Complements of Coxeter Group Quotients

Paolo Sentinelli
Università degli Studi di Roma "Tor Vergata"

73nd Séminaire Lotharingien de Combinatoire, Strobl

Main results and motivations

The quotients W^{J} of a Coxeter group W have been intensively studied from different points of view. In this talk will be shown that their complements $W \backslash W^{J}$ have analogous combinatorial and topological properties.

Main results and motivations

The quotients W^{J} of a Coxeter group W have been intensively studied from different points of view. In this talk will be shown that their complements $W \backslash W^{J}$ have analogous combinatorial and topological properties.

The first motivation of such research it's algebraic: in fact these complements appear naturally defining the Hecke modules which lead to parabolic Kazhdan-Lusztig theory.

Main results and motivations

The quotients W^{J} of a Coxeter group W have been intensively studied from different points of view. In this talk will be shown that their complements $W \backslash W^{J}$ have analogous combinatorial and topological properties.

The first motivation of such research it's algebraic: in fact these complements appear naturally defining the Hecke modules which lead to parabolic Kazhdan-Lusztig theory.

Sections:

Main results and motivations

The quotients W^{J} of a Coxeter group W have been intensively studied from different points of view. In this talk will be shown that their complements $W \backslash W^{J}$ have analogous combinatorial and topological properties.

The first motivation of such research it's algebraic: in fact these complements appear naturally defining the Hecke modules which lead to parabolic Kazhdan-Lusztig theory.

Sections:

- Combinatorial properties.

Main results and motivations

The quotients W^{J} of a Coxeter group W have been intensively studied from different points of view. In this talk will be shown that their complements $W \backslash W^{J}$ have analogous combinatorial and topological properties.

The first motivation of such research it's algebraic: in fact these complements appear naturally defining the Hecke modules which lead to parabolic Kazhdan-Lusztig theory.

Sections:

- Combinatorial properties.
- Algebraic properties.

Main results and motivations

The quotients W^{J} of a Coxeter group W have been intensively studied from different points of view. In this talk will be shown that their complements $W \backslash W^{J}$ have analogous combinatorial and topological properties.

The first motivation of such research it's algebraic: in fact these complements appear naturally defining the Hecke modules which lead to parabolic Kazhdan-Lusztig theory.

Sections:

- Combinatorial properties.
- Algebraic properties.
- Topological properties.

Coxeter groups

Let S be a finite set and $m: S \times S \rightarrow\{1,2, \ldots, \infty\}$ be a symmetric matrix such that

$$
m(s, t)=1, \text { if and only if } s=t
$$

for every $s, t \in S$.

Coxeter groups

Let S be a finite set and $m: S \times S \rightarrow\{1,2, \ldots, \infty\}$ be a symmetric matrix such that

$$
m(s, t)=1, \text { if and only if } s=t
$$

for every $s, t \in S$.
The Coxeter group W relative to the Coxeter matrix m is defined by the presentation

$$
\begin{cases}\text { Generators: } & S ; \\ \text { Relations: } & (s t)^{m(s, t)}=e\end{cases}
$$

for every $s, t \in S$, where e is the identity of the group.

Coxeter groups

Let S be a finite set and $m: S \times S \rightarrow\{1,2, \ldots, \infty\}$ be a symmetric matrix such that

$$
m(s, t)=1, \text { if and only if } s=t
$$

for every $s, t \in S$.
The Coxeter group W relative to the Coxeter matrix m is defined by the presentation

$$
\begin{cases}\text { Generators: } & S ; \\ \text { Relations: } & (s t)^{m(s, t)}=e\end{cases}
$$

for every $s, t \in S$, where e is the identity of the group.
We call (W, S) a Coxeter system.

