A Proof Of All Three Euclidean Four Point Atiyah-Sutcliffe Conjectures

Dragutin Svrtan
dsvrtan@math.hr
University of Zagreb

September 6, 2014

Outline

(9) Introduction
(2) 3 points inside circle
(3) Normalized determinant D_{3}

4 Explicit formulas for D_{3}
(5) 4 points inside a ball

6 Normalized 4-point Atiyah's determinant D_{4}
(7) Conjectures $(n=4)$

8 New proof of the Eastwood-Norbury formula
(9) Positive parametrization of distances between 4 points
(10) Verification of the Atiyah-Sutcliffe four-point conjectures
(11) Mixed Atiyah determinants

12 Main Theorem
(13) New developments
(14) References

Introduction 1/3

In 2001. Sir Michael Atiyah, inspired by physics (Berry-Robbins problem related to spin statistics theorem of quantum mechanics) associated a remarkable determinant to any n distinct points in Euclidean 3-space, via elementary construction.
More generally, let ($x_{1}, x_{2}, \ldots, x_{n}$) be n distinct points inside the ball of radius R in Euclidean 3-space. Let the oriented line $x_{i} x_{j}$ meet the boundary 2 -sphere in a point (direction) $u_{i j}$ regarded as a point of the complex Riemann sphere $(\mathbb{C} \cup\{\infty\})$.
Form a complex polynomial p_{i} of degree $n-1$ whose roots are $u_{i j}, j \neq i$
(p_{i} is determined up to a scalar factor). The Atiyah's conjecture C_{1} now reads

Conjecture C_{1}

For all ($x_{1}, x_{2}, \ldots, x_{n}$) the n polynomials p_{i} are linearly independent.
Conjecture $C_{1} \Leftrightarrow$ nonvanishing of the determinant D of the matrix of coefficients of the polynomials p_{i}.
The determinant D can be normalized so that D becomes a continuous function of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which is $S L(2, \mathbb{C})$-invariant (using the ball model or upper half space model of hyperbolic 3-space).
The more refined conjectures of Atiyah and Sutcliffe C_{2} and C_{3} relate D to products of 2 and $n-1$-subsequences of points $x_{1}, x_{2}, \ldots, x_{n}$.

Introduction 2/3

The conjecture C_{1} is proved for $n=3,4$ and for general n only for some special configurations (M.F. Atiyah, M. Eastwood and P. Norbury, D. Đoković).

In a lengthy preprint [5] we have verified the conjectures C_{2} and C_{3} for parallelograms, cyclic quadrilaterals and some infinite families of tetrahedra.

Also we proved C_{2} for Đoković's dihedral configurations. In [8] a proof of C_{1} is given for convex planar quadrilaterals. We have also proposed a strengthening of the conjecture C_{3} for configurations of four points (Four Points Conjectures, stronger then some new conjectures in [8]) and a number of conjectures for almost collinear configurations, and proved them for n up to 10 .
In 2001. Eastwood and Norbury [3] found an intrinsic formula for the four point Atiyah determinant (a polynomial of sixth degree in six distances having several hundreds of terms) and gave a proof of C_{1}.

Introduction 3/3

The present author found a new geometric fact for arbitrary tetrahedra which leads to a proof of C_{2} and C_{3} for arbitrary four points in the euclidean three space (and also a proof of stronger Four Points Conjecture of Svrtan and Urbiha). Later we obtain another intrinsic polynomial formula a la Eastwood and Norbury for four points (and for five "planar" points - having one hundred thousand terms) and have an existence proof of a polynomial formula for all planar configurations what was conjectured in [3].

This approach produces also trigonometric formulas for four points Atiyah determinants (not involving so called Crelle angles which are used in [8]). Some work is done in the hyperbolic case by finding a hyperbolic analogue of the Eastwood and Norbury formula (in the planar case- spacial case is quite a challenge!).
We also introduced Atiyah type energies associated to any graph and
can prove that Conjecture C_{1} is true, for arbitrary n, for some of these energies (work in progress).

3 points inside circle

- Three points x_{1}, x_{2}, x_{3} inside disk $(|z| \leq R)$
- Three point-pairs on circle
- $P_{1}\left(u_{12}\right)\left(u_{13}\right)$
- $P_{2}\left(u_{21}\right)\left(u_{23}\right)$
- $P_{3}\left(u_{31}\right)\left(u_{32}\right)$
- Point-pair u_{12}, u_{13} define quadratic with roots

$$
p_{1}=\left(z-u_{12}\right)\left(z-u_{13}\right)
$$

- 3 point-pairs $\rightarrow 3$ quadratics
- $P_{1}, P_{2}, P_{3} \rightarrow\left\{p_{1}, p_{2}, p_{3}\right\}$

Theorem (Atiyah 2001.)

