A Nekrasov-Okounkov formula in type \tilde{C}

Mathias Pétréolle

ICJ

SLC 73, September 2014

Plan

(1) A Nekrasov-Okounkov formula in type \tilde{A}
(2) A Nekrasov-Okounkov formula in type \tilde{C}

Partitions

A partition λ of n is a decreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

Partitions

A partition λ of n is a decreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

Figure: The Ferrers diagram of $\lambda=(5,4,3,3,1)$

Partitions

A partition λ of n is a decreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

Figure: The Ferrers diagram of $\lambda=(5,4,3,3,1)$ and its hook lengths

Partitions

A partition λ of n is a decreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

Figure: The Ferrers diagram of $\lambda=(5,4,3,3,1)$ and its principal hook lengths

t-cores

Let $t \geq 2$ be an integer. A partition is a t-core if its hook length set does not contain t . It is equivalent to the fact that the hook length set does not contain a integer multiple of t.

t-cores

Let $t \geq 2$ be an integer. A partition is a t-core if its hook length set does not contain t . It is equivalent to the fact that the hook length set does not contain a integer multiple of t.
Example: a 3-core

t-cores

Let $t \geq 2$ be an integer. A partition is a t-core if its hook length set does not contain t . It is equivalent to the fact that the hook length set does not contain a integer multiple of t.
Example: a 3-core

Nakayama (1940): introduction and conjectures in representation theory

t-cores

Let $t \geq 2$ be an integer. A partition is a t-core if its hook length set does not contain t . It is equivalent to the fact that the hook length set does not contain a integer multiple of t.
Example: a 3-core

Nakayama (1940): introduction and conjectures in representation theory Garvan-Kim-Stanton (1990): generating function, proof of Ramanujan's congruences

t-cores

Let $t \geq 2$ be an integer. A partition is a t-core if its hook length set does not contain t . It is equivalent to the fact that the hook length set does not contain a integer multiple of t.
Example: a 3-core

Nakayama (1940): introduction and conjectures in representation theory Garvan-Kim-Stanton (1990): generating function, proof of Ramanujan's congruences
Ono (1994): positivity of the number of t-cores

t-cores

Let $t \geq 2$ be an integer. A partition is a t-core if its hook length set does not contain t . It is equivalent to the fact that the hook length set does not contain a integer multiple of t.
Example: a 3-core

Nakayama (1940): introduction and conjectures in representation theory Garvan-Kim-Stanton (1990): generating function, proof of Ramanujan's congruences
Ono (1994): positivity of the number of t-cores Anderson (2002), Olsson-Stanton (2007): simultaneous s- and t-core

t-cores

Let $t \geq 2$ be an integer. A partition is a t-core if its hook length set does not contain t . It is equivalent to the fact that the hook length set does not contain a integer multiple of t.
Example: a 3-core

Nakayama (1940): introduction and conjectures in representation theory Garvan-Kim-Stanton (1990): generating function, proof of Ramanujan's congruences
Ono (1994): positivity of the number of t-cores Anderson (2002), Olsson-Stanton (2007): simultaneous s- and t-core Han (2009): hook formula

Macdonald formula in type \tilde{A}

We define Dedekind eta function by $\eta(x)=x^{1 / 24} \prod_{i \geq 1}\left(1-x^{i}\right)$

Macdonald formula in type \tilde{A}

We define Dedekind eta function by $\eta(x)=x^{1 / 24} \prod_{i \geq 1}\left(1-x^{i}\right)$

Theorem (Macdonald, 1972)

For any odd integer t, we have:

$$
\begin{equation*}
\eta(x)^{t^{2}-1}=c_{0} \sum_{\left(v_{0}, v_{1}, \ldots, v_{t-1}\right)} \prod_{i<j}\left(v_{i}-v_{j}\right) x^{\left(v_{0}^{2}+v_{1}^{2}+\cdots+v_{t-1}^{2}\right) /(2 t)} \tag{1}
\end{equation*}
$$

where the sum ranges over certain t-tuples of integers, satisfying some congruence condition.