Coxeter groups - Bruhat order

Given a Coxeter system (W, S), an element $w \in W$ is a word in the alphabet S :

$$
w=s_{1} s_{2} \ldots s_{k}, \quad s_{i} \in S
$$

If k is minimal among all such expressions for w then $\ell(w)=k$ is called the length of w and the word $s_{1} s_{2} \ldots s_{k}$ is called a reduced word for w. Define

$$
\ell(v, w):=\ell(w)-\ell(v)
$$

Coxeter groups - Bruhat order

Given a Coxeter system (W, S), an element $w \in W$ is a word in the alphabet S :

$$
w=s_{1} s_{2} \ldots s_{k}, \quad s_{i} \in S
$$

If k is minimal among all such expressions for w then $\ell(w)=k$ is called the length of w and the word $s_{1} s_{2} \ldots s_{k}$ is called a reduced word for w. Define

$$
\ell(v, w):=\ell(w)-\ell(v)
$$

The Bruhat order of W is defined in the following way: given $u, v \in W$ and $v=s_{1} s_{2} \ldots s_{q}$ a reduced expression for v,
$u \leqslant v \Leftrightarrow$ there exists a reduced expression

$$
u=s_{i_{1}} \ldots s_{i_{k}}, 1 \leqslant i_{1}<\ldots<i_{k} \leqslant q .
$$

Coxeter groups - Descent sets and quotients

A right descent of $w \in W$ is an element $s \in S$ such that $\ell(w s)<\ell(w)$.

$$
D_{R}(w):=\{s \in S \mid \ell(w s)<\ell(w)\} .
$$

Analogously is defined the left descent set of $w, D_{L}(w)$.

Coxeter groups - Descent sets and quotients

A right descent of $w \in W$ is an element $s \in S$ such that $\ell(w s)<\ell(w)$.

$$
D_{R}(w):=\{s \in S \mid \ell(w s)<\ell(w)\} .
$$

Analogously is defined the left descent set of $w, D_{L}(w)$.
For any $J \subseteq S$ consider the set

$$
W^{J}:=\{w \in W \mid \ell(s w)>\ell(w) \forall s \in J\}
$$

Coxeter groups - Descent sets and quotients

A right descent of $w \in W$ is an element $s \in S$ such that $\ell(w s)<\ell(w)$.

$$
D_{R}(w):=\{s \in S \mid \ell(w s)<\ell(w)\} .
$$

Analogously is defined the left descent set of $w, D_{L}(w)$.
For any $J \subseteq S$ consider the set

$$
W^{J}:=\{w \in W \mid \ell(s w)>\ell(w) \forall s \in J\}
$$

One can show that for $J \subseteq S$, each element $w \in W$ has a unique expression

$$
w=w \jmath w^{J}
$$

where $w^{J} \in W^{J}$ and $w_{J} \in W_{J}$, being $W_{J} \subseteq W$ the subgroup generated by the element of J.

Coxeter groups - Descent sets and quotients

A right descent of $w \in W$ is an element $s \in S$ such that $\ell(w s)<\ell(w)$.

$$
D_{R}(w):=\{s \in S \mid \ell(w s)<\ell(w)\} .
$$

Analogously is defined the left descent set of $w, D_{L}(w)$.
For any $J \subseteq S$ consider the set

$$
W^{J}:=\{w \in W \mid \ell(s w)>\ell(w) \forall s \in J\}
$$

One can show that for $J \subseteq S$, each element $w \in W$ has a unique expression

$$
w=w_{\jmath} w^{J}
$$

where $w^{J} \in W^{J}$ and $w_{J} \in W_{J}$, being $W_{J} \subseteq W$ the subgroup generated by the element of J. In particular $W_{S}=W$ and $W_{\varnothing}=\{e\}$.

Coxeter groups - Descent sets and quotients

A right descent of $w \in W$ is an element $s \in S$ such that $\ell(w s)<\ell(w)$.

$$
D_{R}(w):=\{s \in S \mid \ell(w s)<\ell(w)\} .
$$

Analogously is defined the left descent set of $w, D_{L}(w)$.
For any $J \subseteq S$ consider the set

$$
W^{J}:=\{w \in W \mid \ell(s w)>\ell(w) \forall s \in J\} .
$$

One can show that for $J \subseteq S$, each element $w \in W$ has a unique expression

$$
w=w_{\jmath} w^{J}
$$

where $w^{J} \in W^{J}$ and $w_{J} \in W_{J}$, being $W_{J} \subseteq W$ the subgroup generated by the element of J. In particular $W_{S}=W$ and $W_{\varnothing}=\{e\}$. So W^{J} is a set isomorphic to the quotient

$$
W^{J} \simeq W / W_{J}
$$

Example: the symmetric group

Let S_{n} be the group of permutations of n objects.

Example: the symmetric group

Let S_{n} be the group of permutations of n objects.

The set $S=\{(i, i+1), 1 \leqslant i \leqslant n-1\}$ of adjacent transpositions generates S_{n}.

