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What is a nice bijection?

You have: Two equinumerous sets of combinatorial objects.

You want: A nice bijection Φ between them.

Make Φ a canonical bijection if possible.

What is nice: A set of combinatorial or geometric constraints on Φ.

What is canonical : Constraints which uniquely determine Φ.

Examples of nice bijections: too many to list...

Examples of canonical bijections: generating trees [West, 1996],

geometric partitions (P. 2005) + some I will show today (3 interrelated stories).



First Story



Tutte’s external activities and MST

Theorem [Tutte, 1954]: |C(G)| =
∑

τ∈G

2ea(τ), where

− G is a connected graph with a fixed ordering ≺ of edges,

− τ are spanning trees in G,

− ea(τ) is the number of externally active edges in τ ,

− C(G) is the set of connected subgraphs in G.

Combinatorial proof: [Crapo, 1969]

◦ Let ϕ : H → τ be the minimal spanning tree (MST) map.

◦ Observe that edges in H − τ are externally active edges (to τ).

◦ Conclude that
∣

∣ϕ−1(τ)
∣

∣ = 2ea(τ).



Applications:

Canonical bijection proving
∑

H∈C(G)

y|H| =
∑

τ∈G

(1 + y)ea(τ)yn−1 ,

where G has n vertices, |H| denotes the number of edges of H .

Formally, let E(G, τ) ⊂ G denote the set of eternally active edges in G− τ .

Φ : C(G) → {(τ, S), s.t.S ⊆ E(G, τ)}

Number of edges statistics: if Φ : H → (τ, S), then |H| = |τ |+ |S|.

Note: Crapo’s original proof is stated for the whole Tutte polynomial TG(x, y).

The above bijection easily extends to this case. In fact, it further extends to all matroids.



Tree inversions and DFS

Theorem [Mallows & Riordan, 1968]: Cn =
∑

τ∈Kn

2inv(τ), where

− Kn is a complete graph on {1, . . . , n},

− τ are spanning trees in Kn,

− inv(τ) is the number of inversions in τ ,

− Cn = |C(Kn)| is the number of connected subgraphs in Kn.

Bijection: [Gessel & Wang, 1979]

◦ Let ϕ : H → τ be the depth first search (DFS) tree.

◦ Observe that edges in Kn − τ correspond to inversions in τ .

◦ Conclude that
∣

∣ϕ−1(τ)
∣

∣ = 2inv(τ).

Note: We can convert this argument into a bijection for the Crapo’s proof.

This gives us a similar identity
∑

H∈C(Kn)

y|H| =
∑

τ∈Kn

(1 + y)inv(τ)yn−1 ,



Cane paths and the Neighbor-First Search (NFS)

NFS Algorithm [folklore]

Input: graph G on {1, . . . , n}.

Start at n. Make node n active. Do:

• Visit unvisited neighbors of the active node in decreasing order of their labels;
make the one with the smallest label the new active vertex.

• If all the neighbors of the active vertex have been visited, backtrack to the last
visited vertex that has not been an active vertex, and make it the new active vertex.

Repeat: until all vertices have been active.

Output: the resulting search tree τ = Φ(G).

Remark: The NFS is a mixture of BFS and DFS. For more general class

of search algorithms applied to G-parking functions, see [Chebykin-Pylyavskyy, 2005].



Example: Graph G and its NFS tree Φ(G).
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Note: Dotted lines correspond to graph edges that are not in Φ(G).



Theorem [Gessel & Sagan, 1996]: Cn =
∑

τ∈G

2α(τ), where α(τ) is the number of

cane paths in τ , defined as follows:

Key observation: The number of graphs G with a given NFS search tree τ ,

is equal to 2α(τ).

Remark: See also [Gilbert, 1959] and [Kreweras, 1980].

The theorem similarly extends to:
∑

H∈C(Kn)

y|H| =
∑

τ∈G

(1 + y)α(τ)yn−1 .



Second Story



Cayley’s Theorem (1857)

The number of integer sequences (a1, . . . , an) such that

1 ≤ a1 ≤ 2 , and 1 ≤ ai+1 ≤ 2ai for 1 ≤ i < n,

is equal to the total number of partitions of integers ≤ 2n − 1

into parts 1, 2, 4, . . . , 2n−1.

These are called Cayley compositions An and Cayley partitions Bn.

Example: n = 2, |A2| = |B2| = 6

A2 =
{

(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4)
}

,

B2 =
{

21, 13, 2, 12, 1, ∅
}

.



Braun’s Conjecture (2011)

Define Cayley polytope Cn ⊂ R
n by inequalities:

1 ≤ x1 ≤ 2, and 1 ≤ xi ≤ 2xi−1 for i = 2, . . . , n,

so that An are integer points in Cn.

Theorem 1. [Konvalinka-P., formerly Braun’s Conjecture]

volCn = Cn+1/n!,

where Cn is the number of connected labeled graphs on n vertices.

Remark: Polytope Cn is combinatorially equivalent to a n-cube.

{Cn} is A001187 in Sloane’s Encyclopedia of Integer Sequences :

1, 1, 4, 38, 728, 26704, 1866256, 251548592, 66296291072, 34496488594816, . . .



Proof idea: an explicit triangulation into orthoschemes

Conjecture [Hadwiger, 1956]

Every convex polytope in R
d can be dissected into a finite number of orthoschemes.

Remark: Suffices to prove for simplices. Known for d ≤ 6.
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Figure 1. An example of an orthoscheme (path-simplex).



Triangulation Construction:
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The simplex Sτ ∈ R
11 corresponding to a labeled tree τ ∈ K11 is given by
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We have α(τ) = 21, and vol(Sτ ) = 221/11!.

