New Foundations of Combinatorial Theory

Part 2. What is a combinatorial interpretation?

Igor Pak, UCLA

Joint work with Panova, Garrabrant
SLC 73 (Strobl, Austria)
September 9, 2014

What is a combinatorial interpretation?

You have: a combinatorial sequence $\left\{a_{n}\right\}$, such that $a_{n} \in \mathbb{N}$.

You want: a set of objects a_{n} enumerates described algorithmically (a formula, see Lecture 1).

Examples: Permutations, partitions, words, trees, tableaux, lattice walks, etc.

Note: No formal definition is usually used in Combinatorics context.

Open problems on combinatorial interpretations

Problem 1. Super Catalan numbers [Gessel, 1992] :

$$
C(m, n)=\frac{(2 m)!(2 n)!}{2 m!n!(m+n)!} .
$$

These are Catalan numbers for $m=1$.
For $m=2$, see Gessel-Xin, Fusy-Schaeffer-Poulalhon, etc.

Problem 2. Kronecker coefficients $g(\lambda, \mu, \nu)$ [Murnaghan, 1938]:

$$
\begin{equation*}
\chi^{\lambda} \otimes \chi^{\mu}=\sum_{\nu \vdash n} g(\lambda, \mu, \nu) \chi^{\nu}, \quad \text { where } \lambda, \mu \vdash n, \tag{1}
\end{equation*}
$$

where χ^{α} denotes the irreducible character of S_{n} indexed by $\alpha \vdash n$.

Known for two-row partitions, hooks, some assorted examples (see Remmel, Rosas, Vallejo, Ballantine-Orellana, Briand-Orellana-Rosas, Blasiak, P.-Panova, etc.)

Unimodality problems

Theorem [P.-Panova, Vallejo] Let

$$
a_{k}(\lambda, \mu)=\sum_{\alpha \vdash k, \beta \vdash n-k} c_{\alpha \beta}^{\lambda} c_{\alpha \beta}^{\mu},
$$

where $c_{\pi \theta}^{\nu}$ are the Littlewood-Richardson coefficients.
For any two partitions $\lambda, \mu \vdash n$, the sequence

$$
a_{0}(\lambda, \mu), \ldots, a_{n}(\lambda, \mu)
$$

is symmetric and unimodal.

Problem 2' Find a combinatorial interpretation for

$$
a_{k}(\lambda, \mu)-a_{k-1}(\lambda, \mu)=g(\lambda, \mu,(n-k, k))
$$

Restricted partitions: $\lambda=\mu=\left(m^{\ell}\right)$. Then $a_{k}(\lambda, \mu)=p_{k}(\ell, m)$, where

$$
\binom{m+\ell}{m}_{q}=\frac{\left(q^{m+1}-1\right) \cdots\left(q^{m+\ell}-1\right)}{(q-1) \cdots\left(q^{\ell}-1\right)}=\sum_{k=0}^{\ell m} p_{k}(\ell, m) q^{k} .
$$

In this case we DO have a combinatorial interpretation via KOH [O'Hara, 1990].
Formalizing this is due to P.-Panova (2014+), see also [Zanello] and [Dhand].

Theorem (P.-Panova, 2014)
There is a universal constant $A>0$, such that for all $m \geq \ell \geq 8$ and $2 \leq k \leq \ell m / 2$, we have:

$$
p_{k}(\ell, m)-p_{k-1}(\ell, m)>A \frac{2^{\sqrt{s}}}{s^{9 / 4}}, \quad \text { where } \quad s=\min \left\{2 k, \ell^{2}\right\}
$$

$A=0.00449$ works. The proof uses Almkvist's results on asymptotics of partitions + Manivel's extension of the semigroup property of Kronecker coefficients.

Back to combinatorial interpretations

Question: What does that mean if there is NO combinatorial interpretation?
Can we formally state that? Prove in some cases? No such results are known.

Conjecture 1. (Mulmuley, 2007; modified by P.)
Kronecker coefficients $g(\lambda, \mu, \nu)$ count the number of integer points in a polytope $P(\lambda, \mu, \nu) \subset \mathbb{R}^{d}$ where $d=O\left(n^{c}\right)$ and the constraints are linear in (λ, μ, ν).

Kronecker coefficients are quasi-polynomial, so no contradiction here so far.

Conjecture 2. (Mulmulley, 2007)
Decision problem whether $g(\lambda, \mu, \nu)>0$ is in P.