Example: the symmetric group

Let S_{n} be the group of permutations of n objects.
The set $S=\{(i, i+1), 1 \leqslant i \leqslant n-1\}$ of adjacent transpositions generates S_{n}.
$\left(S_{n}, S\right)$ is a Coxeter system;

Example: the symmetric group

Let S_{n} be the group of permutations of n objects.
The set $S=\{(i, i+1), 1 \leqslant i \leqslant n-1\}$ of adjacent transpositions generates S_{n}.
$\left(S_{n}, S\right)$ is a Coxeter system; in fact, it is straightforward to verify that the generators $s_{1}, s_{2}, \ldots, s_{n-1}$, where $s_{i}:=(i, i+1)$ for $1 \leqslant i \leqslant n-1$, satisfy the Coxeter relations

$$
\begin{cases}s_{i}^{2}=e, & \\ s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} & \text { if }|i-j|=1 \\ s_{i} s_{j}=s_{j} s_{i} & \text { if }|i-j|>1\end{cases}
$$

Example: the symmetric group

Let $w \in S_{n}$. Then

$$
\ell(w)=|\{1 \leqslant i<j \leqslant n \mid w(i)>w(j)\}|
$$

Example: the symmetric group

Let $w \in S_{n}$. Then

$$
\begin{aligned}
& \ell(w)=|\{1 \leqslant i<j \leqslant n \mid w(i)>w(j)\}| \\
& D_{L}(w)=\{1 \leqslant i<n \mid w(i)>w(i+1)\}
\end{aligned}
$$

Example: the symmetric group

Let $w \in S_{n}$. Then

$$
\begin{gathered}
\ell(w)=|\{1 \leqslant i<j \leqslant n \mid w(i)>w(j)\}| \\
D_{L}(w)=\{1 \leqslant i<n \mid w(i)>w(i+1)\} \\
D_{R}(w)=\left\{1 \leqslant i<n \mid w^{-1}(i)>w^{-1}(i+1)\right\}
\end{gathered}
$$

Example: the symmetric group

Let $w \in S_{n}$. Then

$$
\begin{gathered}
\ell(w)=|\{1 \leqslant i<j \leqslant n \mid w(i)>w(j)\}| \\
D_{L}(w)=\{1 \leqslant i<n \mid w(i)>w(i+1)\} \\
D_{R}(w)=\left\{1 \leqslant i<n \mid w^{-1}(i)>w^{-1}(i+1)\right\} \\
W^{J}=\left\{w \in S_{n} \mid s_{i} \in J \Rightarrow w(i)<w(i+1)\right\}
\end{gathered}
$$

Coxeter groups - Quotients and projections

The quotient W^{J} can be ordered by the induced Bruhat order. With $[v, w]^{J}$ it's denoted an interval in W^{J}, i.e., if $v, w \in W^{J}$ and $v \leqslant w$,

$$
[v, w]^{J}:=\left\{z \in W^{J} \mid v \leqslant z \leqslant w\right\} .
$$

Coxeter groups - Quotients and projections

The quotient W^{J} can be ordered by the induced Bruhat order. With $[v, w]^{J}$ it's denoted an interval in W^{J}, i.e., if $v, w \in W^{J}$ and $v \leqslant w$,

$$
[v, w]^{J}:=\left\{z \in W^{J} \mid v \leqslant z \leqslant w\right\} .
$$

Define the canonical projection $P^{J}: W \rightarrow W^{J}$ by

$$
P^{J}(w)=w^{J}
$$

Coxeter groups - Quotients and projections

The quotient W^{J} can be ordered by the induced Bruhat order. With $[v, w]^{J}$ it's denoted an interval in W^{J}, i.e., if $v, w \in W^{J}$ and $v \leqslant w$,

$$
[v, w]^{J}:=\left\{z \in W^{J} \mid v \leqslant z \leqslant w\right\} .
$$

Define the canonical projection $P^{J}: W \rightarrow W^{J}$ by

$$
P^{J}(w)=w^{J} .
$$

It's known that P^{J} is a morphism of posets, i.e.

$$
u \leqslant v \Rightarrow P^{J}(u) \leqslant P^{J}(v)
$$

Coxeter groups - Quotients and projections

The poset W^{J} is graded with rank function the length ℓ. Moreover

Coxeter groups - Quotients and projections

The poset W^{J} is graded with rank function the length ℓ. Moreover

Theorem (Deodhar, 1977)