For any triple x_{1}, x_{2}, x_{3} of distinct points inside the disk the three quadratics $\left\{p_{1}, p_{2}, p_{3}\right\}$ are linearly independent.

Remark: Atiyah's proof, which is synthetic, does not generalize to more than three points.

Normalized determinant D_{3}

Theorem 1.

3-by-3 determinant of the coefficient matrix:

$$
\left|M_{3}\right|=\left|\begin{array}{ccc}
1 & -u_{12}-u_{13} & u_{12} u_{13} \\
1 & -u_{21}-u_{23} & u_{21} u_{23} \\
1 & -u_{31}-u_{32} & u_{31} u_{32}
\end{array}\right| \neq 0, \quad D_{3}=\frac{\left|M_{3}\right|}{\left(u_{12}-u_{21}\right)\left(u_{13}-u_{31}\right)\left(u_{23}-u_{32}\right)}
$$

Remark: $D_{3}=1$ only for collinear points.

Theorem 2.

$D_{3} \geq 1$.
Remark: Theorem 2. \Leftrightarrow Theorem 1.
Points on the "circle at ∞ " are directions on a plane.
Remark: Theorem 1. and Theorem 2. are also true for $R=\infty$.

Explicit formulas for D_{3}

Extrinsic formula: $\quad D_{3}=1+\frac{\left(u_{21}-u_{31}\right)\left(u_{13}-u_{23}\right)\left(u_{12}-u_{32}\right)}{\left(u_{12}-u_{21}\right)\left(u_{13}-u_{31}\right)\left(u_{23}-u_{32}\right)}$
Intrinsic formula for hyperbolic triangles $(0<A+B+C<\pi)$:

$$
D_{3}=\frac{1}{2}\left(\cos ^{2}(A / 2)+\cos ^{2}(B / 2)+\cos ^{2}(C / 2)\right)-\frac{1}{4} \Phi
$$

where $\Phi^{2}=4 \cos \left(\frac{A+B+C}{2}\right) \cos \left(\frac{-A+B+C}{2}\right) \cos \left(\frac{A-B+C}{2}\right) \cos \left(\frac{A+B-C}{2}\right)$

$$
=-1+\cos ^{2}(A)+\cos ^{2}(B)+\cos ^{2}(C)+2 \cos (A) \cos (B) \cos (C)
$$

Intrinsic formula involving side lengths

$a, b, c, p=(a+b+c) / 2, p_{a}=p-a, p_{b}=p-b, p_{c}=p-c:$

$$
\begin{aligned}
D_{3} & =1+e^{-p \frac{\sinh \left(p_{a}\right) \sinh \left(p_{b}\right) \sinh \left(p_{c}\right)}{\sinh (a) \sinh (b) \sinh (c)} \quad\left(\rightarrow 1+\frac{(-a+b+c)(a-b+c)(a+b-c)}{8 a b c} \text { Eucl. case }\right)} \\
& =1+e^{-\left(p_{a}+p_{b}+p_{c}\right)} \frac{\left(e^{p_{a}}\right)}{\left(e^{p_{a}+p_{b}}-e^{-\left(p_{a}+p_{a}\right.}\right)\left(e^{p_{b}}-e^{-p_{b}}\right)\left(e^{p_{c}}-e^{-p_{c}}\right)} \\
& =1+\frac{\left(e^{2 p_{a}}-1\right)\left(e^{2 p_{b}}-1\right)\left(e^{2 p_{c}}-1\right)\left(e^{p_{a}+p_{c}}-e^{\left.-\left(p_{a}+p_{c}\right)\right)\left(e^{p_{b}+p_{c}}-e^{-\left(p_{b}+p_{c}\right)}\right)}\right.}{\left(e^{2\left(p_{a}+p_{b}\right)}-1\right)\left(e^{2\left(p_{a}+p_{c}\right)}-1\right)\left(e^{2\left(p_{b}+p_{c}\right)}-1\right)}
\end{aligned}
$$

$$
D_{3}=1+\frac{\left(e^{2 p_{a}}-1\right)\left(e^{2 p_{b}}-1\right)\left(e^{2 p_{c}}-1\right)}{\left(e^{2\left(p_{a}+p_{b}\right)}-1\right)\left(e^{2\left(p_{a}+p_{c}\right)}-1\right)\left(e^{2\left(p_{b}+p_{c}\right)}-1\right)}
$$

Lemma.

For $0<a<b$ the function $f(x)=\frac{e^{\frac{a}{x}}-1}{e^{\frac{b}{x}}-1}(0<x<\infty)$ is strictly increasing and $\lim _{x \rightarrow \infty} f(x)=\frac{a}{b}$.

