Coxeter elements in well-generated reflection groups

Vivien RIPOLL

(Universität Wien)

73rd Séminaire Lotharingien de Combinatoire Strobl, 2014, September 9th

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

joint work with Vic Reiner (Minneapolis) and Christian Stump (Berlin)

Context and motivation

 $\mathsf{NC}(n) := \{ w \in \mathfrak{S}_n \mid \ell_T(w) + \ell_T(w^{-1}c) = \ell_T(c) \}, \text{ where }$

- T := {all transpositions of S_n}, ℓ_T associated length function ("absolute length");
- c is a long cycle (*n*-cycle).

NC(n) is

- equipped with a natural partial order ("absolute order"), and is a lattice;
- isomorphic to the poset of NonCrossing partitions of an *n*-gon ("noncrossing partition lattice"), so it is counted by the Catalan number $\operatorname{Cat}(n) = \frac{1}{n+1} {\binom{2n}{n}}.$

Generalization to finite Coxeter groups (or reflection groups):

- replace \mathfrak{S}_n with a Coxeter group W;
- replace T with $R := \{ all reflections of W \}$, and ℓ_T with ℓ_R ;

• replace c with a Coxeter element of W.

Context and motivation

 $\mathsf{NC}(n) := \{ w \in \mathfrak{S}_n \mid \ell_T(w) + \ell_T(w^{-1}c) = \ell_T(c) \}, \text{ where }$

- T := {all transpositions of S_n}, ℓ_T associated length function ("absolute length");
- c is a long cycle (*n*-cycle).

NC(n) is

- equipped with a natural partial order ("absolute order"), and is a lattice;
- isomorphic to the poset of NonCrossing partitions of an *n*-gon ("noncrossing partition lattice"), so it is counted by the Catalan number $\operatorname{Cat}(n) = \frac{1}{n+1} {\binom{2n}{n}}.$

Generalization to finite Coxeter groups (or reflection groups):

- replace \mathfrak{S}_n with a Coxeter group W;
- replace T with $R := \{ all \text{ reflections of } W \}$, and ℓ_T with ℓ_R ;
- replace *c* with a Coxeter element of *W*.

- replace \mathfrak{S}_n with a Coxeter group W;
- replace T with $R := \{ all \text{ reflections of } W \}$, and ℓ_T with ℓ_R ;
- replace *c* with a Coxeter element of *W*.
- \rightsquigarrow obtain the W-noncrossing partition lattice

$$\mathsf{NC}(W, c) := \{ w \in W \mid \ell_R(w) + \ell_R(w^{-1}c) = \ell_R(c) \},\$$

- also equipped with a "W-absolute order";
- counted by the *W*-Catalan number $Cat(W) := \prod_{i=1}^{n} \frac{d_i+h}{d_i}$.

Cat(W) appears in other combinatorial objects attached to (W, c): cluster complexes, generalized associahedra... \sim "Coxeter-Catalan combinatorics".

(日) (同) (三) (三) (三) (○) (○)

- replace \mathfrak{S}_n with a Coxeter group W;
- replace T with $R := \{ all \text{ reflections of } W \}$, and ℓ_T with ℓ_R ;
- replace *c* with a Coxeter element of *W*.
- \rightsquigarrow obtain the W-noncrossing partition lattice

$$\mathsf{NC}(W, c) := \{ w \in W \mid \ell_R(w) + \ell_R(w^{-1}c) = \ell_R(c) \},\$$

- also equipped with a "W-absolute order";
- counted by the *W*-Catalan number $\operatorname{Cat}(W) := \prod_{i=1}^{n} \frac{d_i+h}{d_i}$.

Cat(W) appears in other combinatorial objects attached to (W, c): cluster complexes, generalized associahedra... \sim "Coxeter-Catalan combinatorics".

- replace \mathfrak{S}_n with a Coxeter group W;
- replace T with $R := \{ all \text{ reflections of } W \}$, and ℓ_T with ℓ_R ;
- replace *c* with a Coxeter element of *W*.
- \rightsquigarrow obtain the W-noncrossing partition lattice

$$\mathsf{NC}(W, c) := \{ w \in W \mid \ell_R(w) + \ell_R(w^{-1}c) = \ell_R(c) \},\$$

- also equipped with a "W-absolute order";
- counted by the *W*-Catalan number $\operatorname{Cat}(W) := \prod_{i=1}^{n} \frac{d_i+h}{d_i}$.