Nekrasov-Okounkov formula in type \tilde{A}

Theorem (Nekrasov-Okounkov, 2003; Han, 2009)

For any complex number z we have

$$
\prod_{k \geq 1}\left(1-x^{k}\right)^{z-1}=\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{z}{h^{2}}\right)
$$

Nekrasov-Okounkov formula in type \tilde{A}

Theorem (Nekrasov-Okounkov, 2003; Han, 2009)

For any complex number z we have

$$
\prod_{k \geq 1}\left(1-x^{k}\right)^{z-1}=\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{z}{h^{2}}\right)
$$

Idea of the proof:

- replace z by t^{2};

Nekrasov-Okounkov formula in type \tilde{A}

Theorem (Nekrasov-Okounkov, 2003; Han, 2009)

For any complex number z we have

$$
\prod_{k \geq 1}\left(1-x^{k}\right)^{z-1}=\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{z}{h^{2}}\right)
$$

Idea of the proof:

- replace z by t^{2};
- use a bijection and the former Macdonald identity;

Nekrasov-Okounkov formula in type \tilde{A}

Theorem (Nekrasov-Okounkov, 2003; Han, 2009)

For any complex number z we have

$$
\prod_{k \geq 1}\left(1-x^{k}\right)^{z-1}=\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{z}{h^{2}}\right)
$$

Idea of the proof:

- replace z by t^{2};
- use a bijection and the former Macdonald identity;
- conclude for any complex by polynomiality.

Macdonald in type \tilde{C}

Theorem (Macdonald, 1972)

For any integer t, we have:

$$
\eta(X)^{2 t^{2}+t}=c_{1} \sum \prod_{i} v_{i} \prod_{i<j}\left(v_{i}^{2}-v_{j}^{2}\right) X^{\|v\|^{2} / 4(t+1)}
$$

where the sum ranges over $\left(v_{1}, \ldots, v_{t}\right) \in \mathbb{Z}$ such that $v_{i} \equiv i \bmod 2 t+2$.

Macdonald in type \tilde{C}

Theorem (Macdonald, 1972)

For any integer t, we have:

$$
\eta(X)^{2 t^{2}+t}=c_{1} \sum \prod_{i} v_{i} \prod_{i<j}\left(v_{i}^{2}-v_{j}^{2}\right) X^{\|v\|^{2} / 4(t+1)}
$$

where the sum ranges over $\left(v_{1}, \ldots, v_{t}\right) \in \mathbb{Z}$ such that $v_{i} \equiv i \bmod 2 t+2$.
Natural question: which object will replace the t-core in type \tilde{C} ?

Macdonald in type \tilde{C}

Theorem (Macdonald, 1972)

For any integer t, we have:

$$
\eta(X)^{2 t^{2}+t}=c_{1} \sum \prod_{i} v_{i} \prod_{i<j}\left(v_{i}^{2}-v_{j}^{2}\right) X^{\|v\|^{2} / 4(t+1)}
$$

where the sum ranges over $\left(v_{1}, \ldots, v_{t}\right) \in \mathbb{Z}$ such that $v_{i} \equiv i \bmod 2 t+2$.
Natural question: which object will replace the t-core in type \tilde{C} ?
We write $v_{i}=(2 t+2) n_{i}+i$.

Self-conjugate and doubled distinct partitions

Selfconjugate partition:

$S_{c}(t)$: set of self-conjugate t-cores.

Self-conjugate and doubled distinct partitions

Selfconjugate partition:
Doubled distinct partition:

Self-conjugate and doubled distinct partitions

Selfconjugate partition:

$S_{c}(t)$: set of self-conjugate t-cores.

Doubled distinct partition:

Self-conjugate and doubled distinct partitions

Selfconjugate partition:

$S_{c}(t)$: set of self-conjugate t-cores.

Doubled distinct partition:

Self-conjugate and doubled distinct partitions

Selfconjugate partition:

$S_{c}(t)$: set of self-conjugate t-cores.

Doubled distinct partition:

Self-conjugate and doubled distinct partitions

Selfconjugate partition:

$S_{c}(t)$: set of self-conjugate t-cores.

Doubled distinct partition:

$D D(t)$: set of doubled distinct t-cores.

Self-conjugate and doubled distinct partitions

Selfconjugate partition:

$S_{c}(t)$: set of self-conjugate t-cores.

Doubled distinct partition:

$D D(t)$: set of doubled distinct t-cores.

Theorem (P., 2014)

The generating function for pairs of self-conjugate and doubled distinct t-cores is:

$$
\sum_{(\lambda, \mu) \in S_{c}(t) \times D D(t)} q^{|\lambda|+|\mu|}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{t} ; q^{t}\right)_{\infty}\left(\left(q^{2 t-1} ; q^{2 t-1}\right)_{\infty}\right)^{t-2}}{(q ; q)_{\infty}}
$$

Some properties

Let λ be a self-conjugate (resp. doubled distinct) ($\mathrm{t}+1$)-core, and h be one of its principal hook length.

