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ABSTRACT. Computations with integro-differential operators are often carried out in an asso-
ciative algebra with unit, and they are essentially non-commutative computations. By adjoin-
ing a cocommutative co-product, one can have those operators act on a bialgebra isomorphic
to an enveloping algebra. This gives an adequate framework for a computer-algebra im-
plementation via monoidal factorization, (pure) transcendence bases and Poincaré–Birkhoff–
Witt bases.

In this paper, we systematically study these deformations, obtaining necessary and suf-
ficient conditions for the operators to exist, and we give the most general cocommutative
deformations of the shuffle co-product and an effective construction of pairs of bases in dual-
ity. The paper ends by the combinatorial setting of local systems of coordinates on the group
of group-like series.
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1. INTRODUCTION

The shuffle product first appeared in 1953 in the work of Eilenberg and Mac Lane [20].
As soon as 1954, Chen used it to express the product of iterated (path) integrals [9], and
Ree, building on Friedrichs’ criterion, proved that the non-commutative generating series of
iterated integrals are exponentials of Lie polynomials, thus connecting the Lie polynomials
with the shuffle product [40]. In 1956, Radford proved that the Lyndon words form a (pure)
1 The present work is part of a series of papers devoted to the study of the renormalization of divergent polyze-
tas (at positive and at non-positive indices) via the factorization of the non-commutative generating series of
polylogarithms and of harmonic sums, and via the effective construction of pairs of dual bases in duality in ϕ-
deformed shuffle algebras. It is a sequel to [14], and its content was presented in several seminars and meetings,
including the 74th Séminaire Lotharingien de Combinatoire.
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transcendence basis of the shuffle algebra [39]. The latter result is now well understood
through the duality between bialgebras and enveloping algebras (see for example [41]), of
which the construction in 1958 of the Poincaré–Birkhoff–Witt2–Lyndon basis by Chen, Fox
and Lyndon [11] and of its dual basis by Schützenberger, via monoidal factorization [42, 41],
gave a striking illustration. This pair of dual bases enabled one to factorize the diagonal series
in the shuffle bialgebra and, consequently, to proceed combinatorially with the Dyson series
[24] or the transport operator [23], which play a leading role in the relations between special
functions involved in the theory of quantum groups [29] and in number theory [7].

In 1973, that is, within twenty years of the introduction of the shuffle product, Knutson
defined the quasi-shuffle in [30], where it shows up as the inner product of functions on the
symmetric groups3. This product is very similar to the Rota–Baxter operator introduced by
Cartier in 1972, in his study of the so-called Baxter algebras [8]. Although the analogue of
Radford’s theorem was pointed out by Malvenuto and Reutenauer [33], the factorization of
the diagonal series in the quasi-shuffle bialgebra, initiated in [26, 27], has not yet been carried
over to more general bialgebras.

Schützenberger’s factorization4 [41] and its extensions have since been applied to the renor-
malization of the associators [26, 27], where they turned out to be central5.

The coefficients of these power series are polynomial functions of positive integral multi-
indices of Riemann’s zeta function6 [31, 45], and they satisfy quadratic relations [7] which
can be made explicit and be explained with the help of Lyndon words. The latter relations can
be obtained by identifying the local coordinates on a bridge equation connecting the Cauchy
and the Hadamard algebras of polylogarithmic functions, and by using the factorization of the
non-commutative generating series of polylogarithms [25] and of harmonic sums [26, 27].
This bridge equation is mainly a consequence of the isomorphisms between the algebra of
non-commutative generating series of polylogarithms and the shuffle algebra on the one hand,
and between the algebra of non-commutative generating series of harmonic sums and the
quasi-shuffle algebra on the other hand.

As for the generalization of Schützenberger’s factorization to more general bialgebras, the
key step, and the main difficulty thereof, is to decompose such bialgebras orthogonally into
the Lie algebra generated by its primitive elements and the associated orthogonal ideal, as
Ree was able to achieve in the case of the shuffle bialgebra [40], and to construct, whenever
possible, the respective bases. In favorable cases, one hopes that those bialgebras are envelop-
ing algebras, so that the Eulerian projectors are convergent and other analytic computations
can be performed.

To make that decomposition possible, one first needs to determine the Eulerian projectors
by taking the logarithm of the diagonal series and second to insure their convergence. A

2From now on, Poincaré–Birkhoff–Witt will be abbreviated to PBW.
3In the present paper, that product will be referred to as the quasi-shuffle or as the stuffle product,

indifferently.
4Also called MSR factorization after the names of Mélançon, Schützenberger and Reutenauer.
5These associators, which are formal power series in non-commutative variables, were introduced in quantum

field theory by Drinfel’d [13]. The explicit coefficients of the universal associator ΦKZ are polyzetas and
regularized polyzetas [31].

6These values are usually referred to as MZV’s by Zagier [45] and as polyzetas by Cartier [7].
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key ingredient is the fact that the diagonal series are group-like and give a host of group-
like elements by specialization, so one can use the exponential-logarithm correspondence to
compute within a combinatorial Hausdorff group.

To that effect, the present work generalizes the recursive definitions of the shuffle and
quasi-shuffle products given by Fliess [22] and Hoffman [28], respectively, to introduce the
ϕ-deformed shuffle product, where ϕ stands for an arbitrary algebra law. Recent studies on
these structures can be found in [16, 35, 36].

These ϕ-shuffle products interpolate between the classical shuffle and quasi-shuffle prod-
ucts (for ϕ ≡ 0 and ϕ ≡ 1, respectively), and allow a classification of the associated bialge-
bras.

This paper is devoted to the combinatorics of ϕ-deformed shuffle algebras and to effective
constructions of pairs of dual bases. It is organized as follows:

• Section 2 is a short reminder of well-known facts about the combinatorics of the q-
stuffle product [4], which encompasses the shuffle [41] and the quasi-shuffle products
[26, 27].
• In Section 3, we thoroughly investigate algebraic and combinatorial aspects of the
ϕ-deformed shuffle products and explain how to use bases in duality to get a local
system of coordinates on the (infinite-dimensional) Lie group of group-like series.

Throughout the paper, we have a particular concern for Lie series and their correspondence
with the Hausdorff group.

2. A SURVEY OF SHUFFLE PRODUCTS

For standard definitions and facts pertaining to the (algebraic) combinatorics on words, we
refer the reader to the classical books by Lothaire [32] and Reutenauer [41].