Cat(W) appears in other combinatorial objects attached to (W, c): cluster complexes, generalized associahedra...

 \rightsquigarrow "Coxeter-Catalan combinatorics".

- replace \mathfrak{S}_n with a Coxeter group W;
- replace T with $R := \{ all \text{ reflections of } W \}$, and ℓ_T with ℓ_R ;
- replace c with a <u>Coxeter element</u>??
- \rightsquigarrow obtain the W-noncrossing partition lattice

$$\mathsf{NC}(W, c) := \{ w \in W \mid \ell_R(w) + \ell_R(w^{-1}c) = \ell_R(c) \},\$$

- also equipped with a "W-absolute order";
- counted by the *W*-Catalan number $\operatorname{Cat}(W) := \prod_{i=1}^{n} \frac{d_i+h}{d_i}$.

Cat(W) appears in other combinatorial objects attached to (W, c): cluster complexes, generalized associahedra...

 \sim "Coxeter-Catalan combinatorics".

Outline

Coxeter elements in real reflection groups — via Coxeter systems

- Classical definition
- Extended definition

Coxeter elements in well-generated complex reflection groups — via eigenvalues

- Classical definition
- Extended definition

8 Reflection automorphisms and main results

Outline

Coxeter elements in real reflection groups — via Coxeter systems
 Classical definition
 Extended definition

Extended definition

2 Coxeter elements in well-generated complex reflection groups — via eigenvalues

- Classical definition
- Extended definition

8 Reflection automorphisms and main results

Coxeter element of a Coxeter system

Definition

A Coxeter system (W, S) is a group W equipped with a generating set S of involutions, such that W has a presentation of the form:

$$\mathcal{W}=\left\langle S\mid s^{2}=1\;(orall s\in S);\;(st)^{m_{s,t}}=1\;(orall s
eq t\in S)
ight
angle \;,$$

with $m_{s,t} \in \mathbb{N}_{\geq 2} \cup \{\infty\}$ for $s \neq t$.

Definition ("Definition 0")

Write $S := \{s_1, \ldots, s_n\}$. A Coxeter element of (W, S) is a product of all the generators:

 $c = s_{\pi(1)} \dots s_{\pi(n)}$ for $\pi \in \mathfrak{S}_n$.

Outline

Coxeter elements in real reflection groups — via Coxeter systems Classical definition

- Extended definition
- 2 Coxeter elements in well-generated complex reflection groups via eigenvalues

- Classical definition
- Extended definition
- 8 Reflection automorphisms and main results

- V real vector space of dimension n
- W finite subgroup of GL(V) generated by reflections

 $\rightsquigarrow W$ admits a structure of **Coxeter system**.

Take for S the set of reflections through the walls of a fixed chamber of the hyperplane arrangement of W.

Definition ("Classical definition")

Let W be a finite real reflection group. A Coxeter element of W is a product (in any order) of all the reflections through the walls of a chamber of W.

Proposition

- V real vector space of dimension n
- W finite subgroup of GL(V) generated by reflections
- \rightsquigarrow W admits a structure of **Coxeter system**.

Take for S the set of reflections through the walls of a fixed chamber of the hyperplane arrangement of W.

Definition ("Classical definition")

Let W be a finite real reflection group. A Coxeter element of W is a product (in any order) of all the reflections through the walls of a chamber of W.

Proposition

- V real vector space of dimension n
- W finite subgroup of GL(V) generated by reflections
- \rightsquigarrow W admits a structure of **Coxeter system**.

Take for S the set of reflections through the walls of a fixed chamber of the hyperplane arrangement of W.

Definition ("Classical definition")

Let W be a finite real reflection group. A Coxeter element of W is a product (in any order) of all the reflections through the walls of a chamber of W.

Proposition

- V real vector space of dimension n
- W finite subgroup of GL(V) generated by reflections
- \rightsquigarrow W admits a structure of **Coxeter system**.

Take for S the set of reflections through the walls of a fixed chamber of the hyperplane arrangement of W.

Definition ("Classical definition")

Let W be a finite real reflection group. A Coxeter element of W is a product (in any order) of all the reflections through the walls of a chamber of W.

Proposition

Outline

Coxeter elements in real reflection groups — via Coxeter systems Classical definition

- Extended definition
- 2 Coxeter elements in well-generated complex reflection groups via eigenvalues

- Classical definition
- Extended definition
- 8 Reflection automorphisms and main results

In general a real reflection group does not have a unique Coxeter structure.

