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73rd Séminaire Lotharingien de Combinatoire
Strobl, 2014, September 9th

joint work with

Vic Reiner (Minneapolis) and Christian Stump (Berlin)



Context and motivation
NC(n) := {w ∈ Sn | `T (w) + `T (w−1c) = `T (c)}, where

T := {all transpositions of Sn}, `T associated length
function (“absolute length”);

c is a long cycle (n-cycle).

NC(n) is

equipped with a natural partial order (“absolute order”), and
is a lattice;

isomorphic to the poset of NonCrossing partitions of an n-gon
(“noncrossing partition lattice”), so it is counted by the
Catalan number Cat(n) = 1

n+1

(2n
n

)
.

Generalization to finite Coxeter groups (or reflection groups):

replace Sn with a Coxeter group W ;

replace T with R := {all reflections of W }, and `T with `R ;

replace c with a Coxeter element of W .



Context and motivation
NC(n) := {w ∈ Sn | `T (w) + `T (w−1c) = `T (c)}, where

T := {all transpositions of Sn}, `T associated length
function (“absolute length”);

c is a long cycle (n-cycle).

NC(n) is

equipped with a natural partial order (“absolute order”), and
is a lattice;

isomorphic to the poset of NonCrossing partitions of an n-gon
(“noncrossing partition lattice”), so it is counted by the
Catalan number Cat(n) = 1

n+1

(2n
n

)
.

Generalization to finite Coxeter groups (or reflection groups):

replace Sn with a Coxeter group W ;

replace T with R := {all reflections of W }, and `T with `R ;

replace c with a Coxeter element of W .



replace Sn with a Coxeter group W ;

replace T with R := {all reflections of W }, and `T with `R ;

replace c with a Coxeter element of W .

; obtain the W -noncrossing partition lattice
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Cat(W ) appears in other combinatorial objects attached to (W , c):
cluster complexes, generalized associahedra...
; “Coxeter-Catalan combinatorics”.



replace Sn with a Coxeter group W ;

replace T with R := {all reflections of W }, and `T with `R ;

replace c with a Coxeter element of W .

; obtain the W -noncrossing partition lattice

NC(W , c) := {w ∈W | `R(w) + `R(w−1c) = `R(c)},

also equipped with a “W -absolute order”;

counted by the W -Catalan number Cat(W ) :=
∏n

i=1
di+h
di

.

Cat(W ) appears in other combinatorial objects attached to (W , c):
cluster complexes, generalized associahedra...
; “Coxeter-Catalan combinatorics”.



replace Sn with a Coxeter group W ;

replace T with R := {all reflections of W }, and `T with `R ;

replace c with a Coxeter element of W .

; obtain the W -noncrossing partition lattice

NC(W , c) := {w ∈W | `R(w) + `R(w−1c) = `R(c)},

also equipped with a “W -absolute order”;

counted by the W -Catalan number Cat(W ) :=
∏n

i=1
di+h
di

.

Cat(W ) appears in other combinatorial objects attached to (W , c):
cluster complexes, generalized associahedra...
; “Coxeter-Catalan combinatorics”.



replace Sn with a Coxeter group W ;

replace T with R := {all reflections of W }, and `T with `R ;

replace c with a Coxeter element??

; obtain the W -noncrossing partition lattice

NC(W , c) := {w ∈W | `R(w) + `R(w−1c) = `R(c)},

also equipped with a “W -absolute order”;

counted by the W -Catalan number Cat(W ) :=
∏n

i=1
di+h
di

.

Cat(W ) appears in other combinatorial objects attached to (W , c):
cluster complexes, generalized associahedra...
; “Coxeter-Catalan combinatorics”.



Outline

1 Coxeter elements in real reflection groups — via Coxeter systems
Classical definition
Extended definition

2 Coxeter elements in well-generated complex reflection groups —
via eigenvalues

Classical definition
Extended definition

3 Reflection automorphisms and main results



Outline

1 Coxeter elements in real reflection groups — via Coxeter systems
Classical definition
Extended definition

2 Coxeter elements in well-generated complex reflection groups —
via eigenvalues

Classical definition
Extended definition

3 Reflection automorphisms and main results



Coxeter element of a Coxeter system

Definition

A Coxeter system (W , S) is a group W equipped with a generating
set S of involutions, such that W has a presentation of the form:

W =
〈
S
∣∣ s2 = 1 (∀s ∈ S); (st)ms,t = 1 (∀s 6= t ∈ S)

〉
,

with ms,t ∈ N≥2 ∪ {∞} for s 6= t.

Definition (“Definition 0”)

Write S := {s1, . . . , sn}. A Coxeter element of (W , S) is a product
of all the generators:

c = sπ(1) . . . sπ(n) for π ∈ Sn.
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Coxeter element of a real reflection group

V real vector space of dimension n

W finite subgroup of GL(V ) generated by reflections

; W admits a structure of Coxeter system.

Take for S the set of reflections through the walls of a fixed
chamber of the hyperplane arrangement of W .

Definition (“Classical definition”)

Let W be a finite real reflection group. A Coxeter element of W is
a product (in any order) of all the reflections through the walls of a
chamber of W .

Proposition

The set of Coxeter elements of W forms a conjugacy class.
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Alternative Coxeter structures

In general a real reflection group does not have a unique Coxeter
structure.

Example

Symmetry group of the regular hexagon = I2(6) ' A1 × A2

But “unicity if S consists of reflections”:

Proposition (Observation/Folklore?)

Let W be a finite real reflection group, R the set of all reflections
of W . Let S , S ′ ⊆ R be such that (W , S) and (W , S ′) are both
Coxeter systems.
Then (W , S) and (W , S ′) are isomorphic Coxeter systems.

proof not enlightening! (case-by-case check on the classification)

; Do you have a better proof?
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New Coxeter elements

For a real reflection group W , one may be able to construct
Coxeter structures which do not come from a chamber of the
arrangement...