Throughout the paper, K stands for a (unital, associative and commutative) Q-algebra con-
taining a parameter q. In this section, we review the known combinatorics of bases in duality
and local coordinates on the infinite-dimensional Lie group of group-like series (Hausdorff
group). The parameter q allows for a unified treatment between shuffle (q = 0) and quasi-
shuffle (q = 1) products.

Let Y = {yi}i≥1 be an alphabet, totally ordered by y1 > y2 > · · · . The free monoid and
the set of Lyndon words over Y are denoted by Y ∗ and Lyn Y , respectively. The unit of Y ∗

is denoted by 1Y ∗ . We also write Y + = Y ∗ \ {1Y ∗}.
The q-stuffle [4], which interpolates between the shuffle [40], quasi-shuffle [33] (or stuffle)

and minus-stuffle products [10], for q = 0, 1, and −1, respectively, is defined as follows:

u q1Y ∗ = 1Y ∗ qu = u, (1)

ysu qytv = ys(u qytv) + yt(ysu qv) + q ys+t(u qv), (2)

or its dual co-product, as follows, for any ys, yt ∈ Y and u, v ∈ Y ∗,

∆ q(1Y ∗) = 1Y ∗ ⊗ 1Y ∗ , (3)

∆ q(ys) = ys ⊗ 1Y ∗ + 1Y ∗ ⊗ ys + q
∑

s1+s2=s

ys1 ⊗ ys2 . (4)
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We now turn to the study of the combinatorial q-stuffle Hopf algebra, which we do by
stressing the importance of the Lie elements7 studied by Ree [40], and show how Schützen-
berger’s factorization extends to this new structure.

The q-stuffle is commutative, associative and unital. With the co-unit defined by ε(P ) =
〈P | 1Y ∗〉, for P ∈ K〈Y 〉, we get

H q = (K〈Y 〉, conc, 1Y ∗ ,∆ q , ε)

and

H∨
q

= (K〈Y 〉, q, 1Y ∗ ,∆conc, ε)

which are mutually dual bialgebras and, in fact, Hopf algebras because they are N-graded by
the weight.

Let DY be the diagonal series overH q , i.e.,

DY =
∑
w∈Y ∗

w ⊗ w. (5)

Then8

logDY =
∑
w∈Y +

w ⊗ π1(w), (6)

where π1 is the extended Eulerian projector9 overH q , defined by (see [4])

π1(w) = w +
∑
k≥2

(−1)k−1

k

∑
u1,...,uk∈Y +

〈w | u1 q · · · quk〉u1 . . . uk. (7)

Let {Πl}l∈LynY be defined by{
Πy = π1(y), for y ∈ Y,
Πl = [Πs,Πr], for the standard factorization (s, r) of l ∈ Lyn Y − Y.

(8)

Then it forms a basis of the Lie algebra of primitive elements ofH q (see [4]).
For any w ∈ Y ∗ such that w = li11 . . . l

ik
k with l1 > · · · > lk and l1 . . . , lk ∈ Lyn Y,, let

{Πw}w∈Y ∗ be defined by

Πw = Πi1
l1
. . .Πik

lk
. (9)

Then, by the PBW theorem, the set {Πw}w∈Y ∗ is a basis of K〈Y 〉 (see [4]).

7Following Ree [40], the Lie elements contain the non-commutative power series which are Lie series (as
the Chen non-commutative generating series of iterated integrals), i.e., they are group-like for the co-product of
the shuffle.

8The diagonal series lives in K〈〈Y ∗ ⊗ Y ∗〉〉 ' (K〈Y 〉 ⊗K〈Y 〉)∗.
9In fact, π1 is a projector which maps H

q
onto the space of its primitive elements Prim(H

q
), see

Lemma 7.
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Let {Σw}w∈Y ∗ be the family dual10 to {Πw}w∈Y ∗ in the quasi-shuffle algebra. Then
{Σw}w∈Y ∗ freely generates the quasi-shuffle algebra, and the subset {Σl}l∈LynY forms a tran-
scendence basis of (K〈Y 〉, q, 1Y ∗). The Σw can be obtained as follows (see [4]):

Σy = y, for y ∈ Y,

Σl =
∑
(!)

qi−1

i!
ysk1+···+skiΣl1···ln , for l = ys1 . . . ysk ∈ Lyn Y,

Σw =
Σ qi1
l1 q · · · qΣ

qik
lk

i1! · · · ik!
, for w = li11 . . . l

ik
k ,

(10)

and l1 �lex · · · �lex lk ∈ Lyn Y . In the second expression in (10), the sum (!) is taken over
all subsequences {k1, . . . , ki} ⊂ {1, . . . , k} and all Lyndon words l1 �lex · · · �lex ln such
that (ys1 , . . . , ysk)

∗⇐ (ysk1 , . . . , yski , l1, . . . , ln), where ∗⇐ denotes the transitive closure of
the relation on standard sequences, denoted by⇐ (see [4]).

In this case, since {Πw}w∈Y ∗ and {Σw}w∈Y ∗ are multiplicative, we get the q-extended
Schützenberger factorization as follows (see [4]):

DY =
∑
w∈Y ∗

Σw ⊗ Πw =

↘∏
l∈LynY

exp(Σl ⊗ Πl). (11)

This series, in the factorized form, encompasses a large part of the combinatorics of Dyson’s
functional expansions in quantum field theory [18, 34]. It is the infinite-dimensional analogue
of the theorem of Wei and Norman [2, 43, 44].

3. ALGEBRAIC ASPECTS OF ϕ-SHUFFLE BIALGEBRAS

From now on, we will work with an alphabet Y = {yi}i∈I with I an arbitrary index set11,
which needs not be totally ordered unless we write it explicitly.

3.1. First properties. Let us consider the following recursion in order to construct a map

Y ∗ × Y ∗ −→ K〈Y 〉. (12)

i) For any w ∈ Y ∗,
(Init) 1Y ∗ ϕw = w ϕ1Y ∗ = w. (13)

ii) For any a, b ∈ Y and u, v ∈ Y ∗,
(Rec) au ϕbv = a(u ϕbv) + b(au ϕv) + ϕ(a, b)(u ϕv), (14)

where ϕ is an arbitrary mapping defined by its structure coefficients

ϕ : Y × Y −→ KY, (15)

(yi, yj) 7−→
∑
k∈I

γykyi,yj yk. (16)

The following proposition guarantees the existence of a unique bilinear law on K〈Y 〉 satisfy-
ing (Init) and (Rec).