New question:

Can we perhaps expand the set of possible combinatorial interpretations to include objects from discrete geometry?

Back to tilings of of $[1 \times n]$ rectangles

Fix a finite set $T=\left\{\tau_{1}, \ldots, \tau_{k}\right\}$ of rational tiles of height 1 .
Let $a_{n}=a_{n}(T)$ the number of tilings of $[1 \times n]$ with T.
Transfer-matrix Method: $\mathcal{A}_{T}(t)=\sum_{n} a_{n} t^{n}=P(t) / Q(t)$, where $P, Q \in \mathbb{Z}[t]$.

$$
\begin{aligned}
& a_{n}=F_{n} \\
& \mathcal{A}(t)=\frac{1}{1-t-t^{2}} \\
& a_{n}=\binom{n-2}{2} \\
& \mathcal{A}(t)=\frac{t^{4}}{(1-t)^{3}}
\end{aligned}
$$

Irrational Tilings of $[1 \times(n+\varepsilon)]$ rectangles

Fix $\varepsilon \geq 0$ and a finite set $T=\left\{\tau_{1}, \ldots, \tau_{k}\right\}$ of irrational tiles of height 1 .
Let $a_{n}=a_{n}(T, \varepsilon)$ the number of tilings of $[1 \times(n+\varepsilon)]$ with T.

Observe: we can get algebraic g.f.'s $\mathcal{A}_{T}(t)$.

$\frac{1}{2}-\alpha$

$\frac{1}{2}+\alpha$

$[1 \times n]$

$$
\begin{aligned}
& \varepsilon=0 \\
& \alpha \notin \mathbb{Q}
\end{aligned}
$$

Here $a_{n}=\binom{2 n}{n}, \quad \mathcal{A}(t)=\frac{1}{\sqrt{1-4 t}}$.

\mathbb{N}-Rational Functions \mathcal{R}_{1}

Definition: Let \mathcal{R}_{1} be the smallest set of functions $F(x)$ which satisfies
(1) $0, x \in \mathcal{R}_{1}$,
(2) $F, G \in \mathcal{R}_{1} \Longrightarrow F+G, F \cdot G \in \mathcal{R}_{k}$,
(3) $F \in \mathcal{R}_{1}, F(0)=0 \Longrightarrow 1 /(1-F) \in \mathcal{R}_{1}$.

Note that all $F \in \mathcal{R}_{1}$ satisfy: $F \in \mathbb{N}[[x]]$, and $F=P / Q$, for some $P, Q \in \mathbb{Z}[x]$.
For example,

$$
\frac{1}{1-x-x^{2}} \quad \text { and } \quad \frac{x^{3}}{(1-x)^{4}} \in \mathcal{R}_{1} .
$$

Theorem [Schützenberger + folklore]
For every rational T, we have $\mathcal{A}_{T}(x) \in \mathcal{R}_{1}$.
Conversely, for every $F(x) \in \mathcal{R}_{1}$ there is a rational T s.t. $F(x)=\mathcal{A}_{T}(x)$.

\mathbb{N}-rational functions of one variable:

Word of caution: \mathcal{R}_{1} is already quite complicated.
The following example is from [Gessel, 2003].
For example, take the following $F, G \in \mathbb{N}[t]]$:

$$
F(t)=\frac{t+5 t^{2}}{1+t-5 t^{2}-125 t^{3}}, \quad G(t)=\frac{1+t}{1+t-2 t^{2}-3 t^{3}} .
$$

Then $F \notin \mathcal{R}_{1}$ and $G \in \mathcal{R}_{1}$; neither of these are obvious.

The proof follows from results in [Berstel, 1971] and [Soittola, 1976], see also [Katayama-Okamoto-Enomoto, 1978].

Diagonals of Rational Functions

Let $G \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{k}\right]\right]$. A diagonal is a g.f. $\mathcal{B}(t)=\sum_{n} b_{n} t^{n}$, where

$$
b_{n}=\left[x_{1}^{n}, \ldots, x_{k}^{n}\right] G\left(x_{1}, \ldots, x_{k}\right)
$$

Theorem: Every $\mathcal{A}_{T}(t) \in \mathcal{F}$ is a diagonal of a rational function P / Q, for some polynomials $P, Q \in \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$.