The Möbius function of the poset W^{J} is

$$
\mu^{J}(v, w)= \begin{cases}(-1)^{\ell(v, w)}, & \text { if }[v, w]^{J}=[v, w], \\ 0, & \text { otherwise. }\end{cases}
$$

Coxeter groups - Quotients and projections

The poset W^{J} is graded with rank function the length ℓ. Moreover

Theorem (Deodhar, 1977)

The Möbius function of the poset W^{J} is

$$
\mu^{J}(v, w)= \begin{cases}(-1)^{\ell(v, w)}, & \text { if }[v, w]^{J}=[v, w], \\ 0, & \text { otherwise. }\end{cases}
$$

Theorem (Björner and Wachs, 1982)

The order complex of $[v, w]^{J}$ is shellable.

Combinatorial properties of $W \backslash W^{J}$

We denote by $[u, v]^{\backslash J}$ the Bruhat intervals in $W \backslash W^{J}$, i.e., if $u, v \in W \backslash W^{J}$ and $u \leqslant v$,

$$
[u, v]^{\backslash J}:=\left\{z \in W \backslash W^{J} \mid u \leqslant z \leqslant v\right\} .
$$

Combinatorial properties of $W \backslash W^{J}$

We denote by $[u, v]^{\backslash J}$ the Bruhat intervals in $W \backslash W^{J}$, i.e., if $u, v \in W \backslash W^{J}$ and $u \leqslant v$,

$$
[u, v]^{\backslash J}:=\left\{z \in W \backslash W^{J} \mid u \leqslant z \leqslant v\right\} .
$$

Theorem (S., 2014)

The set $W \backslash W^{J}$, with the induced Bruhat order, is a graded poset with the length minus one as rank function.

Combinatorial properties of $W \backslash W^{J}$

Theorem (S., 2014)

The Möbius function of the poset $W \backslash W^{J}$ is

$$
\mu^{\backslash J}(u, v)= \begin{cases}(-1)^{\ell(u, v)} & \text { if } u \nless v^{J}, \\ 0, & \text { otherwise. }\end{cases}
$$

Equivalently,

$$
\mu^{\backslash J}(u, v)= \begin{cases}(-1)^{\ell(u, v)} & \text { if }[u, v]^{\backslash J}=[u, v], \\ 0, & \text { otherwise. }\end{cases}
$$

Algebraic properties of $W \backslash W^{J}$ - Hecke algebras

Let $A:=\mathbb{Z}\left[q^{-1 / 2}, q^{1 / 2}\right]$ be the ring of Laurent polynomials in the indeterminate $q^{1 / 2}$. Recall that the Hecke algebra $\mathcal{H}(W)$ is the free A-module generated by the set $\left\{T_{w} \mid w \in W\right\}$ with product defined by

$$
T_{w} T_{s}= \begin{cases}T_{w s}, & \text { if } s \notin D_{R}(w) \\ q T_{w s}+(q-1) T_{w}, & \text { otherwise }\end{cases}
$$

for all $w \in W$ and $s \in S$.

Algebraic properties of $W \backslash W^{J}$ - Hecke algebras

Let $A:=\mathbb{Z}\left[q^{-1 / 2}, q^{1 / 2}\right]$ be the ring of Laurent polynomials in the indeterminate $q^{1 / 2}$. Recall that the Hecke algebra $\mathcal{H}(W)$ is the free A-module generated by the set $\left\{T_{w} \mid w \in W\right\}$ with product defined by

$$
T_{w} T_{s}= \begin{cases}T_{w s}, & \text { if } s \notin D_{R}(w) \\ q T_{w s}+(q-1) T_{w}, & \text { otherwise }\end{cases}
$$

for all $w \in W$ and $s \in S$.

For $s \in S$ one can easily see that

$$
T_{s}^{-1}=\left(q^{-1}-1\right) T_{e}+q^{-1} T_{s}
$$

and then use this to invert all the elements T_{w}, where $w \in W$.

Algebraic properties of $W \backslash W^{J}$ - Hecke algebras

On $\mathcal{H}(W)$ there is an involution ι defined by

$$
\iota\left(q^{\frac{1}{2}}\right)=q^{-\frac{1}{2}}, \quad \iota\left(T_{w}\right)=T_{w^{-1}}^{-1},
$$

for all $w \in W$.