By using this lemma the recent monotonicity conjecture of Atiyah (in case $n=3$) follows immediately (if a is replaced by a / R etc... in previous formulas).

$$
\begin{aligned}
D_{3} & =1+e^{-p} \frac{\sinh \left(p_{a}\right) \sinh \left(p_{b}\right) \sinh \left(p_{c}\right)}{\sinh (a) \sinh (b) \sinh (c)}=1+\frac{e^{-p_{a}-p_{b}-p_{c}} \sinh \left(p_{a}\right) \sinh \left(p_{b}\right) \sinh \left(p_{c}\right)}{\sinh \left(p_{a}+p_{b}\right) \sinh \left(p_{a}+p_{c}\right) \sinh \left(p_{b}+p_{c}\right)} \\
& =1+\frac{\left(\cosh \left(p_{a}+p_{b}+p_{c}\right)-\sinh \left(p_{a}+p_{b}+p_{c}\right)\right) \sinh \left(p_{a}\right) \sinh \left(p_{b}\right) \sinh \left(p_{c}\right)}{\sinh \left(p_{a}+p_{b}\right) \sinh \left(p_{a}+p_{c}\right) \sinh \left(p_{b}+p_{c}\right)} \\
& =1+\frac{\left(1-\tanh \left(p_{a}\right)\right)\left(1-\tanh \left(p_{b}\right)\right)\left(1-\tanh \left(p_{c}\right)\right) \tanh \left(p_{a}\right) \tanh \left(p_{b}\right) \tanh \left(p_{c}\right)}{\left(\tanh \left(p_{a}\right)+\tanh \left(p_{b}\right)\right)\left(\tanh \left(p_{a}\right)+\tanh \left(p_{c}\right)\right)\left(\tanh \left(p_{b}\right)+\tanh \left(p_{c}\right)\right)}
\end{aligned}
$$

4 points inside a ball

- Four points $x_{1}, x_{2}, x_{3}, x_{4}$ in a ball $(|z| \leq R)$
- 4 point-triples on the boundary 2 -sphere
- $P_{1} \quad\left(u_{12}\right)\left(u_{13}\right)\left(u_{14}\right)$
- $P_{2}\left(u_{21}\right)\left(u_{23}\right)\left(u_{24}\right)$
- $P_{3}\left(u_{31}\right)\left(u_{32}\right)\left(u_{34}\right)$
- $P_{4} \quad\left(u_{41}\right)\left(u_{42}\right)\left(u_{43}\right)$
- point-triple u_{12}, u_{13}, u_{14} defines a cubic (polynomial):

$$
\begin{aligned}
p_{1}:= & \left(z-u_{12}\right)\left(z-u_{13}\right)\left(z-u_{14}\right) \\
p_{1}= & z^{3}-\left(u_{12}+u_{13}+u_{14}\right) z^{2}+\left(u_{12} u_{13}+u_{12} u_{14}+u_{13} u_{14}\right) z- \\
& -u_{12} u_{13} u_{14}
\end{aligned}
$$

- 4 point-triples $\rightarrow 4$ cubics
- $P_{1}, P_{2}, P_{3}, P_{4} \rightarrow\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$

Normalized 4-point Atiyah's determinant D_{4}

Determinant of the coefficient matrix of polynomials:

$$
\begin{aligned}
& \left|M_{4}\right|=\left|\begin{array}{cccc}
1 & -u_{12}-u_{13}-u_{14} & u_{12} u_{13}+u_{12} u_{14}+u_{13} u_{14} & -u_{12} u_{13} u_{14} \\
1 & -u_{21}-u_{23}-u_{24} & u_{21} u_{23}+u_{21} u_{24}+u_{23} u_{24} & -u_{21} u_{23} u_{24} \\
1 & -u_{31}-u_{32}-u_{34} & u_{31} u_{32}+u_{31} u_{34}+u_{32} u_{34} & -u_{31} u_{32} u_{34} \\
1 & -u_{41}-u_{42}-u_{43} & u_{41} u_{42}+u_{41} u_{43}+u_{42} u_{43} & -u_{41} u_{42} u_{43}
\end{array}\right|, \\
& D_{4}=\frac{\left|M_{4}\right|}{\left(u_{12}-u_{21}\right)\left(u_{13}-u_{31}\right)\left(u_{14}-u_{41}\right)\left(u_{23}-u_{32}\right)\left(u_{24}-u_{42}\right)\left(u_{34}-u_{43}\right)}
\end{aligned}
$$

Conjectures ($n=4$)

$$
C_{1} \text { (Atiyah): } \quad D_{4} \neq 0 \quad\left(\Leftrightarrow p_{1}, p_{2}, p_{3}, p_{4} \text { lin. indep. }\right)
$$

