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Context and motivation
NC(n) :={w € &, | £r(w) + £r(w1c) = £1(c)}, where

e T := {all transpositions of &,}, {1 associated length
function (“absolute length");

e cis a long cycle (n-cycle).

NC(n) is
@ equipped with a natural partial order (“absolute order”), and
is a lattice;

@ isomorphic to the poset of NonCrossing partitions of an n-gon
(“noncrossing partition lattice”), so it is counted by the

Catalan number Cat(n) = +1; (%/).
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Coxeter element of a Coxeter system

Definition
A Coxeter system (W, S) is a group W equipped with a generating
set S of involutions, such that W has a presentation of the form:

W=(S|s=1(Vs€S) (st)y™ =1(Vs#t€S)),

with ms ¢+ € N> U {oo} for s # t.

Definition (“Definition 0")
Write S := {s1,...,sp}. A Coxeter element of (W, S) is a product

of all the generators:
C=Sr)---Sr(m) forme &,
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v

Proposition

The set of Coxeter elements of W forms a conjugacy class.
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Alternative Coxeter structures

In general a real reflection group does not have a unique Coxeter
structure.

Example
Symmetry group of the regular hexagon = h(6) ~ A; x A J

But “unicity if S consists of reflections”:

Proposition (Observation/Folklore?)

In other words:

(W, S) finite Coxeter system. R :=J,,cy wSw™ . Let S’ C R be
such that (W,S’) is also a Coxeter system.

Then (W, S') is isomorphic to (W, S).

proof not enlightening! (case-by-case check on the classification)

~» Do you have a better proof?



New Coxeter elements

For a real reflection group W, one may be able to construct
Coxeter structures which do not come from a chamber of the
arrangement...

~» Isomorphic, but not conjugate structures!

Example of h(5).

Definition
We call generalized Coxeter element of W a product (in any order)
of the elements of some set S, where S is such that:

@ S consists of reflections;

e (W,S) is a Coxeter system.
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@ Classical definition
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Complex reflection group

@ V complex vector space of dimension n

e W finite subgroup of GL(V') generated by “reflections”
(r € GL(V) of finite order and fixing pointwise a hyperplane)

@ assume W is well-generated, i.e., can be generated by n
reflections.

Finite real reflection groups can be seen as complex reflection
groups.

But there are much more. In general: no Coxeter structure, no
privileged (natural, canonical) set of n generating reflections.

~» how to define a Coxeter element of W?
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Recall: Geometry of Coxeter elements in real groups

Assume W is a finite, real reflection group (irreducible). Let ¢ be
a Coxeter element of W, h the order of ¢ (Coxeter number).

Facts

@ h = dp, the highest invariant degree of W:
di < --- < d, degrees of homogeneous polynomials
fi ..., f, €C[V]such that C[V]W = CIf,..., f].
@ There exists a plane P C V stable by ¢ and on which ¢ acts

as a rotation of angle 27”

) 2im .
@ Thus, c admits e » as an eigenvalue.

2im
@ The elements of W having e » as an eigenvalue form a
conjugacy class of W. [Springer’s theory of regular elements]

Proposition

i

. : .2 .
c is a Coxeter element of W iff ¢ admits e » as an eigenvalue.
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Coxeter element in a complex reflection group

Back to W well-generated complex reflection group (irreductible).
~ how to define a Coxeter element of W?

Define the Coxeter number h of W as the highest invariant degree:
h:=d,.
[Springer] = the set of elements of W having e’ as eigenvalue

@ is non-empty;

e forms a conjugacy class of W.

Definition (“classical definition”, after Bessis '06)

Let W be a well-generated, irreducible complex reﬂectlon group.
We call Coxeter element of W an element that admits e i~ as an
eigenvalue.

Bessis’' seminal work related to Coxeter-Catalan combinatorics for
complex groups uses this definition.
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via eigenvalues
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Replace €2™/" by another h-th root of unity

Natural generalization: "Galois twist”.

Definition ( “Extended definition™)

Let W be a well-generated, irreducible complex reflection group,
and h its Coxeter number.