10The duality pairing is given by 〈u | v〉 = δu,v , for u, v ∈ Y ∗.
11The indexing is one-to-one, i.e., there is no repetition.
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Proposition 1 ([14]). The recursion (Rec) together with the initialization (Init) defines a
unique mapping

ϕ : Y ∗ × Y ∗ −→ K〈Y 〉,

which can, at once, be extended by linearity as a law

ϕ : K〈Y 〉 ⊗K〈Y 〉 −→ K〈Y 〉.

The space K〈Y 〉 endowed with the law ϕ is an algebra (with unit 1K〈Y 〉 by definition).
It will be called the ϕ-shuffle algebra. In full generality, this algebra need not be associative
or commutative if ϕ is not so. In the next example, we give a table of well known laws which
can be defined according to this pattern (in which ϕ is reasonable).

Example 1. Below, a summary table of ϕ-deformed cases found in the literature is given. The
last case (infiltration product) comes from computer science (see [37, 38, 15])

Name (recursion) Formula ϕ

Shuffle au tt bv = a(u tt bv) + b(au tt v) ϕ ≡ 0
Quasi-shuffle xiu xjv = xi(u xjv) + xj(xiu v) ϕ(xi, xj) = xi+j

Stuffle + xi+j(u v)
Min-shuffle xiu xjv = xi(u xjv) + xj(xiu v) ϕ(xi, xj) = −xi+j

− xi+j(u v)
Muffle xiu a xjv = xi(u a xjv) + xj(xiu a v) ϕ(xi, xj) = xi×j

+ xi×j(u a v)
q-stuffle xiu qxjv = xi(u qxjv) + xj(xiu qv) ϕ(xi, xj) = qxi+j

+ qxi+j(u tt v)
q-stuffle xiu ttq xjv = xi(u ttq xjv) + xj(xiu ttq v) ϕ(xi, xj) = qi×jxi+j

(character) + qi×jxi+j(u tt v)
LDIAG(1, qs)

non-crossed, au ∗ bv = a(u ∗ bv) + b(au ∗ v) ϕ(a, b) = q
|a||b|
s (a.b)

non-shifted + q
|a||b|
s (a.b)(u ∗ v) (a.b) assoc.

B-shuffle au ttB bv = a(u ttB bv) + b(au ttB v) ϕ(a, b) = 〈a, b〉
+ 〈a, b〉(u ttB v) = 〈b, a〉

Semigroup- xtu tt⊥ xsv = xt(u tt⊥ xsv) + xs(xtu tt⊥ v) ϕ(xt, xs) = xt⊥s
-shuffle + xt⊥s(u tt⊥ v)

q-Infiltration au ↑ bv = a(u ↑ bv) + b(au ↑ v) ϕ(a, b) = qδa,ba
+ qδa,ba(u ↑ v)

Now we recall first properties of ϕ (see [21]): associativity, commutativity and dualiz-
ability.

Definition 1 ([14]). A law µ : K〈Y 〉 ⊗K〈Y 〉 → K〈Y 〉 is said to be dualizable if there exists
a (linear) mapping

∆µ : K〈Y 〉 −→ K〈Y 〉 ⊗K〈Y 〉
(necessarily unique) such that the dual mapping(

K〈Y 〉 ⊗K〈Y 〉
)∗
−→ K〈〈Y 〉〉
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restricts 12 to µ. Or, equivalently,

for all u, v, w ∈ Y ∗ : 〈µ(u⊗ v) | w〉 = 〈u⊗ v | ∆µ(w)〉⊗2.

Theorem 1 ([14]). We have:
(1) The law ϕ is associative (respectively commutative) if and only if the extension

ϕ : KY ⊗KY −→ KY is so.
(2) Let γzx,y := 〈ϕ(x, y) | z〉 be the structure constants of ϕ. Then ϕ is dualizable if and

only if ϕ is also dualizable, that is to say, there exists a map δ : KY −→ KY ⊗ KY
such that for all x, y, z ∈ X we have

〈ϕ(x, y) | z〉 = 〈x⊗ y | δ(z)〉 .
This map δ is given by13

δ(z) =
∑
x,y∈Y

γzx,y x⊗ y .

For the proof of the theorem we need the following auxiliary result.

Lemma 1 ([14]). Let ∆ be the morphism K〈Y 〉 −→ A〈〈Y ∗⊗Y ∗〉〉 defined on the letters by14

∆(ys) = ys ⊗ 1 + 1⊗ ys +
∑
n,m∈I

γysyn,ymyn ⊗ ym .

Then
(1) for all u, v, w ∈ Y ∗, 〈u ϕv | w〉 = 〈u⊗ v | ∆(w)〉⊗2.
(2) for all w ∈ Y +, ∆(w) = w ⊗ 1 + 1⊗ w +

∑
u,v∈Y +

〈∆(w) | u⊗ v〉u⊗ v.

Proof of Theorem 1 (sketch). The theorem follows by application of items (1) and (2) in Lem-
ma 1. �

If ϕ is associative (which is fulfilled in all cases of Table 1), we extend ϕ to Y + by the
universal property of the free semigroup Y +,{

ϕ(x) = x, for x ∈ Y,
ϕ(xw) = ϕ(x, ϕ(w)), for x ∈ Y and w ∈ Y +,

(17)

and we extend the definition of the structure constants accordingly: for x1 . . . xl ∈ Y +,

γyx1...xl = 〈y | ϕ(x1 . . . xl)〉 =
∑

t1,...,tl−2∈Y

γyx1,t1γ
t1
x2,t2 . . . γ

tl−2
xl−1,xl

. (18)

Note that the fact that ϕ is dualizable can be rephrased as:

for all y ∈ Y : {w ∈ Y 2|γyw 6= 0} is finite. (19)

12through the pairings 〈− | −〉.
13Note that all these conditions are equivalent to the fact that (γzx,y)x,y,z∈Y satisfies:

for all z ∈ Y : #{(x, y) ∈ Y 2|γzx,y 6= 0} < +∞ .