C_{2} (Atiyah-Sutcliffe): $\left|D_{4}\right| \geq 1$
C_{3} (Atiyah-Sutcliffe): $\left|D_{4}\right|^{2} \geq D_{3}(1,2,3) \cdot D_{3}(1,2,4) \cdot D_{3}(1,3,4) \cdot D_{3}(2,3,4)$

New proof of the Eastwood-Norbury formula

The four points:

$$
P_{i}: x_{i}=\left(z_{i}, r_{i}\right), z_{i} \in \mathbb{C}, r_{i} \in \mathbb{R}
$$

$$
p_{3}=\left(z+\frac{\overline{z_{31}}}{R_{31}}\right)\left(z+\frac{\overline{z_{32}}}{R_{32}}\right)\left(z+\frac{\overline{z_{34}}}{R_{34}}\right)
$$

$$
p_{4}=\left(z+\frac{\overline{z_{41}}}{R_{41}}\right)\left(z+\frac{\overline{z_{42}}}{R_{42}}\right)\left(z+\frac{\overline{4_{43}}}{R_{43}}\right)
$$

Matrix of coefficients of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$

$$
A=z_{21}, B=z_{31} z_{32}, C=z_{41} z_{42} z_{43}
$$

Normalized Atiyah determinant

$$
\begin{aligned}
& D_{4}=\underbrace{\operatorname{det}\left(M_{4}\right)}_{\text {antisym. }} \cdot \underbrace{z_{21} \cdot z_{31} z_{32} \cdot z_{41} z_{42} z_{43}}_{\text {antisym. }}=\sum 1 \cdot\left(\frac{z_{21} \bar{z}_{21}}{R_{21}}+\frac{z_{21} \bar{z}_{23}}{R_{23}}+\frac{z_{21} \bar{z}_{24}}{R_{24}}\right) . \\
& \cdot\left(\frac{z_{31} \bar{z}_{31} z_{32} \bar{z}_{32}}{R_{31} R_{32}}+\frac{z_{31} \bar{z}_{31} z_{32} \bar{z}_{34}}{R_{31} R_{34}}+\frac{z_{32} \bar{z}_{32} z_{32} \bar{z}_{34}}{R_{32} R_{34}}\right) R_{14} R_{24} R_{34}= \\
& \quad=\sum^{\sum}(R_{12} R_{24}+\underbrace{z_{21} z_{24}}_{21})(R_{13} R_{23} R_{34}+R_{13} \underbrace{z_{32} \bar{z}_{34}}+R_{23} \underbrace{z_{31} \bar{z}_{34}}) R_{14}+ \\
& +(R_{13} R_{24} R_{34} \underbrace{z_{21} \bar{z}_{23}}+R_{13} R_{24} R_{32} \underbrace{z_{21} \bar{z}_{34}}+R_{24} \underbrace{\bar{z}_{23} z_{31} \bar{z}_{34}}_{21}) R_{14}
\end{aligned}
$$

(where summations are over all permutations of indices).

By writing $z_{i j} \bar{z}_{k l}=C[i, j, k, l]+\sqrt{-1} S[i, j, k, l]$ and using a Lagrange identity (involving the dot product of two cross products; a fact mentioned by N .
Wildberger to the author) we have
$S[i, j, k, l] S[p, q, r, s]=C[i, j, p, q] C[k, l, r, s]-C[i, j, r, s] C[k, l, p, q]$
(we have discovered this identity independently) and using the formula

$$
\begin{aligned}
C[i, j, k, l]=\operatorname{Re}\left(z_{i j} \bar{z}_{k l}\right) & =\frac{1}{2}\left[\left|z_{i l}\right|^{2}+\left|z_{j k}\right|^{2}-\left|z_{i k}\right|^{2}-\left|z_{j l}\right|^{2}\right]= \\
& =\frac{1}{2}\left[r_{i l}^{2}+r_{j k}^{2}-r_{i k}^{2}-r_{j l}^{2}\right]-\left(r_{i}-r_{j}\right)\left(r_{k}-r_{l}\right)
\end{aligned}
$$

we obtain our derivation of the Eastwood-Norbury formula.
By this new method we obtained a polynomial formula for the planar
configurations of 5 points (by S_{5}-symmetrization of a "one page" expression)
and a rational formula for the spatial 5 point configuration (this last formula has almost 100000 terms).

This settles one of the Eastwood-Norbury conjectures. We do not yet have definite geometric interpretations for the "nonplanar" part of the formula involving heights $r_{i}, i=1, \ldots, 5$.