We call generalized Coxeter element an element of W that admits
a primitive h-th root of unity as an eigenvalue.
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Replace €2™/" by another h-th root of unity

Natural generalization: "Galois twist”.

Definition ( “Extended definition™)

Let W be a well-generated, irreducible complex reflection group,
and h its Coxeter number.

We call generalized Coxeter element an element of W that admits
a primitive h-th root of unity as an eigenvalue.

Equivalently, c is a generalized Coxeter element if and only if

¢ = wX where w is a classical Coxeter element and k A h = 1.

Is this definition compatible with the extended definition for real
groups ?



Four definitions is too much to remember!

Classical definition

Extended definition

Product of reflections

H s, for some S C R,

W real through the walls of a seS
chamber with (W, S) Coxeter
2ikm . . |
2im . e h is eigenvalue
W complex e h is eigenvalue &

for some k, kANh=1
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Stability by reflection automorphisms

Definition
A reflection automorphism of W is an automorphism of W that
preserves the set R of all reflections of W.

Theorem (Reiner-R.-Stump)
Let c € W. The following are equivalent:
(i) ¢ has an eigenvalue of order h;

(i) ¢ = 1(w) where w is a classical Coxeter element and 1) is a
reflection automorphism of W ;

(iii) (c is a Springer-regular element of order h).
If W is real, this is also equivalent to:

(iv) There exists S C R such that (W, S) is a Coxeter system and
c is the product (in any order) of elements of S.

V.




Application to Coxeter-Catalan combinatorics

Corollary

Let W be a well-generated, irreducible complex reflection group,
and R = Refs(W).
Then, for all generalized Coxeter elements c, the sets

NC(W,c) :={w e W | Lr(w) + Lr(wtc) = Lr(c)

are all isomorphic posets (so can be called W-noncrossing partition
lattices).
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Then, for all generalized Coxeter elements c, the sets

NC(W,c) :={w e W | Lr(w) + Lr(wtc) = Lr(c)

are all isomorphic posets (so can be called W-noncrossing partition
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v

More generally, any property
@ known for classical Coxeter elements, and
@ depending only on the combinatorics of the couple (W, R),
@ ~ extends to generalized Coxeter elements.

Applies to properties related to Coxeter-Catalan combinatorics. For
example, the number of reduced decompositions of a generalized

. . . (A
Coxeter element into reflections is TVI‘}I )
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How many new Coxeter elements?

Definition
The field of definition Ky of W is the smallest field over which
one can write all matrices of W.

Examples: Ky = Q iff W crystallographic (Weyl group).
For W = h(m), Kw = Q(cos 2Z).

Theorem (RRS)
@ The number of conjugacy classes of generalized Coxeter
elements is [Ky : Q.
(only 1 for Weyl groups; p(m)/2 for dihedral group l(m)...)
o (More precisely, there is a natural action of the Galois group
Gal(Kw /Q) on the set of conjugacy classes of generalized
Coxeter elements of W, and this action is simply transitive.

VC,C' € Cox(W),3lyel,C'=+-C.)




Ingredients of the proofs

@ a spoonful of classical Springer's theory of regular elements

@ a big chunk of Galois automorphisms and reflection
automorphisms of W [Marin-Michel '10]

@ a pinch of case-by-case checks @



Further results and questions

@ Some results extends to more general elements of W, namely
Springer's regular elements of arbitrary order.

@ the characterization of generalized Coxeter elements for real
groups extends to Shephard groups (those nicer complex
groups with presentations “a la Coxeter”).

@ for the other well-generated complex groups, there is no
canonical form of presentation, and not (yet?) a
“combinatorial” vision of Coxeter elements.



Further results and questions

@ Some results extends to more general elements of W, namely
Springer's regular elements of arbitrary order.

@ the characterization of generalized Coxeter elements for real
groups extends to Shephard groups (those nicer complex
groups with presentations “a la Coxeter”).

@ for the other well-generated complex groups, there is no
canonical form of presentation, and not (yet?) a
“combinatorial” vision of Coxeter elements.

Thank youl!
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