14If ϕ is dualizable, this expression can be written

∆(ys) = ys ⊗ 1 + 1⊗ ys + δ(ys) .
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In this case, it can be checked immediately that, for an arbitrarily fixed N ≥ 1,

for all y ∈ Y : {w ∈ Y N |γyw 6= 0} is finite, (20)

but, by no means, we have in general that

for all y ∈ Y : {w ∈ Y +|γyw 6= 0} is finite. (21)

Remark 1. i) Condition (21) is strictly stronger than (19) as the example of any group law on
Y , with |Y | ≥ 2 and finite, shows.

ii) Non-dualizable laws occur with the alphabet YZ = {yj}j∈Z and the stuffle on it
(ϕ(yi, yj) = yi+j). This alphabet naturally appears in the theory of polylogarithms at nega-
tive integers in [17] where another non-dualizable law (called >) arises. See also Example 2
below.

Definition 2. An associative law ϕ on KY will be said to be moderate if and only if it fulfils
condition (21).

Let us now state the structure theorem from [14].

Theorem 2 ([14]). Let us suppose that ϕ is dualizable and associative. We still denote its
dual co-multiplication by

∆ ϕ : K〈Y 〉 −→ K〈Y 〉 ⊗K〈Y 〉.
Then Bϕ = (K〈Y 〉, conc, 1Y ∗ ,∆ ϕ , ε) is a bialgebra. If, moreover, ϕ is commutative, the
following conditions are equivalent:

(1) Bϕ is an enveloping bialgebra.
(2) Bϕ is isomorphic to (K〈Y 〉, conc, 1Y ∗ ,∆tt , ε) as a bialgebra.
(3) For all y ∈ Y , the following series is a polynomial:

(P ) y +
∑
l≥2

(−1)l−1

l

∑
x1,...,xl∈Y

〈y | ϕ(x1 . . . xl)〉 x1 . . . xl .

(4) ϕ is moderate.

Proof (sketch). 4 =⇒ 3) Obvious.

3 =⇒ 2) One first constructs an endomorphism of (K〈Y 〉, conc, 1Y ∗) sending each letter
y ∈ Y to the polynomial form (P ) and then proves that it is an automorphism of AAU15

which sends (K〈Y 〉, conc, 1Y ∗ ,∆ ϕ , ε) to (K〈Y 〉, conc, 1Y ∗ ,∆tt , ε).

2 =⇒ 1) This follows from the fact that (K〈Y 〉, conc, 1Y ∗ ,∆tt , ε) is an enveloping bial-
gebra.

1 =⇒ 4) Observe that, for each letter y ∈ Y , we have

〈∆(n−1)
ϕ

(y) | x1 ⊗ x2 ⊗ · · · ⊗ xn〉 = γyx1...xl . �

Example 2. (1) The muffle product (see Table 1), which determines the product of Hur-
witz polyzetas with rational centers and correspond to ϕ(xi, xj) = xi.j for i, j ∈ Q∗+,
is not dualizable (γ1

n,1/n = 1 for all n ≥ 1).

15Abbreviation for associative algebra with unit.
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(2) The q-infiltration bialgebra (see again Table 1) has its origin in computer science
[37, 38] and appears as a generic solution in [15]. It provides a bialgebra

Hq−inflitr = (K〈Y 〉, conc, 1X∗ ,∆↑q , ε)

(q ∈ K) based on a ϕ that is an associative, commutative and dualizable law, but,
if Y 6= ∅ this law is moderate only if and only if q is nilpotent in the Q-algebra K.
Indeed, for all x ∈ Y , (1 + qx) is group-like and it has an inverse in K〈X〉 if and only
if q is nilpotent. In this case the antipode is the involutive antiautomorphism defined
on the letters by

S(x) =
−x

1 + qx
.

3.2. Structural properties. Here, we only assume that ϕ is associative.
The bialgebra

H∨
ϕ

= (K〈Y 〉, ϕ, 1Y ∗ ,∆conc, ε) (22)

is a Hopf algebra because it is co-nilpotent16. Its antipode can be computed by a(1Y ∗) = 1
and, for w ∈ Y +,

a ϕ(w) =
∑
k≥1

(−1)−k
∑

u1,...,uk∈Y +

u1...uk=w

u1 ϕ · · · ϕuk. (23)

Due to the finite number of decompositions of any word u1 . . . uk = w ∈ Y + into factors
u1, . . . , uk ∈ Y +, we can, at this very early stage, define an endomorphism Φ(S) of K〈Y 〉 as
follows:

Φ(S)[w] =
∑
k≥1

ak
∑

u1,...,uk∈Y +

u1...uk=w

u1 ϕ · · · ϕuk, (24)

associated to any univariate formal power series S = a1X + a2X
2 + a3X

3 + · · · . The case
of

log(1 +X) =
∑
k≥1

(−1)k−1

k
Xk (25)

will be of particular importance. It reads here in the style of formula (23),

π̌1(w) =
∑
k≥1

(−1)k−1

k

∑
u1,...,uk∈Y +

u1...uk=w

u1 ϕ · · · ϕuk. (26)

16The law ∆conc, dual to the concatenation is, of course, defined by

∆conc(w) =
∑
uv=w

u⊗ v.

The corresponding n-fold ∆+
conc (∆+ = ∆ minus the primitive part) reads

∆+(n−1)
conc (w) =

∑
u1u2···un=w

ui∈Y +

u1 ⊗ u2 ⊗ · · · ⊗ un,

from which it is clear that ∆
+(n−1)
conc (w) = 0 for n > |w|.
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This π̌1 ∈ End(K〈Y 〉) has an adjoint π1 ∈ End(K〈〈Y 〉〉) which reads

π1(S) =
∑
w∈Y ∗
〈S | π̌1(w)〉w (27)

=
∑
k≥1

(−1)k−1

k

∑
u1,...,uk∈Y +

〈S | u1 ϕ · · · ϕuk〉u1 . . . uk. (28)

It is an easy exercise to check that the family in the sums of (27) is summable17. It is easy to
check that the dominant term of all terms in a ϕ product is the corresponding tt product.
This explains why we still have the theorem of Radford.

Theorem 3 (RADFORD’S THEOREM). When ϕ is commutative, the associative and com-
mutative algebra with unit (K〈Y 〉, ϕ, 1Y ∗) is a polynomial algebra. More precisely, the
morphism β : K[Lyn Y ] → (K〈Y 〉, ϕ, 1Y ∗) defined by β(l) = l for l ∈ Lyn Y is an
isomorphism. In other words, the family(

l ϕi1
1 ϕ · · · ϕl

ϕik
k

)
k≥0, {l1,l2,...,lk}⊂LynY

(i1,i2,...,ik)∈(N+)k

is a linear basis of K〈Y 〉.

