New Foundations of Combinatorial Theory

Part 1. What is a formula?

Igor Pak, UCLA

Joint work with Scott Garrabrant

SLC 73 (Strobl, Austria)
September 9, 2014

Foundations of Combinatorial Theory

Part I: Theory of Möbius function (1964)
by Gian-Carlo Rota

Main Result:

Combinatorics \hookrightarrow Mathematics

Our Goal:

Clarify what it means to succeed in Combinatorics.

- What is a formula?
- What is a combinatorial interpretation?
- What is a nice bijection?

What is a formula?

Two types of answer:
(1) The most satisfactory form of $f(n)$ is a completely explicit closed formula involving only well-known functions, and free from summation symbols. Only in rare cases will such a formula exist. As formulas for $f(n)$ become more complicated, our willingness to accept them as "determinations" of $f(n)$ decreases.

We will be concerned almost exclusively with enumerative problems that admit solutions that are more concrete than an algorithm.

Richard Stanley, EC1
(2) Formula $=$ Algorithm working in time $o(f(n))$.

Herb Wilf, What is an answer? (1982)

Complexity approach

Let's count the number of rooted labeled trees:

$$
\begin{gathered}
f(n)=n^{n-1} \\
f(n)=n \cdot \sum_{T \subset K_{n}} 1
\end{gathered}
$$

Formally, both are formulas! Indeed,

$$
\log n \cdot n^{n-2}=o\left(n^{n-1}\right)
$$

Moral: Not a good qualitative difference!

More examples

$D(n):=\#$ Derangements $(n)=[n!/ e] \leftarrow$ No combinatorial meaning!
But the following non-positive formula does:

$$
D(n)=\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!}
$$

Same for the Fibonacci numbers:

$$
F_{n}=\frac{1}{\sqrt{5}} \cdot\left(\phi^{n}+\phi^{-n}\right) \quad \text { where } \quad \phi=\frac{\sqrt{5}+1}{2}
$$

Again, no combinatorial meaning!

Ménage Problem

From Wikipedia:

$A_{n}=$ number of different ways in which it is possible to seat a set of male-female couples at a dining table so that men and women alternate and nobody sits next to his or her partner.

$$
\begin{gathered}
A_{n}=\sum_{k=0}^{n}(-1)^{k} \frac{2 n}{2 n-k}\binom{2 n-k}{k}(n-k)! \\
A_{n}=n A_{n-1}+2 A_{n-2}-(n-4) A_{n-3}-A_{n-4}
\end{gathered}
$$

(cf. Zeilberger's rant on YouTube, you must be 18+)

Abstract approach

Formula for $\left\{a_{n}\right\}$ is a formula for a sequence!
NOT for a family of combinatorial objects.

$$
\begin{gathered}
D(n)=n D(n-1)+(-1)^{n} \\
F_{n}=F_{n-1}+F_{n-2}
\end{gathered}
$$

Note that these are better formulas.
But the first one is still non-positive!

Moral: We want nice positive combinatorial formulas!

New philosophy

Nice combinatorial interpretation is a formula in itself!
Here nice $=$ algorithmically efficient.
Efficient can mean time OR space OR further
restrictions on the standard computational model.

Explanation: When such combinatorial interpretation is found, it in itself can lead to better understanding AND new algorithmic solutions.

Counting with Wang tiles

Fibonacci numbers:

12112

Wang tilings of a rectangle

Let $a_{n}(T)=$ the number of tilings of $[1 \times n]$ with T.
Transfer matrix method:

$$
\mathcal{A}(t)=\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{P(t)}{Q(t)}
$$

Wang tilings of a square

Catalan numbers

0	0	0	0	0	0	1	1	1	2
0	0	0	0	0	1	1	1	2	3
0	0	1	1	1	1	1	2	3	3
0	0	1	1	1	1	2	3	3	3
0	0	1	1	1	2	3	3	3	3
0	1	1	1	2	3	3	3	3	3
0	1	1	2	3	3	3	3	3	3
0	1	2	3	3	3	3	3	3	3
0	2	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3	3

An example Catalan number matrix, and the corresponding lattice path.

Main Theorem (Garrabrant, P.)