Algebraic properties of $W \backslash W^{J}$ - Hecke algebras

On $\mathcal{H}(W)$ there is an involution ι defined by

$$
\iota\left(q^{\frac{1}{2}}\right)=q^{-\frac{1}{2}}, \quad \iota\left(T_{w}\right)=T_{w^{-1}}^{-1},
$$

for all $w \in W$. Furthermore this map is a ring automorphism, i.e.

$$
\iota\left(T_{v} T_{w}\right)=\iota\left(T_{v}\right) \iota\left(T_{w}\right) \quad \forall v, w \in W
$$

Algebraic properties of $W \backslash W^{J}$ - Hecke algebras

On $\mathcal{H}(W)$ there is an involution ι defined by

$$
\iota\left(q^{\frac{1}{2}}\right)=q^{-\frac{1}{2}}, \quad \iota\left(T_{w}\right)=T_{w^{-1}}^{-1},
$$

for all $w \in W$. Furthermore this map is a ring automorphism, i.e.

$$
\iota\left(T_{v} T_{w}\right)=\iota\left(T_{v}\right) \iota\left(T_{w}\right) \quad \forall v, w \in W
$$

Theorem (Kazhdan and Lusztig, 1979)

There is an ८-invariant basis $\left\{C_{w}\right\}_{w \in W}$ of the Hecke algebra $\mathcal{H}(W)$, where

$$
C_{w}=q^{\frac{\ell(w)}{2}} \sum_{y \leqslant w}(-1)^{\ell(y, w)} q^{-\ell(y)} P_{y, w}\left(q^{-1}\right) T_{y} .
$$

Algebraic properties of $W \backslash W^{J}$ - Hecke algebras

On $\mathcal{H}(W)$ there is an involution ι defined by

$$
\iota\left(q^{\frac{1}{2}}\right)=q^{-\frac{1}{2}}, \quad \iota\left(T_{w}\right)=T_{w^{-1}}^{-1},
$$

for all $w \in W$. Furthermore this map is a ring automorphism, i.e.

$$
\iota\left(T_{v} T_{w}\right)=\iota\left(T_{v}\right) \iota\left(T_{w}\right) \quad \forall v, w \in W
$$

Theorem (Kazhdan and Lusztig, 1979)

There is an ८-invariant basis $\left\{C_{w}\right\}_{w \in W}$ of the Hecke algebra $\mathcal{H}(W)$, where

$$
C_{w}=q^{\frac{\ell(w)}{2}} \sum_{y \leqslant w}(-1)^{\ell(y, w)} q^{-\ell(y)} P_{y, w}\left(q^{-1}\right) T_{y} .
$$

The polynomials $\left\{P_{v, w}\right\}_{v, w \in W} \subseteq \mathbb{Z}[q]$ are called the Kazhdan-Lusztig polynomials of W.

Algebraic properties of $W \backslash W^{J}$ - The Hecke modules M^{J} (Deodhar, 1987)

For $J \subseteq S$ let

Algebraic properties of $W \backslash W^{J}$ - The Hecke modules M^{J} (Deodhar, 1987)

For $J \subseteq S$ let

$$
M^{J}:=\operatorname{span}_{A}\left\{m_{v}^{J} \mid v \in W^{J}\right\}
$$

Algebraic properties of $W \backslash W^{J}$ - The Hecke modules M^{J} (Deodhar, 1987)

For $J \subseteq S$ let

$$
M^{J}:=\operatorname{span}_{A}\left\{m_{v}^{J} \mid v \in W^{J}\right\} .
$$

There is an A-module morphism $\phi^{J, x}: \mathcal{H} \rightarrow M^{J}$ defined by

$$
\phi^{J, x}\left(T_{w}\right)=x^{\ell\left(w_{J}\right)} m_{w^{J}}^{J},
$$

where $x \in\{-1, q\}$.

Algebraic properties of $W \backslash W^{J}$ - The Hecke modules M^{J} (Deodhar 1987)

This A-module morphism defines a right action of the algebra \mathcal{H} on M^{J} by

Algebraic properties of $W \backslash W^{J}$ - The Hecke modules M^{J} (Deodhar 1987)

This A-module morphism defines a right action of the algebra \mathcal{H} on M^{J} by

$$
m_{v}^{J} T_{w}:=\phi^{J, x}\left(T_{v} T_{w}\right)
$$

for all $v \in W^{J}, w \in W$.