For example,

$$
\binom{2 n}{n}=\left[x^{n} y^{n}\right] \frac{1}{1-x-y} .
$$

Proof idea: Say, $\tau_{i}=\left[1 \times \alpha_{i}\right], \alpha_{i} \in \mathbb{R}$. Let $V=\mathbb{Q}\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle, d=\operatorname{dim}(V)$. We have natural maps $\varepsilon \mapsto\left(c_{1}, \ldots, c_{d}\right), \alpha_{i} \mapsto v_{i} \in \mathbb{Z}^{d} \subset V$.
Interpret irrational tilings as walks $O \rightarrow\left(n+c_{1}, \ldots, n+c_{d}\right)$ with steps $\left\{v_{1}, \ldots, v_{k}\right\}$.

Properties of Diagonals of Rational Functions

(1) must be D-finite, see [Stanley, 1980], [Gessel, 1981].
(2) when $k=2$, must be algebraic, and
$\left(2^{\prime}\right)$ every algebraic $\mathcal{B}(t)$ is a diagonal of $P(x, y) / Q(x, y)$, see [Furstenberg, 1967].

No surprise now that Catalan g.f. $C(t), t C(t)^{2}-C(t)+1=0$, is a diagonal:

$$
C_{n}=\left[x^{n} y^{n}\right] \frac{y\left(1-2 x y-2 x y^{2}\right)}{1-x-2 x y-x y^{2}}, \quad C_{n}=\left[x^{n} y^{n}\right] \frac{1-x / y}{1-x-y}
$$

For the first formula, see [Rowland-Yassawi, 2014].

\mathbb{N}-Rational Functions in many variables

Definition: Let \mathcal{R}_{k} be the smallest set of functions $F\left(x_{1}, \ldots, x_{k}\right)$ which satisfies
(1) $0, x_{1}, \ldots, x_{k} \in \mathcal{R}_{k}$,
(2) $F, G \in \mathcal{R}_{k} \Longrightarrow F+G, F \cdot G \in \mathcal{R}_{k}$,
(3) $F \in \mathcal{R}_{k}, F(0)=0 \Longrightarrow 1 /(1-F) \in \mathcal{R}_{k}$.

Note that all $F \in \mathcal{R}_{k}$ satisfy: $F \in \mathbb{N}\left[\left[x_{1}, \ldots, x_{k}\right]\right]$, and $F=P / Q$, for some $P, Q \in \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$.

Let \mathcal{D} be a class of diagonals of $F \in \mathcal{R}_{k}$, for some $k \geq 1$. For example,

$$
\sum_{n}\binom{2 n}{n} t^{n} \in \mathcal{D} \quad \text { because } \quad \frac{1}{1-x-y} \in \mathcal{R}_{2}
$$

Main Theorem: $\mathcal{F}=\mathcal{D}$ [Garrabrant, P., 2014]
Here \mathcal{F} denote the class of g.f. $\mathcal{A}_{T}(t)$ enumerating irrational tilings.
In other words, every tile counting function $\mathcal{A}_{T} \in \mathcal{F}$ is a diagonal of an \mathbb{N}-rational function $F \in \mathcal{R}_{k}, k \geq 1$, and vice versa.

Key Lemma: Both \mathcal{F} and \mathcal{D} coincide with a class \mathcal{B} of g.f. $F(t)=\sum_{n} f(n) t^{n}$, where $f: \mathbb{N} \rightarrow \mathbb{N}$ is given as finite sums $f=\sum g_{j}$, and each g_{j} is of the form

$$
g_{j}(m)=\left\{\begin{aligned}
\sum_{v \in \mathbb{Z}^{d_{j}}} \prod_{i=1}^{r_{j}}\binom{\alpha_{i j}(v, n)}{\beta_{i j}(v, n)} & \text { if } m=p_{j} n+k_{j} \\
& 0 \text { otherwise }
\end{aligned}\right.
$$

for some $\alpha_{i j}=a_{i j} v+a_{i j}^{\prime} n+a_{i j}^{\prime \prime}, \beta_{i j}=b_{i j} v+b_{i j}^{\prime} n+b_{i j}^{\prime \prime}$, and $p_{j}, k_{j}, r_{j}, d_{j} \in \mathbb{N}$.