Rules: Label nodes according to NFS. Take xi/2
ki to be the coordinate

corresponding to v ∈ τ , where ki is the number of cane paths in τ that

start in v. For inequalities, use the original ordering of labels in τ .



Example: Our triangulation of Cayley polytope C3 from two different angles:

Note: There are 16 orthoschemes in the triangulation, each of volume 2k/3!,

where k varies. In general, there are (n+ 1)n−1 orthoschemes (Cayley’s formula).



Sequel: extension to other values of the Tutte polynomial

Cn = TKn
(1, 2), where TG(x, y) is the Tutte polynomial of graph G :

TG(x, y) =
∑

H⊆G

(x− 1)k(H)−k(G)(y − 1)e(H)−|V |+k(H) ,

where k(H) is the number of connected components in H . Also:

TG(x, y) =
∑

τ∈G

xia(τ)yea(τ) ,

where the summation is over all spanning trees τ in G,

ia(τ) is the number of internally active edges in τ ,

ea(τ) is the number of externally active edges in τ .



Tutte polytope

For every 0 < q ≤ 1 and t > 0, define Tutte polytope Tn(q, t) ⊂ R
n by inequalities:

xn ≥ 1− q, and

xi ≤ (1 + t)xi−1 −
t(1− q)

q
(1− xj−1), where 1 ≤ j ≤ i ≤ n and x0 = 1.

Theorem: Tutte polytopes Tn(q, t) have 2n vertices.

Example: Compare the vertex coordinates of C3 and T3(q, t) :

2 4 8
2 4 1
2 1 2
2 1 1
1 2 4
1 2 1
1 1 2
1 1 1

1 + t (1 + t)2 (1 + t)3

1 + t (1 + t)2 1− q

1 + t 1 1 + t

1 + t 1− q 1− q

1 1 + t (1 + t)2

1 1 + t 1− q

1 1 1 + t

1− q 1− q 1− q



Main Theorem [Konvalinka-P., 2013]

Let Tn(q, t) ⊂ R
n be the Tutte polytope defined above, 0 < q ≤ 1, t > 0. Then:

volTn(q, t) = tnTKn+1
(1 + q/t, 1 + t)/n!,

where TH(x, y) denotes the Tutte polynomial of graph H.

Remark: Cayley polytopes are limits of Tutte polytopes:

limq→0+ Tn(q, 1) = Cn .

This follows from the explicit form of vertex coordinates.

Since TKn
(1, 2) = Cn, Main Theorem implies Braun’s Conjecture.



Third Story



Back to Cayley’s Theorem

The number of integer sequences (a1, . . . , an) such that

1 ≤ a1 ≤ 2 , and 1 ≤ ai+1 ≤ 2ai for 1 ≤ i < n,

is equal to the total number of partitions of integers ≤ 2n − 1

into parts 1, 2, 4, . . . , 2n−1.

These are Cayley compositions An and Cayley partitions Bn.

≪ Now think of An,Bn ⊂ R
n. ≫

Example: n = 2, |A2| = |B2| = 6.

A2 =
{

(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4)
}

,

B2 =
{

(1, 1), (0, 3), (1, 0), (0, 2), (0, 1), (0, 0)
}

.



Polytope of Cayley partitions

Observe: Bn is the set of integer points in simplex Qn:

y1, . . . , yn ≥ 0, 2n−1y1 + . . .+ 2yn−1 + yn ≤ 2n − 1

Theorem: Let Pn ⊂ R
n be the convex hull of Bn.

Then volPn = volCn (and thus = Cn+1/n!).

Sketch of proof: Define ϕ : Rn → R
n as follows:

ϕ : (a1, a2, a3, . . .) → (2− a1, 2a1 − a2, 2a2 − a3, . . .).

Observe that ϕ is volume-preserving. Now check that ϕ : Cn → Pn. �



First application of map ϕ

Observe that ϕ : An → Bn is a bijection.

This proves Cayley’s theorem.

Example: Bijection ϕ : A2 → B2 is then as follows:

(1, 1)→ (1, 1) = 21, (1, 2)→ (1, 0) = 2, (2, 1)→ (0, 3) = 13 ,

(2, 2)→ (0, 2) = 12 , (2, 3)→ (0, 1) = 1, (2, 4)→ (0, 0) = ∅.

Corollary: The number of Cayley partitions of m in Bn is equal to the

number of Cayley compositions (a1, . . . , an) ∈ An, such that an = 2n −m.



Parking functions polytope [Stanley & Pitman, 2002]

Let Πn

(

θ1, . . . , θn
)

be defined by the inequalities:

Πn

(

θ1, . . . , θn
)

=
{

(x1, . . . , xn) : xi ≥ 0, x1 + . . .+ xi ≤ θ1 + . . .+ θi, ∀i
}

.

Theorem [Stanley & Pitman, 2002]

volΠn

(

θ1, . . . , θn
)

=
1

n!

∑

(a1,...,an)∈Park(n)

θa1 · · · θan

Corollary: volΠn

(

1, q, q2 . . . , qn−1
)

=
1

n!2(
n

2)
· Tn+1(1, 1/q)



Second application of map ϕ

Observation: Pn is a scaled version of Πn

(

1, 1
2
, 1
4
, . . .

)

:

xi ← 2i−1xi, 1 ≤ i ≤ n

Corollary:

volPn = 2(
n

2) volΠn

(

1,
1

2
,
1

4
, . . .

)

= Cn+1/n!

The above volume theorem gives another proof of Braun’s Conjecture.



Thank you!