Algebraic properties of $W \backslash W^{J}$ - The Hecke modules M^{J} (Deodhar 1987)

This A-module morphism defines a right action of the algebra \mathcal{H} on M^{J} by

$$
m_{v}^{J} T_{w}:=\phi^{J, x}\left(T_{v} T_{w}\right)
$$

for all $v \in W^{J}, w \in W$.
We call $M^{J,-1}$ and $M^{J, q}$ these two right \mathcal{H}-modules and $\left\{m_{v}^{J, x}\right\}_{v \in W^{J}}$ the elements of their basis, for $x \in\{-1, q\}$.

Algebraic properties of $W \backslash W^{J}$ - The Hecke modules M^{J} (Deodhar 1987)

This A-module morphism defines a right action of the algebra \mathcal{H} on M^{J} by

$$
m_{v}^{J} T_{w}:=\phi^{J, x}\left(T_{v} T_{w}\right)
$$

for all $v \in W^{J}, w \in W$.
We call $M^{J,-1}$ and $M^{J, q}$ these two right \mathcal{H}-modules and $\left\{m_{v}^{J, x}\right\}_{v \in W^{J}}$ the elements of their basis, for $x \in\{-1, q\}$.

There is an involution $\iota^{x}: M^{J, x} \rightarrow M^{J, x}$ defined by

$$
\iota^{x}\left(m_{v}^{J, x}\right):=\phi^{J, x}\left(\iota\left(T_{v}\right)\right)
$$

for all $v \in W^{J}$

Algebraic properties of $W \backslash W^{J}$ - The Hecke modules M^{J}

Theorem (Deodhar, 1987)

There is an ι^{x}-invariant basis $\left\{C_{w}^{J, x}\right\}_{w \in W^{J}}$ of the Hecke module $M^{J, x}$, where

$$
C_{w}^{J, x}=q^{\frac{\ell(w)}{2}} \sum_{y \in[e, w]^{J}}(-1)^{\ell(y, w)} q^{-\ell(y)} P_{y, w}^{J, x}\left(q^{-1}\right) m_{y}^{J, x}
$$

Algebraic properties of $W \backslash W^{J}$ - The Hecke modules M^{J}

Theorem (Deodhar, 1987)

There is an ι^{x}-invariant basis $\left\{C_{w}^{J, x}\right\}_{w \in W^{J}}$ of the Hecke module $M^{J, x}$, where

$$
C_{w}^{J, x}=q^{\frac{\ell(w)}{2}} \sum_{y \in[e, w]^{J}}(-1)^{\ell(y, w)} q^{-\ell(y)} P_{y, w}^{J, x}\left(q^{-1}\right) m_{y}^{J, x}
$$

The polynomials $\left\{P_{v, w}^{J, x}\right\}_{v, w \in W^{J}} \subseteq \mathbb{Z}[q]$ are called the parabolic Kazhdan-Lusztig polynomials of W^{J} of type x.

Algebraic properties of $W \backslash W^{J}$ - The annihilator of $m_{e}^{J, x}$

Note that the modules $M^{J, x}$ are cyclic; in fact

$$
m_{e}^{J, x} \mathcal{H}=M^{J, x} .
$$

Algebraic properties of $W \backslash W^{J}$ - The annihilator of $m_{e}^{J, x}$

Note that the modules $M^{J, x}$ are cyclic; in fact

$$
m_{e}^{J, x} \mathcal{H}=M^{J, x} .
$$

Let $\operatorname{ann}_{e}^{J, x}:=\left\{a \in \mathcal{H} \mid m_{e}^{J, x} a=0\right\}$ be the annihilator of $m_{e}^{J, x}$. In particular $\operatorname{ann}_{e}^{J, x}=\operatorname{ker}\left(\phi^{J, x}\right)$.

Algebraic properties of $W \backslash W^{J}$ - The annihilator of $m_{e}^{J, x}$

Note that the modules $M^{J, x}$ are cyclic; in fact

$$
m_{e}^{J, x} \mathcal{H}=M^{J, x} .
$$

Let $\operatorname{ann}_{e}^{J, x}:=\left\{a \in \mathcal{H} \mid m_{e}^{J, x} a=0\right\}$ be the annihilator of $m_{e}^{J, x}$. In particular $\operatorname{ann}_{e}^{J, x}=\operatorname{ker}\left(\phi^{J, x}\right)$.