- If $h>2 t+2$, then $\mathrm{h}-2 \mathrm{t}-2$ is also a principal hook length
- If $h \equiv i \bmod 2 t+2$, for $1 \leq i \leq t$, then no principal hook length will be congruent to $-i \bmod 2 t+2$.

Some properties

Let λ be a self-conjugate (resp. doubled distinct) ($\mathrm{t}+1$)-core, and h be one of its principal hook length.

- If $h>2 t+2$, then $\mathrm{h}-2 \mathrm{t}-2$ is also a principal hook length
- If $h \equiv i \bmod 2 t+2$, for $1 \leq i \leq t$, then no principal hook length will be congruent to $-i \bmod 2 t+2$.

A bijection

Theorem (P., 2014)

Let t an integer ≥ 2.
There exists a bijection $\phi: S_{c}(t+1) \times D D(t+1) \rightarrow \mathbb{Z}$ such that: $(\lambda, \mu) \quad \mapsto\left(n_{1}, \ldots, n_{t}\right)$

- $|\lambda|+|\mu|=(t+1) \sum_{i=1}^{t} n_{i}^{2}+\sum_{i=1}^{t} i n_{i}$

A bijection

Theorem (P., 2014)

Let t an integer ≥ 2.
There exists a bijection $\phi: S_{c}(t+1) \times D D(t+1) \rightarrow \mathbb{Z}$ such that: $(\lambda, \mu) \quad \mapsto\left(n_{1}, \ldots, n_{t}\right)$

- $|\lambda|+|\mu|=(t+1) \sum_{i=1}^{t} n_{i}^{2}+\sum_{i=1}^{t} i n_{i}$
- $\prod_{i}\left[(2 t+2) n_{i}+i\right] \prod_{i<j}\left[\left((2 t+2) n_{i}+i\right)^{2}-\left((2 t+2) n_{j}+j\right)^{2}\right]=$

$$
\frac{\delta_{\lambda} \delta_{\mu}}{c_{1}} \prod_{h_{i i}}\left(1-\frac{2 t+2}{h_{i i}}\right)\left(1-\frac{t+1}{h_{i i}}\right) \prod_{j=1}^{h_{i i}-1}\left(1-\left(\frac{2 t+2}{h_{i i}+\epsilon_{j j}}\right)^{2}\right)
$$

Definition of bijection ϕ

Definition

For $1 \leq i \leq t$, write $\Delta_{i}=\max \{h, h \equiv t+1 \pm i \bmod 2 t+2\}$.

Definition of bijection ϕ

Definition

For $1 \leq i \leq t$, write $\Delta_{i}=\max \{h, h \equiv t+1 \pm i \bmod 2 t+2\}$.
We define $n_{i}:=\frac{ \pm\left(t+1+\Delta_{i}\right)-i}{2 t+2}$.

Definition of bijection ϕ

Definition

For $1 \leq i \leq t$, write $\Delta_{i}=\max \{h, h \equiv t+1 \pm i \bmod 2 t+2\}$.
We define $n_{i}:=\frac{ \pm\left(t+1+\Delta_{i}\right)-i}{2 t+2}$.

Definition of bijection ϕ

Definition

For $1 \leq i \leq t$, write $\Delta_{i}=\max \{h, h \equiv t+1 \pm i \bmod 2 t+2\}$.
We define $n_{i}:=\frac{ \pm\left(t+1+\Delta_{i}\right)-i}{2 t+2}$.

$\Delta_{1}=\max \{h, h \equiv 3 \pm 1 \bmod 6\}$

Definition of bijection ϕ

Definition

For $1 \leq i \leq t$, write $\Delta_{i}=\max \{h, h \equiv t+1 \pm i \bmod 2 t+2\}$.
We define $n_{i}:=\frac{ \pm\left(t+1+\Delta_{i}\right)-i}{2 t+2}$.

$t+1=3$
$\Delta_{1}=\max \{h, h \equiv 3 \pm 1 \bmod 6\}=\max \{10,4\}=10$

Definition of bijection ϕ

Definition

For $1 \leq i \leq t$, write $\Delta_{i}=\max \{h, h \equiv t+1 \pm i \bmod 2 t+2\}$.
We define $n_{i}:=\frac{ \pm\left(t+1+\Delta_{i}\right)-i}{2 t+2}$.

$t+1=3$
$\Delta_{1}=\max \{h, h \equiv 3 \pm 1 \bmod 6\}=\max \{10,4\}=10$
$\Rightarrow n_{1}=\frac{+\left(3+\Delta_{1}\right)-1}{6}=2$

Definition of bijection ϕ

Definition

For $1 \leq i \leq t$, write $\Delta_{i}=\max \{h, h \equiv t+1 \pm i \bmod 2 t+2\}$.
We define $n_{i}:=\frac{ \pm\left(t+1+\Delta_{i}\right)-i}{2 t+2}$.