Example

Symmetry group of the regular hexagon $= I_2(6) \simeq A_1 imes A_2$

But "unicity if *S* consists of reflections":

Proposition (Observation/Folklore?)

Let W be a finite real reflection group, R the set of all reflections of W. Let $S, S' \subseteq R$ be such that (W, S) and (W, S') are both Coxeter systems. Then (W, S) and (W, S') are isomorphic Coxeter systems.

proof not enlightening! (case-by-case check on the classification)

 \sim Do you have a better proof?

In general a real reflection group does not have a unique Coxeter structure.

Example

Symmetry group of the regular hexagon $= I_2(6) \simeq A_1 \times A_2$

But "unicity if *S* consists of reflections":

Proposition (Observation/Folklore?)

Let W be a finite real reflection group, R the set of all reflections of W. Let $S, S' \subseteq R$ be such that (W, S) and (W, S') are both Coxeter systems. Then (W, S) and (W, S') are isomorphic Coxeter systems.

proof not enlightening! (case-by-case check on the classification)

ightarrow Do you have a better proof?

In general a real reflection group does not have a unique Coxeter structure.

Example

Symmetry group of the regular hexagon $= I_2(6) \simeq A_1 \times A_2$

But "unicity if S consists of reflections":

Proposition (Observation/Folklore?)

Let W be a finite real reflection group, R the set of all reflections of W. Let $S, S' \subseteq R$ be such that (W, S) and (W, S') are both Coxeter systems. Then (W, S) and (W, S') are isomorphic Coxeter systems.

proof not enlightening! (case-by-case check on the classification)

ightarrow Do you have a better proof?

In general a real reflection group does not have a unique Coxeter structure.

Example

Symmetry group of the regular hexagon $= I_2(6) \simeq A_1 \times A_2$

But "unicity if S consists of reflections":

Proposition (Observation/Folklore?)

In other words: (W, S) finite Coxeter system. $R := \bigcup_{w \in W} wSw^{-1}$. Let $S' \subseteq R$ be such that (W, S') is also a Coxeter system. Then (W, S') is isomorphic to (W, S).

proof not enlightening! (case-by-case check on the classification)

ightarrow Do you have a better proof?

In general a real reflection group does not have a unique Coxeter structure.

Example

Symmetry group of the regular hexagon $= I_2(6) \simeq A_1 \times A_2$

But "unicity if S consists of reflections":

Proposition (Observation/Folklore?)

In other words: (W, S) finite Coxeter system. $R := \bigcup_{w \in W} wSw^{-1}$. Let $S' \subseteq R$ be such that (W, S') is also a Coxeter system. Then (W, S') is isomorphic to (W, S).

proof not enlightening! (case-by-case check on the classification)

 \sim Do you have a better proof?

New Coxeter elements

For a real reflection group W, one may be able to construct Coxeter structures which do not come from a chamber of the arrangement...

→ Isomorphic, but not conjugate structures!

Example of $I_2(5)$.

Definition

We call generalized Coxeter element of W a product (in any order) of the elements of some set S, where S is such that:

- *S* consists of reflections;
- (W, S) is a Coxeter system.

Outline

Coxeter elements in real reflection groups — via Coxeter systems
 Classical definition

Extended definition

Coxeter elements in well-generated complex reflection groups — via eigenvalues

- Classical definition
- Extended definition

8 Reflection automorphisms and main results

Complex reflection group

- V complex vector space of dimension n
- W finite subgroup of GL(V) generated by "reflections" (r ∈ GL(V) of finite order and fixing pointwise a hyperplane)
- assume *W* is well-generated, i.e., can be generated by *n* reflections.

Finite *real* reflection groups can be seen as complex reflection groups.

But there are much more. In general: no Coxeter structure, no privileged (natural, canonical) set of *n* generating reflections.

 \rightsquigarrow how to define a Coxeter element of W?

Assume W is a finite, **real** reflection group (irreducible). Let c be a Coxeter element of W, h the order of c (Coxeter number).