Proof. One checks that

l ϕi1
1 ϕ · · · ϕl

ϕik
k = ltt

i1
1 tt . . . ttl

tt ik
k +

∑
|v|<

∑
1≤j≤k ij |lj |

cv v.

The result follows. �

The theorem of Radford is important in the classical cases because it is the left-hand side
(of the tensor products) in Schützenberger’s factorization, in which we have the move

PBW→ Radford;

see [12] for a discussion of the converse.

Lemma 2 (ϕ-EXTENDED FRIEDRICHS’ CRITERION). We denote18 by

∆ ϕ : K〈〈Y 〉〉 → K〈〈Y ∗ ⊗ Y ∗〉〉
the dual of ϕ applied to series, i.e., defined by

∆ ϕ(S) =
∑

u,v∈Y ∗
〈S | u ϕ v〉u⊗ v.

Let now S ∈ K〈〈Y 〉〉. Then we have:
(1) If 〈S | 1Y ∗〉 = 0 then S is primitive (i.e., ∆ ϕ(S) = S ⊗ 1Y ∗ + 1Y ∗ ⊗ S)19 if and

only if we have 〈S | u ϕv〉 = 0 for any u and v ∈ Y +.
(2) If 〈S | 1Y ∗〉 = 1, then S is group-like (i.e., ∆ ϕ(S) = S ⊗ S)20 if and only if we

have 〈S | u ϕv〉 = 〈S | u〉〈S | v〉 for any u and v ∈ Y ∗.
17A family of (simple, double, etc.) series is summable if it is locally finite (see [14] for a complete

development).
18As in the classical case, ∆

ϕ
is a conc-morphism as can be seen by transposition of the fact that ∆conc

is a ϕ-morphism.
19Tensor products of linear forms.
20idem
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Proof. The expected equivalences are due to the following facts:

∆ ϕ(S) = S ⊗ 1Y ∗ + 1Y ∗ ⊗ S − 〈S | 1Y ∗〉1Y ∗ ⊗ 1Y ∗ +
∑

u,v∈Y +

〈S | u ϕv〉u⊗ v,

∆ ϕ(S) =
∑

u,v∈Y ∗
〈S | u ϕv〉u⊗ v and S ⊗ S =

∑
u,v∈Y ∗

〈S | u〉〈S | v〉u⊗ v. �

Lemma 3. Let S ∈ K〈〈Y 〉〉 be such that 〈S | 1Y ∗〉 = 1. Then S is group-like if and only if 21

log(S) is primitive.

Proof. Since ∆ ϕ and the maps T 7→ T ⊗ 1Y ∗ , T 7→ 1Y ∗ ⊗ T are continuous homomor-
phisms, then, if logS is primitive, we have (see Lemma 2(1))

∆ ϕ(logS) = log S ⊗ 1Y ∗ + 1Y ∗ ⊗ logS,

and, since logS ⊗ 1Y ∗ and 1Y ∗ ⊗ logS commute, we get

∆ ϕ(S) = ∆ ϕ(exp(logS))

= exp(∆ ϕ(logS))

= exp(logS ⊗ 1Y ∗) exp(1Y ∗ ⊗ logS)

= (exp(logS)⊗ 1Y ∗)(1Y ∗ ⊗ exp(logS))

= S ⊗ S.
This means, together with 〈S | 1Y ∗〉, that S is group-like. The converse can be obtained in
the same way. �

Remark 2. i) In fact, Lemma 3 establishes a nice log-exp correspondence for the Lie group
of group-like series.

ii) Through the canonical pairing 〈− | −〉 : K〈〈Y 〉〉 ⊗ K〈Y 〉 → K, we have K〈〈Y 〉〉 '
(K〈Y 〉)∗. Group-like (respectively primitive) series are in bijection with characters (respec-
tively infinitesimal characters) of the algebra (K〈Y 〉, ϕ, 1Y ∗).

Lemma 4. (1) Group-like series form a group (for concatenation).
(2) The space Prim(K〈〈Y 〉〉) is a Lie algebra (for the bracket derived from concatena-

tion).

Proof. As in the classical case. �

We extend the transposition process in the same way as in Lemma 2 and note, for n ≥ 1,
that

∆(n−1)
ϕ

: K〈〈Y 〉〉 → K〈〈(Y ∗)⊗n〉〉, (29)

the dual of (n−1)
ϕ applied to series, i.e., defined by

∆(n−1)
ϕ

(S) =
∑

u1,u2,...un∈Y ∗
〈S | u1 ϕ · · · ϕun〉u1 ⊗ · · · ⊗ un . (30)

21For any h ∈ K〈〈Y 〉〉, if 〈h | 1Y ∗〉 = 0, we define

log(1Y ∗ + h) =
∑
n≥1

(−1)n−1

n
hn and exp(h) =

∑
n≥0

hn

n!
,

and we have the usual formulas log(exp(h)) = h and exp(log(1Y ∗ + h)) = 1Y ∗ + h.
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We will use the following lemma several times, which gives the combinatorics of products of
primitive series (and the polynomials).

Lemma 5 (HIGHER ORDER CO-MULTIPLICATIONS OF PRODUCTS). Let us consider the
languageM over the alphabet A = {a1, a2, . . . , , am},

M = {w ∈ A∗ | w = aj1 . . . aj|w| , j1 < · · · < j|w|, 1 ≤ |w| ≤ m},

and the morphism

µ : K〈A〉 −→ K〈〈Y 〉〉,
ai 7−→ Si,

where S1, . . . , Sm are primitive series in K〈〈Y 〉〉. Then

∆(n−1)
ϕ

(S1 . . . Sm) =
∑

w1,...,wn∈M
|w1|+···+|wn|=m

a1···am∈supp(w1 tt ...tt wn)

µ(w1)⊗ · · · ⊗ µ(wn).

Proof (sketch). Let S = (S1, . . . , Sm) be this family of primitive series and, for I = {i1,
. . . , ik} ⊂ [1 · · ·m] in increasing order, let us write S[I] for the product Si1 · · ·Sik . Then we
have

∆(n−1)
ϕ

(S1 . . . Sm) =
∑

I1+···+In=[1···m]

S[I1]⊗ · · · ⊗ S[In].