Our trigonometric (euclidean) Eastwood-Norbury formula (where $c_{i _j k}:=\cos (i j, i k)$ and $c_{i j _k l}:=\cos (i j, k l)$):

$$
\begin{aligned}
16 R e\left(D_{4}\right)= & \left(1+c_{3 _12}+c_{2 _34}\right)\left(1+c_{1 _24}+c_{4 _13}\right)+ \\
& \left(1+c_{2 _13}+c_{3 _24}\right)\left(1+c_{4 _12}+c_{1 _34}\right)+ \\
& \left(1+c_{3 _12}+c_{1 _34}\right)\left(1+c_{2 _14}+c_{4 _23}\right)+ \\
& \left(1+c_{1 _23}+c_{3 _14}\right)\left(1+c_{2 _34}+c_{4 _12}\right)+ \\
& \left(1+c_{2 _13}+c_{1 _24}\right)\left(1+c_{3 _14}+c_{4 _23}\right)+ \\
& \left(1+c_{1 _23}+c_{2 _14}\right)\left(1+c_{3 _24}+c_{4 _13}\right)+ \\
& 2\left(c_{14 _23} c_{13 _24}-c_{14 _23} c_{12 _34}+c_{13 _24} c_{12 _34}\right)+ \\
& 72(\text { normalized volume })^{2} .
\end{aligned}
$$

Open problems:

Hyperbolic (euclidean) version for $n \geq 4(n \geq 5)$ points in terms of distances, or in terms of angles.

Positive parametrization of distances between 4 points

Key Lemma. (Shear

 coordinates of a tetrahedron)In any tetrahedron (degenerate or not) one has the following type of nonnegative splitting of edge lengths:

$$
\begin{aligned}
& r_{12}=t_{1}+u+v+t_{2}, r_{13}=t_{1}+v+t_{3} \\
& r_{23}=t_{2}+u+t_{3}, r_{14}=t_{1}+u+t_{4} \\
& r_{24}=t_{2}+v+t_{4}, r_{34}=t_{3}+u+v+t_{4} \\
& \text { if and only if } r_{12}+r_{34}= \\
& \max \left\{r_{12}+r_{34}, r_{13}+r_{24}, r_{14}+r_{23}\right\} .
\end{aligned}
$$

Proof.

The form of the solution:

$$
\begin{aligned}
& t_{1}=\frac{r_{13}+r_{14}-r_{34}}{2}, t_{2}=\frac{r_{23}+r_{24}-r_{34}}{2}, t_{3}=\frac{r_{13}+r_{23}-r_{12}}{2}, \\
& t_{4}=\frac{r_{14}+r_{24}-r_{12}}{2}, u=\frac{r_{12}+r_{34}-\left(r_{13}+r_{24}\right)}{2}, v=\frac{r_{12}+r_{34}-\left(r_{14}+r_{23}\right)}{2} \\
& \text { proves the Lemma immediately. }
\end{aligned}
$$

Verification of the Atiyah-Sutcliffe four-point conjectures

Let us recall the original Eastwood-Norbury formula for the real part of the Atiyah's determinat D_{4} of a tetrahedron:

$$
\operatorname{Re}\left(D_{4}\right):=\operatorname{prod}-4 d_{3}\left(r_{12} r_{34}, r_{13} r_{24}, r_{23} r_{14}\right)+A_{4}+\text { vols }
$$

where $d_{3}(a, b, c):=(-a+b+c)(a-b+c)(a+b-c)$;

$$
\begin{aligned}
& A_{4}= \\
& \left(r_{14}\left(\left(r_{24}+r_{34}\right)^{2}-r_{23}^{2}\right)+r_{24}\left(\left(r_{14}+r_{34}\right)^{2}-r_{13}^{2}\right)+r_{34}\left(\left(r_{24}+r_{14}\right)^{2}-r_{12}^{2}\right)\right) d_{3}\left(r_{12}, r_{13}, r_{23}\right)+ \\
& +\left(r_{13}\left(\left(r_{23}+r_{34}\right)^{2}-r_{24}^{2}\right)+r_{23}\left(\left(r_{13}+r_{34}\right)^{2}-r_{14}^{2}\right)+r_{34}\left(\left(r_{23}+r_{13}\right)^{2}-r_{12}^{2}\right)\right) d_{3}\left(r_{12}, r_{14}, r_{24}\right)+ \\
& +\left(r_{12}\left(\left(r_{23}+r_{24}\right)^{2}-r_{34}^{2}\right)+r_{23}\left(\left(r_{12}+r_{24}\right)^{2}-r_{14}^{2}\right)+r_{24}\left(\left(r_{23}+r_{12}\right)^{2}-r_{13}^{2}\right)\right) d_{3}\left(r_{13}, r_{14}, r_{34}\right)+ \\
& +\left(r_{12}\left(\left(r_{13}+r_{14}\right)^{2}-r_{34}^{2}\right)+r_{13}\left(\left(r_{12}+r_{14}\right)^{2}-r_{24}^{2}\right)+r_{14}\left(\left(r_{13}+r_{12}\right)^{2}-r_{23}^{2}\right)\right) d_{3}\left(r_{23}, r_{24}, r_{34}\right) \\
& \quad \text { prod }:=64 r_{12} r_{13} r_{23} r_{14} r_{24} r_{34} ; \\
& \quad \text { vols }:=2\left(r_{12}^{2} r_{34}^{2}\left(r_{13}^{2}+r_{14}^{2}+r_{23}^{2}+r_{24}^{2}-r_{12}^{2}-r_{34}^{2}\right)+r_{13}^{2} r_{24}^{2}\left(-r_{13}^{2}+r_{14}^{2}+r_{23}^{2}-r_{24}^{2}+r_{12}^{2}+r_{34}^{2}\right)+\right. \\
& \left.\quad r_{14}^{2} r_{23}^{2}\left(r_{13}^{2}-r_{14}^{2}-r_{23}^{2}+r_{24}^{2}+r_{12}^{2}+r_{34}^{2}\right)-r_{12}^{2} r_{13}^{2} r_{23}^{2}-r_{12}^{2} r_{14}^{2} r_{24}^{2}-r_{13}^{2} r_{14}^{2} r_{34}^{2}-r_{23}^{2} r_{24}^{2} r_{34}^{2}\right)
\end{aligned}
$$