Facts

- $h = d_n$, the highest invariant degree of W:
 - $d_1 \leq \cdots \leq d_n$ degrees of homogeneous polynomials
 - f_1 , \ldots , $f_n \in \mathbb{C}[V]$ such that $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n].$
- There exists a plane P ⊆ V stable by c and on which c acts as a rotation of angle ^{2π}/_b.
- Thus, c admits $e^{\frac{2i\pi}{\hbar}}$ as an eigenvalue.
- The elements of W having e^{2iπ}/_h as an eigenvalue form a conjugacy class of W. [Springer's theory of regular elements]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Proposition

Assume W is a finite, **real** reflection group (irreducible). Let c be a Coxeter element of W, h the order of c (Coxeter number).

Facts

• $h = d_n$, the highest invariant degree of W: $d_1 \leq \cdots \leq d_n$ degrees of homogeneous polynomials f_1 , ..., $f_n \in \mathbb{C}[V]$ such that $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.

- There exists a plane $P \subseteq V$ stable by c and on which c acts as a rotation of angle $\frac{2\pi}{h}$.
- Thus, c admits $e^{\frac{2i\pi}{h}}$ as an eigenvalue.
- The elements of W having e^{2iπ}/_h as an eigenvalue form a conjugacy class of W. [Springer's theory of regular elements]

Proposition

Assume W is a finite, **real** reflection group (irreducible). Let c be a Coxeter element of W, h the order of c (Coxeter number).

Facts

- $h = d_n$, the highest invariant degree of W: $d_1 \leq \cdots \leq d_n$ degrees of homogeneous polynomials f_1 , ..., $f_n \in \mathbb{C}[V]$ such that $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.
- There exists a plane $P \subseteq V$ stable by c and on which c acts as a rotation of angle $\frac{2\pi}{h}$.
- Thus, c admits $e^{\frac{2i\pi}{h}}$ as an eigenvalue.
- The elements of W having e^{2iπ}/_h as an eigenvalue form a conjugacy class of W. [Springer's theory of regular elements]

(日) (同) (三) (三) (三) (○) (○)

Proposition

Assume W is a finite, **real** reflection group (irreducible). Let c be a Coxeter element of W, h the order of c (Coxeter number).

Facts

- $h = d_n$, the highest invariant degree of W: $d_1 \leq \cdots \leq d_n$ degrees of homogeneous polynomials f_1 , ..., $f_n \in \mathbb{C}[V]$ such that $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.
- There exists a plane $P \subseteq V$ stable by c and on which c acts as a rotation of angle $\frac{2\pi}{h}$.
- Thus, c admits $e^{\frac{2i\pi}{h}}$ as an eigenvalue.
- The elements of W having e^{2iπ}/_h as an eigenvalue form a conjugacy class of W. [Springer's theory of regular elements]

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Proposition

Assume W is a finite, **real** reflection group (irreducible). Let c be a Coxeter element of W, h the order of c (Coxeter number).

Facts

- $h = d_n$, the highest invariant degree of W: $d_1 \leq \cdots \leq d_n$ degrees of homogeneous polynomials f_1 , ..., $f_n \in \mathbb{C}[V]$ such that $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.
- There exists a plane $P \subseteq V$ stable by c and on which c acts as a rotation of angle $\frac{2\pi}{h}$.
- Thus, c admits $e^{\frac{2i\pi}{h}}$ as an eigenvalue.
- The elements of W having e^{2iπ}/_h as an eigenvalue form a conjugacy class of W. [Springer's theory of regular elements]

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Proposition

Assume W is a finite, **real** reflection group (irreducible). Let c be a Coxeter element of W, h the order of c (Coxeter number).

Facts

- $h = d_n$, the highest invariant degree of W: $d_1 \leq \cdots \leq d_n$ degrees of homogeneous polynomials f_1 , ..., $f_n \in \mathbb{C}[V]$ such that $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.
- There exists a plane $P \subseteq V$ stable by c and on which c acts as a rotation of angle $\frac{2\pi}{h}$.
- Thus, c admits $e^{\frac{2i\pi}{h}}$ as an eigenvalue.
- The elements of W having e^{2iπ}/_h as an eigenvalue form a conjugacy class of W. [Springer's theory of regular elements]

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Proposition

Assume W is a finite, **real** reflection group (irreducible). Let c be a Coxeter element of W, h the order of c (Coxeter number).