Since the modules $M^{J, x}$ are cyclic we have the isomorphism of right \mathcal{H}-modules

$$
M^{J, x} \simeq \mathcal{H} / \operatorname{ann}_{e}^{J, x}
$$

Algebraic properties of $W \backslash W^{J}$ - The annihilator of $m_{e}^{J, x}$

Note that the modules $M^{J, x}$ are cyclic; in fact

$$
m_{e}^{J, x} \mathcal{H}=M^{J, x} .
$$

Let $\operatorname{ann}_{e}^{J, x}:=\left\{a \in \mathcal{H} \mid m_{e}^{J, x} a=0\right\}$ be the annihilator of $m_{e}^{J, x}$. In particular $\operatorname{ann}_{e}^{J, x}=\operatorname{ker}\left(\phi^{J, x}\right)$.

Since the modules $M^{J, x}$ are cyclic we have the isomorphism of right \mathcal{H}-modules

$$
M^{J, x} \simeq \mathcal{H} / \operatorname{ann}_{e}^{J, x}
$$

It's easy to see that the right ideal $\mathrm{ann}_{e}^{J, x}$ is ι-invariant.

Algebraic properties of $W \backslash W^{J}$ - Polynomials

Let $\left\{b_{w}^{J, x}\right\}_{w \in W} \subset \mathcal{H}(W)$ be elements defined by

$$
b_{w}^{J, x}:=x^{\ell\left(w_{J}\right)} T_{w^{J}}-T_{w} \in \mathcal{H}(W)
$$

Note that $b_{w}^{J, x}=0$ if and only if $w \in W^{J}$. Then

Algebraic properties of $W \backslash W^{J}$ - Polynomials

Let $\left\{b_{w}^{J, \times}\right\}_{w \in W} \subset \mathcal{H}(W)$ be elements defined by

$$
b_{w}^{J, x}:=x^{\ell\left(w_{J}\right)} T_{w^{J}}-T_{w} \in \mathcal{H}(W)
$$

Note that $b_{w}^{J, x}=0$ if and only if $w \in W^{J}$. Then

Proposition (S., 2014)

The set $\mathcal{B}^{J, x}:=\left\{b_{w}^{J, x} \mid w \in W \backslash W^{J}\right\}$ is an A-basis of $\operatorname{ann}_{e}^{J, x}$, for every $J \subseteq S, x \in\{-1, q\}$.

Algebraic properties of $W \backslash W^{J}$ - Polynomials

Theorem (S., 2014)

There is an ι-invariant basis $\left\{c_{w}^{J, x}\right\}_{w \in W \backslash W^{J}}$ of the annihilator ann ${ }_{e}^{J, x}$, where

$$
c_{w}^{J, x}=q^{\frac{\ell(w)}{2}} \sum(-1)^{\ell(y, w)} q^{-\ell(y)} \tilde{P}_{y, w}^{J, x}\left(q^{-1}\right) b_{y}^{J, x} .
$$

Algebraic properties of $W \backslash W^{J}$ - Polynomials

Theorem (S., 2014)

There is an ι-invariant basis $\left\{c_{w}^{J, x}\right\}_{w \in W \backslash W^{J}}$ of the annihilator $\mathrm{ann}_{e}^{J, x}$, where

$$
c_{w}^{J, x}=q^{\frac{\ell(w)}{2}} \sum(-1)^{\ell(y, w)} q^{-\ell(y)} \tilde{P}_{y, w}^{J, x}\left(q^{-1}\right) b_{y}^{J, x}
$$

The polynomials $\left\{\tilde{P}_{v, w}^{J, x}\right\}_{v, w \in W \backslash W^{J}} \subseteq \mathbb{Z}[q]$ are the parabolic Kazhdan-Lusztig polynomials of $W \backslash W^{J}$ of type x.

Algebraic properties of $W \backslash W^{J}$ - Polynomials

We have that

$$
\tilde{P}_{u, v}^{J, q}=P_{u, v}
$$

for every $u, v \in W \backslash W^{J}$.

Algebraic properties of $W \backslash W^{J}$ - Polynomials

We have that

$$
\tilde{P}_{u, v}^{J, q}=P_{u, v}
$$

for every $u, v \in W \backslash W^{J}$.
We don't know any expression of $\tilde{P}^{J,-1}$ in terms of known polynomials.