Setting wi = (a1a2 . . . am)[I], one gets the expected result. �

Lemma 6 (PAIRING OF PRODUCTS). Let S1, . . . , Sm be primitive series in K〈〈Y 〉〉, and let
P1, . . . , Pn be proper22 polynomials in K〈Y 〉. Then, in general, we have

〈P1 ϕ · · · ϕPn | S1 . . . Sm〉 =
∑

w1,...,wn∈M
|w1|+···+|wn|=m

a1···am∈supp(w1 tt ...tt wn)

n∏
i=1

〈Pi | µ(wi)〉.

In particular, we have the following exhaustive list of possibilities:

(1) If n > m, then 〈P1 ϕ · · · ϕPn | S1 . . . Sm〉 = 0.
(2) If n = m, then

〈P1 ϕ · · · ϕPn | S1 . . . Sn〉 =
∑
σ∈Sn

n∏
i=1

〈Pi | Sσ(i)〉.

(3) If n < m, then the general form is a sum in which every product contains at least one
factor 〈Pi | µ(wi)〉 with |wi| ≥ 2.

Proof. This is a consequence of Lemma 5 via the equality

〈P1 ϕ · · · ϕPn | S1 . . . Sn〉 = 〈P1 ⊗ · · · ⊗ Pn | ∆(n−1)
ϕ

(S1 . . . Sn)〉 . �

22i.e., polynomials without constant term; see [1].
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In the sequel, we assume that ϕ is associative and dualizable.

Now, we have the following two structures:

H ϕ = (K〈Y 〉, conc, 1Y ∗ ,∆ ϕ , ε), (31)

H∨
ϕ

= (K〈Y 〉, ϕ, 1Y ∗ ,∆conc, ε), (32)

which are mutually dual23 bialgebras. The bialgebra H ϕ need not be a Hopf algebra, even
if ∆ ϕ is cocommutative (see Example 2.2).

Now, let us consider

I := spanK{u ϕv}u,v∈Y + , (33)

K+〈Y 〉 := {P ∈ K〈Y 〉 | 〈P | 1Y ∗〉 = 0}, (34)

P := Prim(H ϕ) = {P ∈ K〈Y 〉 | ∆+
ϕ
(P ) = 0}, (35)

where

∆+
ϕ
(P ) = ∆ ϕ(P )− (P ⊗ 1Y ∗ + 1Y ∗ ⊗ P ) + 〈P | 1Y ∗〉1Y ∗ ⊗ 1Y ∗ . (36)

Remark 3. At this stage (ϕ not necessarily moderate), it can happen that Prim(H ϕ) = {0}.
This is for example the case for the q-infiltration bialgebra on one letter at q = 1,

H ϕ = (K[x], conc, 1x∗ ,∆↑1 , ε),

and, more generally, when q is not nilpotent24.

We can also endow End(K〈Y 〉), the K-module of endomorphisms of K〈Y 〉, with the con-
volution product defined by

for all f, g ∈ End(K〈Y 〉), f ? g = conc ◦ (f ⊗ g) ◦∆ ϕ , (37)

i.e., for all P ∈ K〈Y 〉, (f ? g)(P ) =
∑

u,v∈Y ∗
〈P | u ϕv〉f(u)g(v). (38)

Then End(K〈Y 〉) becomes a K-associative algebra with unity (AAU), its unit being e =
1K〈Y 〉 ◦ ε.

It is convenient to represent every f ∈ End(K〈Y 〉) by its graph, a double series which
reads

Γ(f) =
∑
w∈Y ∗

w ⊗ f(w). (39)

This representation is faithful and, by direct computation, one gets

Γ(f)Γ(g) = Γ(f ? g), (40)

where the multiplication of double series is performed by the stuffle on the left and the con-
catenation on the right.

Definition 3. Let t be a real parameter. We define

DY := Γ(IdK〈Y 〉) =
∑
w∈Y ∗

w ⊗ w, HausY := logDY , σY (t) := exp(tHausY ).

From now on, we assume that ϕ is associative, commutative and dualizable.
23This duality is separating; see [5].
24Recall that q is an element of the ring K (see example 2.2).
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Lemma 7 (π1 IS A PROJECTOR ON THE PRIMITIVE SERIES). The endomorphism π1 is a
projector, the image of which is exactly the space of primitive series, Prim(K〈〈Y 〉〉).

Proof (sketch). The proof follows along the lines of [41] with the difference that π1(w) might
not be a polynomial and the operator defined in Lemma 2 is not a genuine co-product. The
diagonal series DY (when considered as a series in (K〈〈Y 〉〉)〈〈Y 〉〉, the coefficient ring,
K〈〈Y 〉〉, being endowed with the ϕ product) is group-like in the sense of Lemma 2. Then,
using

log(DY ) =
∑
w∈Y ∗

w ⊗ π1(w)

(which can be established by summability of the family (w ⊗ π1(w))w∈Y ∗; but the reader
should remember that the π1(w) are, in general, series25), one gets that π1(w) is a primitive
series for all w. Now, from

π1(S) =
∑
w∈Y ∗
〈S | w〉π1(w),

we have π1(S) ∈ Prim(K〈〈Y 〉〉). Conversely, from Friedrichs’ criterion, we see that π1(S) =
S if S ∈ Prim(K〈〈Y 〉〉). �

In the remainder of the paper, we suppose that ϕ is moderate (and still dualizable, associa-
tive and commutative).

Definition 4 (PROJECTORS, [41]). Let I+ : K〈Y 〉 −→ K〈Y 〉 be the linear mapping defined
by

I+(1Y ∗) = 0, and for all w ∈ Y +, I+(w) = w.

We define26

π1 := log(e+ I+) =
∑
n≥1

(−1)n−1

n
I+

?n, where I+
?n := concn−1 ◦ I+

⊗n ◦∆(n−1)
ϕ
.

It follows immediately that

exp(π1) = e+
∑
n≥1

1

n!
π?n1 =

∑
n≥0

πn, (41)

where e = 1K〈Y 〉 ◦ ε is the orthogonal complement of I+ and neutral for the convolution
product. The πn so obtained is called the n-th Eulerian projector.

Lemma 8. The endomorphism π̌1 defined in (26) is the adjoint of π1. We have

π̌1 =
∑
n≥1

(−1)n−1

n
(n−1)
ϕ ◦ I+

⊗n ◦∆(n−1)
conc .