Facts

- $h = d_n$, the highest invariant degree of W: $d_1 \leq \cdots \leq d_n$ degrees of homogeneous polynomials f_1 , ..., $f_n \in \mathbb{C}[V]$ such that $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.
- There exists a plane $P \subseteq V$ stable by c and on which c acts as a rotation of angle $\frac{2\pi}{h}$.
- Thus, c admits $e^{\frac{2i\pi}{h}}$ as an eigenvalue.
- The elements of W having e^{2iπ}/_h as an eigenvalue form a conjugacy class of W. [Springer's theory of regular elements]

Proposition

Outline

Coxeter elements in real reflection groups — via Coxeter systems
 Classical definition
 Extended definition

Extended definition

Coxeter elements in well-generated complex reflection groups — via eigenvalues

- Classical definition
- Extended definition

8 Reflection automorphisms and main results

Back to W well-generated complex reflection group (irreductible). \sim how to define a Coxeter element of W?

Define the Coxeter number h of W as the highest invariant degree: $h := d_n$.

 $[Springer] \Rightarrow$ the set of elements of W having $e^{rac{2i\pi}{h}}$ as eigenvalue

- is non-empty;
- forms a conjugacy class of *W*.

Definition ("classical definition", after Bessis '06)

Let W be a well-generated, irreducible complex reflection group. We call Coxeter element of W an element that admits $e^{\frac{2i\pi}{h}}$ as an eigenvalue.

Back to W well-generated complex reflection group (irreductible). \sim how to define a Coxeter element of W?

Define the Coxeter number h of W as the highest invariant degree: $h := d_n$.

 $[Springer] \Rightarrow$ the set of elements of W having $e^{rac{2l\pi}{h}}$ as eigenvalue

- is non-empty;
- forms a conjugacy class of W.

Definition ("classical definition", after Bessis '06)

Let W be a well-generated, irreducible complex reflection group. We call Coxeter element of W an element that admits $e^{\frac{2i\pi}{h}}$ as an eigenvalue.

Back to W well-generated complex reflection group (irreductible). \sim how to define a Coxeter element of W?

Define the Coxeter number h of W as the highest invariant degree: $h := d_n$.

 $[Springer] \Rightarrow$ the set of elements of W having $e^{rac{2i\pi}{h}}$ as eigenvalue

- is non-empty;
- forms a conjugacy class of W.

Definition ("classical definition", after Bessis '06)

Let W be a well-generated, irreducible complex reflection group. We call Coxeter element of W an element that admits $e^{\frac{2i\pi}{h}}$ as an eigenvalue.

Back to W well-generated complex reflection group (irreductible). \sim how to define a Coxeter element of W?

Define the Coxeter number h of W as the highest invariant degree: $h := d_n$.

 $[Springer] \Rightarrow$ the set of elements of W having $e^{\frac{2i\pi}{h}}$ as eigenvalue

- is non-empty;
- forms a conjugacy class of *W*.

Definition ("classical definition", after Bessis '06)

Let W be a well-generated, irreducible complex reflection group. We call Coxeter element of W an element that admits $e^{\frac{2i\pi}{h}}$ as an eigenvalue.

Outline

Coxeter elements in real reflection groups — via Coxeter systems
 Classical definition
 Extended definition

Extended definition

Coxeter elements in well-generated complex reflection groups — via eigenvalues

- Classical definition
- Extended definition

8 Reflection automorphisms and main results

Replace $e^{2i\pi/h}$ by another *h*-th root of unity

Natural generalization: "Galois twist".

Definition ("Extended definition")

Let W be a well-generated, irreducible complex reflection group, and h its Coxeter number.

We call generalized Coxeter element an element of W that admits a primitive *h*-th root of unity as an eigenvalue.

Equivalently, c is a generalized Coxeter element if and only if $c = w^k$ where w is a *classical* Coxeter element and $k \wedge h = 1$.

Is this definition compatible with the extended definition for real groups ?

Replace $e^{2i\pi/h}$ by another *h*-th root of unity

Natural generalization: "Galois twist".

Definition ("Extended definition")

Let W be a well-generated, irreducible complex reflection group, and h its Coxeter number.

We call generalized Coxeter element an element of W that admits a primitive *h*-th root of unity as an eigenvalue.

Equivalently, c is a generalized Coxeter element if and only if $c = w^k$ where w is a *classical* Coxeter element and $k \wedge h = 1$.

Is this definition compatible with the extended definition for real groups ?

Replace $e^{2i\pi/h}$ by another *h*-th root of unity

Natural generalization: "Galois twist".

Definition ("Extended definition")

Let W be a well-generated, irreducible complex reflection group, and h its Coxeter number.

We call generalized Coxeter element an element of W that admits a primitive *h*-th root of unity as an eigenvalue.