The following functions count Wang Tilings of a square:
(1) The number of integer partitions of n,
(2) The number of set partitions of an n element set (ordered Bell numbers),
(3) The Catalan number C_{n},
(4) The Motzkin number M_{n}.
(5) The number of Gessel walks of length n,
(6) $n!$,
(7) The number of alternating permutations $\operatorname{Alt}(n)$ of length n,
(8) The number of permutations of length n whose assents and descents follow a given periodic sequence,
(9) The number $D(n)$ of derangements of length n,
(10) The ménage numbers A_{n},
(11) The Menger number $L(k, n)$ of n by k Latin squares for any fixed k,
(12) The number $P_{a t}(n)$ of permutations of length n with no increasing subsequence of length k,
(13) The number $B(n)$ of Baxter permutations of length n,
(14) The number $\operatorname{Alt}(n)$ of alternating sign matrices of size n,
(15) The number $G(n)$ of labeled connected graphs on n vertices,

Permutations

$\overrightarrow{0} \downarrow$	1	$\overleftarrow{0} \downarrow$	$\overleftarrow{0} \downarrow$	$\overleftarrow{0} \downarrow$	$\overleftarrow{0} \downarrow$
$\overrightarrow{0} \downarrow$	$\overrightarrow{0} \uparrow$	$\overrightarrow{0} \downarrow$	1	$\overleftarrow{0} \downarrow$	$\overleftarrow{0} \downarrow$
$\overrightarrow{0} \downarrow$	$\overrightarrow{0} \uparrow$	1	$\overleftarrow{0} \uparrow$	$\overleftarrow{0} \downarrow$	$\overleftarrow{0} \downarrow$
$\overrightarrow{0} \downarrow$	$\overrightarrow{0} \uparrow$	$\overrightarrow{0} \uparrow$	$\overrightarrow{0} \uparrow$	$\overrightarrow{0} \downarrow$	1
1	$\overleftarrow{0}$	$\overleftarrow{0} \uparrow$	$\overleftarrow{0} \uparrow$	$\overleftarrow{0} \downarrow$	$\overleftarrow{0 \uparrow}$
$\overrightarrow{0 \uparrow}$	$\overrightarrow{0} \uparrow$	$\overrightarrow{0} \uparrow$	$\overrightarrow{0} \uparrow$	1	$\overleftarrow{0 \uparrow}$

Baxter Permutations

Baxter permutations are permutations $\sigma \in S_{n}$ such that there are no indices $i<j<k$ such that $\sigma(j+1)<\sigma(i)<\sigma(k)<\sigma(j)$ or $\sigma(j+1)>\sigma(i)>\sigma(k)>\sigma(j)$.

Observation: a given permutation matrix is a Baxter permutation is equivalent to ensuring that the two given 2×2 submatrices do not appear.

0	1	0	0	0	0	0
1	0	0	0	0	0	0
0	0	0	0	1	0	0
0	0	0	1	0	0	0
0	0	0	0	0	1	0
0	0	1	0	0	0	0
0	0	0	0	0	0	1

$\overrightarrow{0} \downarrow$	1	$\overleftarrow{0} \downarrow$				
1	$\overleftarrow{0 \uparrow}$	$\overleftarrow{0} \downarrow$				
$\overrightarrow{0 \uparrow}$	$\overrightarrow{0 \uparrow}$	$\overrightarrow{0} \downarrow$	$\overrightarrow{0} \downarrow$	$\overrightarrow{0 \downarrow}$	1	$\overleftarrow{0} \downarrow$
$\overrightarrow{0 \uparrow}$	$\overrightarrow{0} \uparrow$	$\overrightarrow{0} \downarrow$	1	$\overleftarrow{0} \downarrow$	$\overleftarrow{0 \uparrow}$	$\overleftarrow{0} \downarrow$
$\overrightarrow{0 \uparrow}$	$\overrightarrow{0 \uparrow}$	$\overrightarrow{0} \downarrow$	$\overrightarrow{0 \uparrow}$	$\overrightarrow{0} \downarrow$	$\overrightarrow{0 \uparrow}$	1
$\overrightarrow{0 \uparrow}$	$\overrightarrow{0 \uparrow}$	1	$\overleftarrow{0 \uparrow}$	$\overleftarrow{0} \downarrow$	$\overleftarrow{0 \uparrow}$	$\overleftarrow{0 \uparrow}$
$\overrightarrow{0 \uparrow}$	$\overrightarrow{0 \uparrow}$	$\overrightarrow{0 \uparrow}$	$\overrightarrow{0} \uparrow$	1	$\overleftarrow{0 \uparrow}$	$\overleftarrow{0 \uparrow}$

Number of connected graphs $g(n)$ on $n+1$ vertices

Note the asymptotics: $g(n) \sim 2^{n(n+1) / 2}$ (so, it barely fits).

Lemma:

$$
g(n)=\sum_{k=1}^{n}\binom{n-1}{k-1}\left(2^{k}-1\right) g(k-1) g(n-k) .
$$

There is a way to realize this recurrence relation with Wang tiles.
This is used to prove part (15). Our construction requires over 10^{7} tiles.

Thank you!