; Isomorphic, but not conjugate structures!

Example of I2(5).

Definition

We call generalized Coxeter element of W a product (in any order)
of the elements of some set S , where S is such that:

S consists of reflections;

(W ,S) is a Coxeter system.
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Complex reflection group

V complex vector space of dimension n

W finite subgroup of GL(V ) generated by “reflections”
(r ∈ GL(V ) of finite order and fixing pointwise a hyperplane)

assume W is well-generated, i.e., can be generated by n
reflections.

Finite real reflection groups can be seen as complex reflection
groups.

But there are much more. In general: no Coxeter structure, no
privileged (natural, canonical) set of n generating reflections.

; how to define a Coxeter element of W ?



Recall: Geometry of Coxeter elements in real groups

Assume W is a finite, real reflection group (irreducible). Let c be
a Coxeter element of W , h the order of c (Coxeter number).

Facts

h = dn, the highest invariant degree of W :
d1 ≤ · · · ≤ dn degrees of homogeneous polynomials
f1 , . . . , fn ∈ C[V ] such that C[V ]W = C[f1, . . . , fn].

There exists a plane P ⊆ V stable by c and on which c acts
as a rotation of angle 2π

h .

Thus, c admits e
2iπ
h as an eigenvalue.

The elements of W having e
2iπ
h as an eigenvalue form a

conjugacy class of W . [Springer’s theory of regular elements]

Proposition

c is a Coxeter element of W iff c admits e
2iπ
h as an eigenvalue.
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Coxeter element in a complex reflection group

Back to W well-generated complex reflection group (irreductible).
; how to define a Coxeter element of W ?

Define the Coxeter number h of W as the highest invariant degree:
h := dn.

[Springer] ⇒ the set of elements of W having e
2iπ
h as eigenvalue

is non-empty;

forms a conjugacy class of W .

Definition (“classical definition”, after Bessis ’06)

Let W be a well-generated, irreducible complex reflection group.

We call Coxeter element of W an element that admits e
2iπ
h as an

eigenvalue.

Bessis’ seminal work related to Coxeter-Catalan combinatorics for
complex groups uses this definition.
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Replace e2iπ/h by another h-th root of unity

Natural generalization: “Galois twist”.

Definition (“Extended definition”)

Let W be a well-generated, irreducible complex reflection group,
and h its Coxeter number.

We call generalized Coxeter element an element of W that admits
a primitive h-th root of unity as an eigenvalue.

Equivalently, c is a generalized Coxeter element if and only if
c = wk where w is a classical Coxeter element and k ∧ h = 1.

Is this definition compatible with the extended definition for real
groups ?
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Four definitions is too much to remember!

Classical definition Extended definition

W real
Product of reflections
through the walls of a

chamber

∏
s∈S

s, for some S ⊆ R,

with (W , S) Coxeter

W complex e
2iπ
h is eigenvalue

e
2ikπ
h is eigenvalue

for some k, k ∧ h = 1
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Stability by reflection automorphisms

Definition

A reflection automorphism of W is an automorphism of W that
preserves the set R of all reflections of W .

Theorem (Reiner-R.-Stump)

Let c ∈W . The following are equivalent:

(i) c has an eigenvalue of order h;

(ii) c = ψ(w) where w is a classical Coxeter element and ψ is a
reflection automorphism of W ;

(iii) (c is a Springer-regular element of order h).

If W is real, this is also equivalent to:

(iv) There exists S ⊆ R such that (W , S) is a Coxeter system and
c is the product (in any order) of elements of S.
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Application to Coxeter-Catalan combinatorics

Corollary

Let W be a well-generated, irreducible complex reflection group,
and R = Refs(W ).
Then, for all generalized Coxeter elements c, the sets

NC(W , c) := {w ∈W | `R(w) + `R(w−1c) = `R(c)

are all isomorphic posets (so can be called W -noncrossing partition
lattices).

More generally, any property

known for classical Coxeter elements, and

depending only on the combinatorics of the couple (W ,R),

; extends to generalized Coxeter elements.

Applies to properties related to Coxeter-Catalan combinatorics. For
example, the number of reduced decompositions of a generalized
Coxeter element into reflections is n!hn

|W | .
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How many new Coxeter elements?

Definition

The field of definition KW of W is the smallest field over which
one can write all matrices of W .

Examples: KW = Q iff W crystallographic (Weyl group).
For W = I2(m), KW = Q(cos 2π

m ).

Theorem (RRS)

The number of conjugacy classes of generalized Coxeter
elements is [KW : Q].
(only 1 for Weyl groups; ϕ(m)/2 for dihedral group I2(m)...)

(More precisely, there is a natural action of the Galois group
Gal(KW /Q) on the set of conjugacy classes of generalized
Coxeter elements of W , and this action is simply transitive.

∀C ,C ′ ∈ Cox(W ), ∃!γ ∈ Γ,C ′ = γ · C . )
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Ingredients of the proofs

a spoonful of classical Springer’s theory of regular elements

a big chunk of Galois automorphisms and reflection
automorphisms of W [Marin-Michel ’10]

a pinch of case-by-case checks /



Further results and questions

Some results extends to more general elements of W , namely
Springer’s regular elements of arbitrary order.

the characterization of generalized Coxeter elements for real
groups extends to Shephard groups (those nicer complex
groups with presentations “à la Coxeter”).

for the other well-generated complex groups, there is no
canonical form of presentation, and not (yet?) a
“combinatorial” vision of Coxeter elements.

Thank you!
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