Algebraic properties of $W \backslash W^{J}$ - Polynomials

We have that

$$
\tilde{P}_{u, v}^{J, q}=P_{u, v}
$$

for every $u, v \in W \backslash W^{J}$.
We don't know any expression of $\tilde{P}^{J,-1}$ in terms of known polynomials.

Example

Take $v=324156$ and $w=546132$ in $W \backslash W^{S} \backslash\left\{s_{3}\right\}$.

Algebraic properties of $W \backslash W^{J}$ - Polynomials

We have that

$$
\tilde{P}_{u, v}^{J, q}=P_{u, v}
$$

for every $u, v \in W \backslash W^{J}$.
We don't know any expression of $\tilde{P}^{J,-1}$ in terms of known polynomials.

Example

Take $v=324156$ and $w=546132$ in $W \backslash W^{S \backslash\left\{s_{3}\right\}}$. Then

$$
\tilde{P}_{v, w}^{S \backslash\left\{s_{3}\right\},-1}=-5 q^{2}+2 q .
$$

Algebraic properties of $W \backslash W^{J}$ - Polynomials

The polynomial $\tilde{P}_{v, w}^{S \backslash\left\{s_{3}\right\},-1}$ in the previous example was computed thanks to the recursion

$$
q^{\ell(v, w)} \tilde{P}_{v, w}^{J, x}\left(q^{-1}\right)=\sum_{z \in[v, w] \backslash J} Z_{v, z}^{J, x}(q) \tilde{P}_{z, w}^{J, x}(q),
$$

if $v, w \in W \backslash W^{J}$ and $v \leqslant w$

Algebraic properties of $W \backslash W^{J}$ - Polynomials

The polynomial $\tilde{P}_{v, w}^{S \backslash\left\{s_{3}\right\},-1}$ in the previous example was computed thanks to the recursion

$$
q^{\ell(v, w)} \tilde{P}_{v, w}^{J, x}\left(q^{-1}\right)=\sum_{z \in[v, w] \backslash J} Z_{v, z}^{J, x}(q) \tilde{P}_{z, w}^{J, x}(q),
$$

if $v, w \in W \backslash W^{J}$ and $v \leqslant w$
since we have the bound

$$
\operatorname{deg}\left(\tilde{P}_{v, w}^{J, x}\right) \leqslant \frac{\ell(v, w)-1}{2}, \quad \text { if } v<w .
$$

Algebraic properties of $W \backslash W^{J}$ - Polynomials

The polynomial $\tilde{P}_{v, w}^{S \backslash\left\{s_{3}\right\},-1}$ in the previous example was computed thanks to the recursion

$$
q^{\ell(v, w)} \tilde{P}_{v, w}^{J, x}\left(q^{-1}\right)=\sum_{z \in[v, w] \backslash J} Z_{v, z}^{J, x}(q) \tilde{P}_{z, w}^{J, x}(q),
$$

if $v, w \in W \backslash W^{J}$ and $v \leqslant w$
since we have the bound

$$
\operatorname{deg}\left(\tilde{P}_{v, w}^{J, x}\right) \leqslant \frac{\ell(v, w)-1}{2}, \quad \text { if } v<w
$$

The polynomials $Z^{J, x}$ are related to the R-polynomials of W by the following simple formula:

$$
Z_{v, w}^{J, x}=R_{v, w}-(q-1-x)^{\ell\left(w_{J}\right)} R_{v, w^{J}}
$$

for all $v, w \in W \backslash W^{J}$ and $x \in\{-1, q\}$.

Topological properties of $W \backslash W^{J}$

Theorem (S., 2014)

The order complex of $[u, v]^{\backslash J}$ is shellable. In particular, it is Cohen-Macaulay.

Topological properties of $W \backslash W^{J}$

Theorem (S., 2014)

The order complex of $[u, v]^{\backslash J}$ is shellable. In particular, it is Cohen-Macaulay.

Corollary

The order complex of $(u, v)^{\backslash J}$ is PL homeomorphic to
(1) the sphere $\mathbb{S}^{\ell}(u, v)-2$, if $u \nless v^{J}$;
(2) the ball $\mathbb{B}^{\ell(u, v)-2}$, otherwise.