(vols $=288$ volume ${ }^{2}$) and normalized Atiyah determinant of face triangles:

$$
\begin{aligned}
\delta_{1} & :=1+\frac{1}{8} \frac{d_{3}\left(r_{23}, r_{24}, r_{34}\right)}{r_{23} r_{24} r_{34}}, \delta_{2}:=1+\frac{1}{8} \frac{d_{3}\left(r_{13}, r_{14}, r_{34}\right)}{r_{13} r_{14} r_{34}} \\
\delta_{3} & :=1+\frac{1}{8} \frac{d_{3}\left(r_{12}, r_{14}, r_{24}\right)}{r_{12} r_{14} r_{24}}, \delta_{4}:=1+\frac{1}{8} \frac{d_{3}\left(r_{12}, r_{13}, r_{23}\right)}{r_{12} r_{13} r_{23}}
\end{aligned}
$$

We first prove a stronger four-point conjecture of Svrtan - Urbiha (arXiv:math0609174v1 (Conjecture 2.1 (weak version)) which implies (c.f. Proposition 2.2 in loc.cit) all three four-point conjectures C_{1}, C_{2}, C_{3} of Atiyah - Sutcliffe).

The substitution from the Key Lemma
Sub $:=\left\{r_{12}=t_{1}+u+v+t_{2}, r_{13}=t_{1}+v+t_{3}, r_{23}=t_{2}+u+t_{3}\right.$,
$\left.r_{14}=t_{1}+u+t_{4}, r_{24}=t_{2}+v+t_{4}, r_{34}=t_{3}+u+v+t_{4}\right\} ;$
in the Maple code DifferSU :=
$\left\{\operatorname{coeffs}\left(\operatorname{expand}\left(\operatorname{subs}\left(\operatorname{Sub}, \frac{1}{64}\right.\right.\right.\right.$ numer $\left.\left.\left.\left.\left(\frac{\operatorname{Re}\left(D_{4}\right)-4 \text { vols }}{\text { prod }}-\frac{\delta_{1}^{2}+\delta_{2}^{2}+\delta_{3}^{2}+\delta_{4}^{2}}{4}\right)\right)\right)\right)\right\}$;
gives the output DifferSU $=\{2,3,4, \ldots, 5328,5564,6036\}$ which proves the conjecture coefficientwise.

The Maple code for the strongest Atiyah - Sutcliffe conjecture DifferAS := $\left\{\operatorname{coeffs}\left(\operatorname{expand}\left(\operatorname{subs}\left(\operatorname{Sub}, \frac{1}{64}\right.\right.\right.\right.$ numer $\left.\left.\left.\left.\left(\left(\frac{\operatorname{Re}\left(D_{4}\right)-4 v o l s}{p r o d}\right)^{2}-\delta_{1} \delta_{2} \delta_{3} \delta_{4}\right)\right)\right)\right)\right\} ;$
gives the output DifferAS $=\{64,128,192, \ldots, 233472,246720,261888\}$
(coefficients of a 4512 terms inequality of degree 12 in 6 distances).

