of v and assume w < v.
U p— . . e o o .
Cww = D Bj1Bip By,
J

where 3; = 3i15i2"'3ij_1(o‘ij) and J = (j1, 72, -jr) runs over all
subexpressions of the reduced expression of v = s;;s;, -8, SuUch
that Sij Sij, " Sij, = W and r = 4(w).

Example (type A) v = s5515355.

P1 =1tz —t2
Bo = so(ta —t1) =t3 —t1
B3 = s251(ta — t3) = ta — t2

Ba = s2s183(t3 —t2) = ta—t1

Corn = (B3 —t2) + (La—1t1), ey = (3 —t2) (I3 —t1)(t4a —12)(ta — 1)
14



r—1 %+l

;U f(z)w
= )3 11 - :

U w=z0<z1 < <z2r=v j=0 Cf(zj)av f(ZJ) %

C

gc

v
C’U

Type A Grassmannian case G/P = Gr(d,n).
d=2,n =4 In this case f(z) = s, for all z

Set v = sps715359 i.€.

Con = l,cp, = (t3 —t2)(t3 —t1)(ta — t2)(ta — t1)
T here are two sequence satisfying the condition.
e < 8y < 81582 < 835182 < §98351S2 = v and

e < 82 < 8382 < 8158352 < §95818382 — .

1 — 1 1 1 1 1 1 1 1
(ts—t2) (tz3—t1) (ta—t2) (ta—t1) ((t4—t1)+(t3—t2))(t4—t1)(t4—t2)(t3—t2)+((t4—t1)—|—(t3—t2))(t4—t1)(t4—t2)(t3—t2
We can specialize t; =1 to get

1.2}23 4|+4||e 124|23—1—|—1=2thehookformula
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r—1 %+l

v C

Cw,v . f(zj)7w

CU T Z H CU . ch

vv o w=z0<a<<zr=vj=0fz) 0 T “f(z).2
T heorem
Ca,v 1 .
= 1] ~ = X, is smooth at ey
Co,v a:positive root,w<vsqa<v

e = G/B is smooth at every e, (v € W)

— v —
Ce,v — 1, Cov — Ha>0,§vsa<v &

In general C?L)u,v IS calculated using Excited Young diagram.
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Equivariant Chevalley formula for K-theory

(Lenart-Postnikov 2007, Lenart-Shimozono 2012)

Let Oy be the structure sheaf of the Schubert variety X,,. We
define affine hyperplane H, j := {z € bg; (z,a") = k} for k € Z.
Ns,-Cchain is an ordered sequence of affine hyperplanes Ha,k corre-
sponding to a reduced alcove path from the fundamental alcove
Ap to Ag—ANs;. Ag ={A € hk;0 < (A, aY) < 1,Va: positive root}

[Osi][oz] — E(/\s@- — Z(/\si))[oz] +
3 (1+tE(Ns;—23p, - ghq(/\si)))tq—l[ozshl...shq]

reverse subsequence

h1>--> hq
of As-chain s.t.

2 << zZ8p, < ZSp,Sh, < '+ << ZSp,Sh, """ Sh
etoz .

q

Liel+tB(a) =, (t=—1)

where E(a) =
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Hecke algebra and Yang-Baxter basis
Let W be a Weyl group with simple reflections S = {s1,...,sr}.

Hecke algebra associated to W is a non-commutative Z[q]-algebra
with

generators tq,to,...,tr and
relations (¢; —q)(t; +1) = 0, titt; - =ttt - - braid relation

tw 1=t -+, Tor w=s;, ---s;, € W a reduced expression.

11 "
{tw}wew form a standard basis.

There is another basis called Yang-Baxter basis.
18



Yang-Baxter basis {Yu},ecw was defined by
Lascoux-Leclerc-Thibon (1997) for the case of type A.

It is inductively defined by

Ye =1
szi = Yu (hz -+ E(wl(ozz))) if ws; > w

t. eto‘i —1
where h; = 7 and E(a;) = — fort=1-—1/q.

This is well defined because of the Yang-Baxter relations.

For example, if 8iSjS; = SjS;5;
(it ey (i k) (it gy) = (ot o) (i ke ) (o ).
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We can define p(w,v) and p(w,v) as the coefficients of

Yo = ) p(w,v)hy (1)
w<v
and
hy = Z p(w,v) Y. (2)
w<v

Theorem [Nakasuji-N.] Assume that W is a finite group and let
wo be the longest element of W. Then we have, for w < v,

Blw, v) = (—1) =)y (pwg, wwg).

For the case of type A was proved by Lascoux-Leclerc-Thibon.
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Casselman’s problem on Iwahori fixed vectors for unraified princi-
palceries representation of a p-adic group is interpreted in Hecke
algebra as follows.

natural basis ¢(w) = ty
Casselman basis fy is dual to the intertwining operator M,,.
Casselman’s problem is to express f, in terms of ¢(w).

The answer is as follows.
Proposition[Nakasuji-N.]

d(w) = Y plw 071 fo

w<v

fw=Y pw o D)

w<v
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We have a conjectural formula of p(w,v) using A-chain.

Conjecture 1

p(w,v) — Z H thi(v’i—lavi)
1

J J —
V=0 4’0 g"'ﬁ;’l)r:’wz
0 1

where w’ i> w means that there is a (not necessary saturated)

path w' = 25 > 27 > --- > 2z, = w with the property that
Zi—18v;, = % for a subsequence J = (j1,j2, -+ ,Jx) Of a A f(w)
chain Y172 Ym -

$a(J) (1—¢)b(]) (1-|-15E(—w39‘j1 (0)))
tE(WA () =N ()

and wt(w',w); =

a(J) = |J] and b(J) = HeD=Hw)=lJ]
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Conjecture 2

1
Xw is smooth at ey, <— H <1 + —) = Z p(z,v)
w<sgu<v; >0 E(B) w<z<v

When w = e this conjecture holds.

We can prove <= using the criterion given by equivariant coho-
mology.
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Thank youl
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