Equivalently, c is a generalized Coxeter element if and only if $c = w^k$ where w is a *classical* Coxeter element and $k \wedge h = 1$.

Is this definition compatible with the extended definition for real groups $\ensuremath{?}$

Four definitions is too much to remember!

	Classical definition	Extended definition
W real	Product of reflections through the walls of a chamber	$\prod_{s \in S} s, \text{ for some } S \subseteq R,$ with (W, S) Coxeter
W complex	$e^{\frac{2i\pi}{h}}$ is eigenvalue	$e^{\frac{2ik\pi}{h}}$ is eigenvalue for some $k, \ k \wedge h = 1$

Outline

Coxeter elements in real reflection groups — via Coxeter systems
 Classical definition

Extended definition

2 Coxeter elements in well-generated complex reflection groups — via eigenvalues

- Classical definition
- Extended definition

8 Reflection automorphisms and main results

Definition

A reflection automorphism of W is an automorphism of W that preserves the set R of all reflections of W.

Definition

A reflection automorphism of W is an automorphism of W that preserves the set R of all reflections of W.

Theorem (Reiner-R.-Stump)

Let $c \in W$. The following are equivalent:

- (i) c has an eigenvalue of order h;
- (ii) c = ψ(w) where w is a classical Coxeter element and ψ is a reflection automorphism of W;
- (iii) (c is a Springer-regular element of order h).

If W is real, this is also equivalent to:

Definition

A reflection automorphism of W is an automorphism of W that preserves the set R of all reflections of W.

Theorem (Reiner-R.-Stump)

Let $c \in W$. The following are equivalent:

- (i) c has an eigenvalue of order h;
- (ii) $c = \psi(w)$ where w is a classical Coxeter element and ψ is a reflection automorphism of W;

(iii) (c is a Springer-regular element of order h).

If W is real, this is also equivalent to:

Definition

A reflection automorphism of W is an automorphism of W that preserves the set R of all reflections of W.

Theorem (Reiner-R.-Stump)

Let $c \in W$. The following are equivalent:

- (i) c has an eigenvalue of order h;
- (ii) $c = \psi(w)$ where w is a classical Coxeter element and ψ is a reflection automorphism of W;
- (iii) (c is a Springer-regular element of order h).

If W is real, this is also equivalent to:

Definition

A reflection automorphism of W is an automorphism of W that preserves the set R of all reflections of W.

Theorem (Reiner-R.-Stump)

Let $c \in W$. The following are equivalent:

- (i) c has an eigenvalue of order h;
- (ii) $c = \psi(w)$ where w is a classical Coxeter element and ψ is a reflection automorphism of W;
- (iii) (c is a Springer-regular element of order h).

If W is real, this is also equivalent to:

Definition

A reflection automorphism of W is an automorphism of W that preserves the set R of all reflections of W.

Theorem (Reiner-R.-Stump)

Let $c \in W$. The following are equivalent:

- (i) c has an eigenvalue of order h;
- (ii) $c = \psi(w)$ where w is a classical Coxeter element and ψ is a reflection automorphism of W;
- (iii) (c is a Springer-regular element of order h).
- If W is real, this is also equivalent to:
- (iv) There exists $S \subseteq R$ such that (W, S) is a Coxeter system and c is the product (in any order) of elements of S.

Definition

A reflection automorphism of W is an automorphism of W that preserves the set R of all reflections of W.

Theorem (Reiner-R.-Stump)

Let $c \in W$. The following are equivalent:

- (i) c has an eigenvalue of order h;
- (ii) $c = \psi(w)$ where w is a classical Coxeter element and ψ is a reflection automorphism of W;
- (iii) (c is a Springer-regular element of order h).
- If W is real, this is also equivalent to:
- (iv) There exists $S \subseteq R$ such that (W, S) is a Coxeter system and c is the product (in any order) of elements of S.

Application to Coxeter-Catalan combinatorics

Corollary

Let W be a well-generated, irreducible complex reflection group, and R = Refs(W). Then, for all generalized Coxeter elements c, the sets

 $NC(W, c) := \{w \in W \mid \ell_R(w) + \ell_R(w^{-1}c) = \ell_R(c)\}$

are all *isomorphic posets* (so can be called W-noncrossing partition lattices).

More generally, any property

- known for classical Coxeter elements, and
- depending only on the combinatorics of the couple (W, R),
- $\bullet \rightsquigarrow$ extends to generalized Coxeter elements.