Remark 1. Similarly to DifferSU one can check the upper estimate with the additional coefficient equal to $37 / 27$.
Remark 2. Recently we also proved Atiyah - Sutcliffe conjecture C_{2} directly from the following new formula:

$$
\operatorname{Re}\left(D_{4}\right)=64 \prod_{1 \leq i<j \leq 4} r_{i j}+8 d_{3}\left(r_{12} r_{34}, r_{13} r_{24}, r_{14} r_{23}\right)+4 v o l s+32 R_{4}
$$

where

$$
\begin{aligned}
R_{4}= & 4 m_{2211}+\left(s_{13} p_{24}^{2}+s_{24} p_{13}^{2}\right) u+\left(s_{14} p_{23}^{2}+s_{23} p_{14}^{2}\right) v+\left(m_{221}+8 m_{2111}\right) w+ \\
& +2\left(\tau_{13}^{2}+\tau_{14}^{2}+\tau_{13} \tau_{14}\right) u v+\left(2 m_{211}+8 m_{1111}\right)\left(2 u^{2}+u v+2 v^{2}\right) \\
& +4 m_{111}\left(u^{3}+v^{3}\right)+\left(3 m_{21}+14 m_{111}+3 m_{11} w\right) u v w+\left[\left(s_{14} p_{14}+s_{23} p_{23}\right)(u+w)+\right. \\
& \left.+\left(s_{13} p_{13}+s_{24} p_{24}\right)(v+w)\right] u v+\left[\left(\tau_{13}+\tau_{14}\right)\left(u^{2}+u v+v^{2}\right)+\right. \\
& \left.+\tau_{14} u^{2}+\tau_{13} v^{2}\right] u v+2\left(m_{1}+w\right)\left(4 m_{1}+3 w\right) u^{2} v^{2}
\end{aligned}
$$

and where

$$
\begin{aligned}
& u=\frac{r_{12}+r_{34}-r_{13}-r_{24}}{2}, v=\frac{r_{12}+r_{34}-r_{14}-r_{23}}{2}, w=u+v, \tau_{13}=t_{1} t_{3}+t_{2} t_{4} \\
& \tau_{14}=t_{1} t_{4}+t_{2} t_{3}, t_{1}=\frac{r_{13}+r_{14}-r_{34}}{2}, t_{2}=\frac{r_{23}+r_{24}-r_{34}}{2}, t_{3}=\frac{r_{13}+r_{23}-r_{12}}{2} \\
& t_{4}=\frac{r_{14}+r_{24}-r_{12}}{2}, s_{i j}=t_{i}+t_{j}, p_{i j}=t_{i} t_{j}, m_{1}=t_{1}+t_{2}+t_{3}+t_{4} \\
& m_{11}=t_{1} t_{2}+\cdots, m_{21}=t_{1}^{2} t_{2}+\cdots, m_{111}=t_{1} t_{2} t_{3}+\cdots, m_{1111}=t_{1} t_{2} t_{3} t_{4} \\
& m_{2111}=t_{1}^{2} t_{2} t_{3} t_{4}+\cdots, m_{221}=t_{1}^{2} t_{2}^{2} t_{3}+\cdots, m_{2211}=t_{1}^{2} t_{2}^{2} t_{3} t_{4}+\cdots
\end{aligned}
$$

Mixed Atiyah determinants

We further generalize Atiyah normalized determinant $D\left(x_{1}, \ldots, x_{n}\right)$ to $D^{\Gamma}\left(x_{1}, \ldots, x_{n}\right)$, where Γ is any (simple) graph with the vertex set $\left\{x_{1}, \ldots, x_{n}\right\}$.

Definition.

We start with the normalized Atiyah determinant D viewed as a function of all directions $u_{i j}(1 \leq i \neq j \leq n)$. Then we define D^{Γ} by simultaneously switching the roles of directions (i.e. replacing $u_{i j}$ by $u_{j i}$ and also replacing $u_{j i}$ by $u_{i j}$) for each pair $i j$ such that $x_{1} x_{j}$ is an edge of Γ.

For $n=3$ we obtain eight mixed Atiyah's determinants (mixed energies) which we can label by binary sequences $D_{3}=D_{3}^{000}, D_{3}^{001}, \ldots, D_{3}^{111}$ for which we also have simple explicit trigonometric formulas, which can be obtained from the original Atiyah determinant by suitable sign changes of the lengths of the sides of a triangle.

Observe that $D_{3}=D_{3}^{000}, D_{3}^{111}=1+e^{p} \prod \sinh \left(p_{a}\right) / \sinh (a)$ are both ≥ 1 and all other mixed determinants are between 0 and 1 (eg. $\left.D_{3}^{110}=1-e^{p_{c}} \sinh (p) \sinh \left(p_{a}\right) \sinh \left(p_{b}\right) / \prod \sinh (a)\right)$.

Main Theorem

Now we state our

Main Theorem.

We have $\sum_{\Gamma} D^{\Gamma}=n$!, where the summation extends over all simple graphs on n vertices.

The proof is obtained by our method of computing Atiyah's determinants.

Corollary.

For any configuration of points in a 3-space at least one of the mixed Atiyah determinants is nonzero.