Asymptotic applications

Corollary: There exist $\sum_{n} f_{n}, \sum_{n} g_{n} \in \mathcal{F}$, s.t.

$$
f_{n} \sim \frac{\sqrt{\pi}}{\Gamma\left(\frac{5}{8}\right) \Gamma\left(\frac{7}{8}\right)} 128^{n}, \quad g_{n} \sim \frac{\Gamma\left(\frac{3}{4}\right)^{3}}{\sqrt[3]{2} \pi^{5 / 2}} n^{-3 / 2} 384^{n}
$$

Proof idea: Take

$$
f_{n}:=\sum_{k=0}^{n} 128^{n-k}\binom{4 k}{k}\binom{3 k}{k} .
$$

Note: We have $b_{n} \sim \mathrm{~B} n^{\beta} \gamma^{n}$, where $\beta \in \mathbb{N}$, and $\mathrm{B}, \gamma \in \mathbb{A}$, for all $\sum_{n} b_{n} t^{n}=P / Q$.
Conjecture: For every $\sum_{n} f_{n} \in \mathcal{F}$, we have $f_{n} \sim \mathrm{~B} n^{\beta} \gamma^{n}$, where $\beta \in \mathbb{Z} / 2, \gamma \in \mathbb{A}$, and B is spanned by values of ${ }_{p} \Phi_{q}(\cdot)$ at rational points, cf. [Kontsevich-Zagier, 2001].

Curious Conjecture on Catalan numbers:

We have:

$$
C(t) \notin \mathcal{F}, \quad \text { where } \quad C(t)=\frac{1-\sqrt{1-4 t}}{2 t} .
$$

In other words, there is no set T of irrational tiles and $\varepsilon \geq 0$, s.t.

$$
a_{n}(T, \varepsilon)=C_{n} \quad \text { for all } n \geq 1, \quad \text { where } \quad C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

More on Catalan numbers

Recall

$$
C_{n} \sim \frac{1}{\sqrt{\pi}} n^{-3 / 2} 4^{n}
$$

Corollary: There exists $\sum_{n} f_{n} t^{n} \in \mathcal{F}$, s.t. $f_{n} \sim \frac{3 \sqrt{3}}{\pi} C_{n}$. Furthermore, $\forall \epsilon>0$, there exists $\sum_{n} f_{n} t^{n} \in \mathcal{F}$, s.t. $f_{n} \sim \lambda C_{n}$ for some $\lambda \in[1-\epsilon, 1+\epsilon]$.

Moral: Curious Conjecture cannot be proved via rough asymptotics. However:

Conjecture: There is no $\sum_{n} f_{n} t^{n} \in \mathcal{F}$, s.t. $f_{n} \sim C_{n}$.

Note: This conjecture probably involves deep number theory.

More applications

Proposition: For every $m \geq 2$, there is $\sum_{n} f_{n} t^{n} \in \mathcal{F}$, s.t.

$$
f_{n}=C_{n} \quad \bmod m, \quad \text { for all } n \geq 1
$$

Proposition For every prime $p \geq 2$, there is $\sum_{n} g_{n} t^{n} \in \mathcal{F}$, s.t.

$$
\operatorname{ord}_{p}\left(g_{n}\right)=\operatorname{ord}_{p}\left(C_{n}\right), \quad \text { for all } n \geq 1
$$

where $\operatorname{ord}_{p}(N)$ is the largest power of p which divides N.
Moral: Elementary number theory does not help to prove the Curious Conjecture.
Note: For $\operatorname{ord}_{p}\left(C_{n}\right)$, see [Kummer, 1852], [Deutsch-Sagan, 2006].
Proof idea: Take

$$
f_{n}=\binom{2 n}{n}+(m-1)\binom{2 n}{n-1} .
$$

Schützenberger's principle

There is a general metamathematical principle that goes back to M.-P. Schützenberger and that states the following: whenever a rational series in one variable counts a class of objects, then the series is \mathbb{N}-rational. This phenomenon has been observed on a large number of examples: generating series and zeta functions in combinatorics, Hilbert series of graded or filtered algebras, growth series of monoids or of groups.
[Berstel, Reutenauer; 2008]

Open Problem: Suppose $F \in \mathcal{F}$ is rational. Does this imply that $F \in \mathcal{R}_{1}$?

If NO, this implies that Schützenberger's principle is FALSE, i.e. there is a set of irrational tiles which gives a combinatorial interpretation to a non-negative rational functions, which nonetheless is not \mathbb{N}-rational.

Thank you!