Proof. Immediate. �
25In greater detail, this equality amounts to checking the summability of the family( (−1)k−1

k
w ⊗ 〈w | u1 ϕ · · · ϕuk〉u1 · · ·uk

)
w∈Y ∗, k≥1

u1,...,uk∈Y +

(which is immediate) and rearranging the sums.
26The series below are summable because the family (I+

?n)n≥0 is locally nilpotent (see [14] for complete
proofs). Note that this definition gives the same result as the computation of the adjoint of π̌1 given in (27).
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Proposition 2. (GRAPH OF π1, VALUES AND ITS EXPONENTIAL AS RESOLUTION OF
UNITY).

(1) For all Y and ϕ (moderate, associative, commutative and dualizable), we have

logDY =
∑
w∈Y +

w ⊗ π1(w) =
∑
w∈Y +

π̌1(w)⊗ w.

(2) Let P ∈ K〈Y 〉 be a primitive polynomial, for ∆ ϕ . Then

π1(P ) = P, for all k, n ∈ N+, πn(P k) = δk,nP
k.

(3) We have
IdK〈Y 〉 = e+ I+ =

∑
n≥0

πn. (42)

Equation (42) is a resolution of identity with mutually orthogonal summands.
(4) We have

K+〈Y 〉 = P
⊥
⊕I = P ⊕

(⊕
n≥2

πn(K〈Y 〉)
)
.

Proof. The only statement which cannot be proved through an isomorphism with the shuffle
algebra is the first equality of item (4). The fact that P∩I = {0} comes from Friedrichs’ cri-
terion, andP+I = K+〈Y 〉 is a consequence of the fact (seen again through any isomorphism
with the shuffle algebra) that

(H ϕ)+ = spanK(
⋃
n≥1

(P1 ϕ · · · ϕPn)Pi∈Prim(H ϕ )). �

Remark 4. (1) The first equality of Proposition 2.(4), i.e.,

K+〈Y 〉 = P
⊥
⊕I,

is known as the theorem of Ree [40].
(2) The projector on P parallel to I is not in general in the descent algebra (see [19]).

This proves that, although they are isomorphic, the spaces I and
⊕

n≥2 πn(K〈Y 〉)
are, in general, not identical.

Proposition 2.(1) leads to the following corollary.

Corollary 1. We have π1(1Y ∗) = π̌1(1Y ∗) = 0 and, for all w ∈ Y +,

π1(w) = w +
∑
k≥2

(−1)k−1

k

∑
u1,...,uk∈Y +

〈w | u1 ϕ · · · ϕuk〉u1 . . . uk,

π̌1(w) = w +
∑
k≥2

(−1)k−1

k

∑
u1,...,uk∈Y +

〈w | u1 . . . uk〉u1 ϕ · · · ϕuk.

In particular, π1(1Y ∗) = π̌1(1Y ∗) = 0, for any y ∈ Y , π̌1(y) = y, and

π1(y) = y +
∑
l≥2

(−1)l−1

l

∑
x1...xl∈Y ∗

γyx1,...,xl x1 . . . xl.

Remark 5. We already knew that, as soon as ϕ is associative, π̌1(w) is a polynomial. Here,
because ϕ is moderate, dualizable, and associative, π1(w) is also a polynomial, and because
ϕ is commutative, it is primitive.
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Proposition 3. We have:
(1) The expression of σY (t) is given by

σY (t) =
∑
n≥0

tn
∑
w∈Y ∗

w ⊗ πn(w) =
∑
n≥0

tn
∑
w∈Y ∗

π̌n(w)⊗ w,

where π̌n is the adjoint of πn. These are given by πn(1Y ∗) = π̌n(1Y ∗) = δ0,n and, for
all w ∈ Y +,

πn(w) =
1

n!

∑
u1,...,un∈Y +

〈w | π̌1(u1) ϕ · · · ϕπ̌1(un)〉π1(u1) . . . π1(un),

π̌n(w) =
1

n!

∑
u1,...,un∈Y +

〈w | π1(u1) . . . π1(un)〉π̌1(u1) ϕ · · · ϕπ̌1(un)).

(2) For any w ∈ Y ∗, we have

w =
∑
k≥0

1

k!

∑
u1,...,uk∈Y +

〈w | u1 ϕ · · · ϕuk〉π1(u1) . . . π1(uk)

=
∑
k≥0

1

k!

∑
u1,...,uk∈Y +

〈w | u1 . . . uk〉π̌1(u1) ϕ · · · ϕπ̌1(uk).

In particular, for any ys ∈ Y , we have ys = π̌1(ys) and

ys =
∑
k≥1

1

k!

∑
ys1 ,...,ysk∈Y

γysys1 ,...,ysk
π1(ys1) . . . π1(ysk).

Proof. Direct computation. �

Applying the tensor product27 of isomorphisms of algebras28 α⊗ IdY to the diagonal series
DY , we obtain a group-like element, and then computing the logarithm of this element (or
equivalently, applying α⊗ IdY toHausY ) we obtain S which is, by Lemma 3, primitive:

S =
∑
w∈Y ∗

α(w) π1(w) =
∑
w∈Y ∗

α ◦ π̌1(w) w. (43)

Lemma 9. For any w ∈ Y +, we have π1(w) ∈ Prim(K〈Y 〉).

Proof. Immediate from Lemma 7. �

A primitive projector, π : K〈Y 〉 −→ K〈Y 〉, is defined in the same way as a Lie projector
by the three following conditions:

π ◦ π = π, π(1Y ∗) = 0, π(K〈Y 〉) = Prim(K〈Y 〉) = P . (44)

For example, π1 defined in Definition 4 (see also Proposition 2) is a primitive projector which
will be used to construct bases of P and its enveloping algebra (see Theorem 5 below).
Another example of a primitive projector is the orthogonal projector on P attached to the
decomposition in Remark 4.

27Extended to series.
28In order to clarify the ideas at this point, the reader can also take the alphabet duplication isomorphism

for all ȳ ∈ Ȳ , ȳ = α(y),

and use {w}w∈Ȳ ∗ as a basis for K〈Ȳ 〉.
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Now, for the remainder of the paper, let Y = {yw}w∈Y + (respectively Y1 = {yx}x∈Y ) be a
copy of Y + (respectively Y ).

Let us then equip K〈Y〉 and K〈Y1〉with • (the concatenation so denoted to be distinguished
from the concatenation within Y +) and tt (or equivalently by ∆• and ∆tt ).