Proof of the main Theorem

Proof of the Main Theorem.

In coordinates $B_{i j}=u_{i j}-u_{j i}$ (antisymmetric) and $A_{i j}=u_{i j}+u_{j i}$ (symmetric) $1 \leq i \neq j \leq n, D^{\Gamma}$ differs from D in changing signs of $B_{i j}$'s for each edge $i j \in \Gamma$. Let us first observe that each nonconstant term in D (and in each D^{Γ}) is a square free Laurent monomial w.r.t. all variables $B_{i j}$'s, hence in the sum over Γ its contribution is zero.
Therefore, we have to compute the constant term (C.T.) of D (which is the same in all D^{Γ}). Since D is a symmetrization over S_{n} of its main diagonal term, we have C.T. $(D)=n!C . T$. (diagonal term). But diagonal term of D is equal to
$1 \cdot\left(-u_{21}+\cdots\right)\left(\left(-u_{31}\right)\left(-u_{32}\right)+\cdots\right) \cdots\left[\left(-u_{n, 1}\right)\left(-u_{n, 1}\right) \cdots\left(-u_{n, n-1}\right)\right]$

$$
\left(u_{12}-u_{21}\right)\left(u_{13}-u_{31}\right)\left(u_{23}-u_{32}\right) \cdots\left(u_{1, n}-u_{n, 1}\right) \cdots\left(u_{n-1, n}-u_{n, n-1}\right)
$$

so C.T. $($ diag.term $)=C . T \cdot \frac{\frac{B_{12}}{2} \frac{B_{13}}{2} \frac{B_{23}}{2} \cdots}{B_{12} B_{13} B_{23} \cdots}=\frac{1}{2^{\binom{n}{2}}}$ and C.T. $(D)=\frac{n!}{2^{\binom{n}{2}}}$ and
C.T. $\left(\sum_{\Gamma} D^{\Gamma}\right)=n!$.

New developments

- In 2011. M.Mazur and B.V.Petrenko restated the original Eastwood Norbury formula in trigonometric form which besides face angles of a tetrahedron uses also angles of so called Crelle triangle (associated to the tetrahedron). Our formula in [5] does not involve Crelles angles, but uses "skew" angles.
- C_{2} proved for convex (planar) quadrilaterals
- C_{3} proved for cyclic quadrilaterals (we have it proved already in [5])
- Three conjectures stated which are consequences of some of our conjectures in [5]. (Hence we have a proof of all three.)
- In a recent paper M.B.Khuzam and M.J.Johnson (arXiv:1401.2787v1) gave a verification (by linear programming) of both C_{2} and C_{3} four-point conjectures of Atiyah and Sutcliffe, by using symmetric functions of degree 12 in 12 variables $t_{i l}=r_{i j}+r_{i k}-r_{j k},\{i, j, k, l\}=\{1,2,3,4\}$ (which are linearly dependent), so for C_{2} (resp. C_{3}) they use 64 (resp. 114) huge monomial symmetric functions.

References

[1] Atiyah M., Sutcliffe P., The Geometry of Point Particles. arXiv: hep-th/0105179 (32 pages). Proc.R.Soc.Lond. A (2002) 458, 1089-115.
[2] Atiyah M., Sutcliffe P., Polyhedra in Physics, Chemistry and Geometry, arXiv: math-ph/03030701 (22 pages), "Milan J.Math." 71:33-58 (2003)
[3] Eastwood M., Norbury P., A proof of Atiyah's conjecture on configurations of four points in Euclidean three space, Geometry and Topology 5(2001) 885-893.
[4] Svrtan D., Urbiha I., Atiyah-Sutcliffe Conjectures for almost Collinear Configurations and Some New Conjectures for Symmetric Functions, arXiv: math/0406386 (23 pages).
[5] Svrtan D., Urbiha I.,Verification and Strengthening of the Atiyah-Sutcliffe Conjectures for Several Types of Configurations, arXiv: math/0609174 (49 pages).
[6] Atiyah M., An Unsolved Problem in Elementary Geometry ,
www.math.missouri.edu/archive/Miller-Lectures/atiyah/atiyah.html.
[7] Atiyah M., An Unsolved Problem in Elementary Euclidean Geometry , http//c2.glocos.org/index.php/pedronunes/atiyah-uminho
[8] Mazur M.,Petrenko B.V., On the conjectures of Atiyah and Sutcliffe , arXiv:math.AG/1102.46612
[9] Svrtan D., http://bib.irb.hr/datoteka/553817.SVRTAN_MCC2011 _HYPERBOLIC_EASTWOOD_NORBURY_FORMULA_FOR_ATIYAH_DETERMINANT.ppt
[10] Svrtan D., Urbiha I., http://icm2006.org/v_f/AbsDef/Globals/Posters05.pdf