Applies to properties related to Coxeter-Catalan combinatorics. For example, the number of reduced decompositions of a generalized Coxeter element into reflections is $\frac{n!h^n}{|W|}$.

Application to Coxeter-Catalan combinatorics

Corollary

Let W be a well-generated, irreducible complex reflection group, and R = Refs(W). Then, for all generalized Coxeter elements c, the sets

 $NC(W, c) := \{w \in W \mid \ell_R(w) + \ell_R(w^{-1}c) = \ell_R(c)\}$

are all *isomorphic posets* (so can be called W-noncrossing partition lattices).

More generally, any property

- known for classical Coxeter elements, and
- depending only on the combinatorics of the couple (W, R),
- $\bullet \rightsquigarrow$ extends to generalized Coxeter elements.

Applies to properties related to Coxeter-Catalan combinatorics. For example, the number of reduced decompositions of a generalized Coxeter element into reflections is $\frac{n!h^n}{|W|}$.

How many new Coxeter elements?

Definition

The field of definition K_W of W is the smallest field over which one can write all matrices of W.

Examples: $K_W = \mathbb{Q}$ iff W crystallographic (Weyl group). For $W = I_2(m)$, $K_W = \mathbb{Q}(\cos \frac{2\pi}{m})$.

Theorem (RRS)

- The number of conjugacy classes of generalized Coxeter elements is [K_W : Q].
 (only 1 for Weyl groups; φ(m)/2 for dihedral group l₂(m)
- (More precisely, there is a natural action of the Galois group Gal(K_W/Q) on the set of conjugacy classes of generalized Coxeter elements of W, and this action is simply transitive.

$\forall C, C' \in \mathsf{Cox}(W), \exists ! \gamma \in \mathsf{F}, C' = \gamma \cdot C.)$

How many new Coxeter elements?

Definition

The field of definition K_W of W is the smallest field over which one can write all matrices of W.

Examples: $K_W = \mathbb{Q}$ iff W crystallographic (Weyl group). For $W = I_2(m)$, $K_W = \mathbb{Q}(\cos \frac{2\pi}{m})$.

Theorem (RRS)

The number of conjugacy classes of generalized Coxeter elements is [K_W : Q]. (only 1 for Weyl groups; φ(m)/2 for dihedral group l₂(m)...)

(More precisely, there is a natural action of the Galois group Gal(K_W/Q) on the set of conjugacy classes of generalized Coxeter elements of W, and this action is simply transitive.

$$\forall C, C' \in Cox(W), \exists ! \gamma \in \Gamma, C' = \gamma \cdot C.)$$

How many new Coxeter elements?

Definition

The field of definition K_W of W is the smallest field over which one can write all matrices of W.

Examples: $K_W = \mathbb{Q}$ iff W crystallographic (Weyl group). For $W = I_2(m)$, $K_W = \mathbb{Q}(\cos \frac{2\pi}{m})$.

Theorem (RRS)

- The number of conjugacy classes of generalized Coxeter elements is [K_W : Q]. (only 1 for Weyl groups; φ(m)/2 for dihedral group l₂(m)...)
- (More precisely, there is a natural action of the Galois group Gal(K_W/ℚ) on the set of conjugacy classes of generalized Coxeter elements of W, and this action is simply transitive.

$$\forall C, C' \in Cox(W), \exists ! \gamma \in \Gamma, C' = \gamma \cdot C.$$
)

Ingredients of the proofs

• a spoonful of classical Springer's theory of regular elements

• a big chunk of Galois automorphisms and reflection automorphisms of *W* [Marin-Michel '10]

• a pinch of case-by-case checks

Further results and questions

- Some results extends to more general elements of *W*, namely Springer's regular elements of arbitrary order.
- the characterization of generalized Coxeter elements for real groups extends to Shephard groups (those nicer complex groups with presentations "à la Coxeter").
- for the other well-generated complex groups, there is no canonical form of presentation, and not (yet?) a "combinatorial" vision of Coxeter elements.

Thank you!

Further results and questions

- Some results extends to more general elements of *W*, namely Springer's regular elements of arbitrary order.
- the characterization of generalized Coxeter elements for real groups extends to Shephard groups (those nicer complex groups with presentations "à la Coxeter").
- for the other well-generated complex groups, there is no canonical form of presentation, and not (yet?) a "combinatorial" vision of Coxeter elements.

Thank you!