$t+1=3$
$\Delta_{1}=\max \{h, h \equiv 3 \pm 1 \bmod 6\}=\max \{10,4\}=10$
$\Rightarrow n_{1}=\frac{+\left(3+\Delta_{1}\right)-1}{6}=2$
$\Delta_{2}=\max \{h, h \equiv 3 \pm 2 \bmod 6\}$

Definition of bijection ϕ

Definition

For $1 \leq i \leq t$, write $\Delta_{i}=\max \{h, h \equiv t+1 \pm i \bmod 2 t+2\}$.
We define $n_{i}:=\frac{ \pm\left(t+1+\Delta_{i}\right)-i}{2 t+2}$.

$t+1=3$
$\Delta_{1}=\max \{h, h \equiv 3 \pm 1 \bmod 6\}=\max \{10,4\}=10$
$\Rightarrow n_{1}=\frac{+\left(3+\Delta_{1}\right)-1}{6}=2$
$\Delta_{2}=\max \{h, h \equiv 3 \pm 2 \bmod 6\}=\max \{13,7,1\}=13$

Definition of bijection ϕ

Definition

For $1 \leq i \leq t$, write $\Delta_{i}=\max \{h, h \equiv t+1 \pm i \bmod 2 t+2\}$.
We define $n_{i}:=\frac{ \pm\left(t+1+\Delta_{i}\right)-i}{2 t+2}$.

$t+1=3$
$\Delta_{1}=\max \{h, h \equiv 3 \pm 1 \bmod 6\}=\max \{10,4\}=10$
$\Rightarrow n_{1}=\frac{+\left(3+\Delta_{1}\right)-1}{6}=2$
$\Delta_{2}=\max \{h, h \equiv 3 \pm 2 \bmod 6\}=\max \{13,7,1\}=13$
$\Rightarrow n_{2}=\frac{-\left(3+\Delta_{2}\right)-2}{6}=-3$

A Nekrasov-Okounkov formula in type \tilde{C}

Theorem (P., 2014)

For any complex number z we have

$$
\begin{aligned}
& \prod_{k \geq 1}\left(1-x^{k}\right)^{2 z^{2}+z}=\sum_{(\lambda, \mu) \in \mathcal{S}_{c} \times D D} \delta_{\lambda} \delta_{\mu} x^{|\lambda|+|\mu|} \\
& \times \prod_{h_{i j}}\left(1-\frac{2 z+2}{h_{i i}}\right)\left(1-\frac{z+1}{h_{i i}}\right) \prod_{j=1}^{h_{i i}-1}\left(1-\left(\frac{2 z+2}{h_{i i}+\epsilon_{j j}}\right)^{2}\right)
\end{aligned}
$$

Sketch of the proof

- Start from Macdonald formula in type \tilde{C} (here t is an integer)

Sketch of the proof

- Start from Macdonald formula in type \tilde{C} (here t is an integer)
- Apply bijection ϕ to obtain the previous formula for any integer $t \geq 2$, except that the sum ranges over ($\mathrm{t}+1$)-cores

Sketch of the proof

- Start from Macdonald formula in type \tilde{C} (here t is an integer)
- Apply bijection ϕ to obtain the previous formula for any integer $t \geq 2$, except that the sum ranges over ($\mathrm{t}+1$)-cores
- Replace the previous sum by a sum over all partitions in $S_{c} \times D D$

Sketch of the proof

- Start from Macdonald formula in type \tilde{C} (here t is an integer)
- Apply bijection ϕ to obtain the previous formula for any integer $t \geq 2$, except that the sum ranges over ($\mathrm{t}+1$)-cores
- Replace the previous sum by a sum over all partitions in $S_{c} \times D D$
- Check that coefficents of x^{n} on both sides are polynomials in t, and conclude that the formula is true for any complexe number z

Applications and future work

- $z=-1$: expansion of $\prod_{i \geq 1}\left(1-x^{i}\right)$

Applications and future work

- $z=-1$: expansion of $\prod_{i \geq 1}\left(1-x^{i}\right)$
- generalization with extra parameters

Applications and future work

- $z=-1$: expansion of $\prod_{i \geq 1}\left(1-x^{i}\right)$
- generalization with extra parameters
- hook type formula $f^{\lambda}=\frac{n!}{\prod_{h} h}$

Thank you for your attention