Thus, the Hopf algebras (K〈Y〉, •, 1Y∗ ,∆tt , εY∗) and (K〈Y1〉, •, 1Y∗ ,∆tt , εY∗1 ) are con-
nected, N-graded, non-commutative and co-commutative bialgebras, and hence enveloping
bialgebras (in fact, they are free algebras but specially indexed to match our purpose).

Now we can state the following result.

Theorem 4 (NEW LETTERS AS IMAGES). Let π : K〈Y 〉 −→ K〈Y 〉 be a primitive projector.
Let ψπ be the conc-morphism defined by

ψπ : K〈Y〉 −→ K〈Y 〉,
yw 7−→ ψπ(yw) = π(w).

Then ψπ is surjective and a Hopf morphism.
Moreover, kerψπ = J = J1 + J2, where J1 and J2 are the two-sided ideals of K〈Y〉

generated by

S1 = {yu − yπ(u)}u∈Y + and S2 = {yu • yv − yv • yu − y[π(u),π(v)]}u,v∈Y + ,

respectively, where the indexing of the alphabet has been extended by linearity to polynomi-
als, i.e.,

yP :=
∑
w∈Y +

〈P | w〉 yw.

Proof. The fact that ψπ is surjective is due to π(K〈Y 〉) = P and to the fact that any envelop-
ing algebra (here H ϕ) is generated by its primitive elements. The fact that ψπ is a Hopf
morphism is due to a general property of enveloping algebras: if a morphism of AAU between
two enveloping algebras sends the primitive elements of the first to primitive elements of the
second, then it is a Hopf morphism.

Let now (pi)i∈J be an ordered (J is endowed with a total ordering ≺J ) basis29 of P =
Prim(K〈Y 〉), and let us recall that J = J1 + J2 denotes the two sided ideal generated by
the elements Ji (itself generated by Si, i = 1, 2).

First, we observe that the elements of S1∪S2 are in the kernel of ψπ1 , and thenJ ⊂ kerψπ1 .
On the other hand, for u1, u2, . . . , un ∈ Y +, we have

yu1 • yu2 • · · · • yun ≡ yπ(u1) • yπ(u2) • · · · • yπ(un) mod J (45)

(in fact they are even equivalent mod J1), which amounts to saying that K〈Y〉 = J +lPm,
where lPm is the space “generated by P”, in fact, generated by⊔

n≥0

{ypi1 • · · · • ypin}ij∈J .

Now, by induction on the number of inversions, one can show, using S2, that

ypi1 • · · · • ypin ≡ ypσ(i1) • · · · • ypσ(in)
mod J , (46)

where σ ∈ Sn is such that σ(i1) �J σ(i2) �J · · · �J σ(in) (large order reordering).

29With the properties of ϕ here, the bialgebra (K〈Y 〉, conc, 1Y ∗ ,∆ ϕ
, ε) is isomorphic to

(K〈Y 〉, conc, 1Y ∗ ,∆tt , ε) in which the module of primitive elements is free, thus P = Prim(K〈Y 〉) is free.
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Let C be the space generated by the elements

{ypj1 • · · · • ypjn} j1�J j2�J ···�J jn
n≥0

. (47)

By (45) and (46), we get J + C = K〈Y〉.
Now, due to the PBW theorem, the family of images(

Φπ1(ypj1 • ypj2 • · · · • ypjn )
)
j1�J j2�J ···jn

n≥0

(48)

is a basis of K〈Y 〉, which proves that Φπ1|C: C → K〈Y 〉 is an isomorphism and completely
proves the claim. �

We now suppose that the alphabet Y is totally ordered.

Definition 5. (1) Let {Πl}l∈LynY and {Πw}w∈Y ∗ be the families of elements of P and
K〈Y 〉, respectively, obtained as follows:

Πyk = π1(yk), for k ≥ 1,

Πl = [Πs,Πr], for l ∈ LynX, standard factorization of l = (s, r),

Πw = Πi1
l1
. . .Πik

lk
, for w = li11 . . . l

ik
k , l1 �lex · · · �lex lk, l1 . . . , lk ∈ Lyn Y.

(2) Let {Σw}w∈Y ∗ be the family of the ϕ-deformed quasi-shuffle algebra obtained by
duality with {Πw}w∈Y ∗:

for all u, v ∈ Y ∗, 〈Σv | Πu〉 = δu,v.

A priori, the {Σw}w∈Y ∗ are series. We prove first that, in this context, they are actually
polynomials.

Proposition 4 (ADJOINT OF φπ1 ). Let φπ1 , be the conc-endomorphism of algebras defined
on the letters as follows:

φπ1 : K〈Y 〉 −→ K〈Y 〉,
yk 7−→ φπ1(yk) = π1(yk).

Then φπ1 is an automorphism with the following properties:
(1) This automorphism is such that, for every l ∈ Lyn Y ,

φπ1(Pl) = Πl,

where Pl are the polynomials calculated with the mechanism of Definition 5, set-
ting ϕ ≡ 0 (or, equivalently, by (8) with q = 0), i.e., within the shuffle algebra
(K〈Y 〉, conc, 1Y ∗ ,∆tt , ε).

(2) This automorphism has an adjoint φ∨π1 within K〈Y 〉 which reads, on words w ∈ Y ∗,

φ∨π1(w) =
∑
k≥0

∑
yi1 ···yik∈Y

〈w | π1(yi1) · · · π1(yik)〉 yi1yi2 · · · yik .

(3) In the style of Definition 4, we have

φπ1 = e+
∑
k≥1

conc(k−1) ◦ (π1 ◦ I1)⊗k ◦∆(k−1)
conc ,

φ∨π1 = e+
∑
k≥1

conc(k−1) ◦ (I1 ◦ π̌1)⊗k ◦∆(k−1)
conc ,
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where I1 is the projector on KY parallel to
⊕

n 6=1(K〈Y 〉)n.
(4) For all w ∈ Y ∗, Σw = (φ∨π1)

−1(Sw).

Proof (sketch). It was proved in Theorem 2 that the endomorphism φπ1 is an isomorphism.
The recursions used to construct Πl and Pl prove that φπ1(Pl) = Πl, and then φπw(Pl) = Πw

for every word w. Now the expression of φπ1 is a direct consequence of the definition of
φπ1 . This implies at once the expression of φ∨π1 and the fact that φ∨π1 ∈ End(K〈Y 〉). The last
equality comes from

δu,v = 〈Πu | Σv〉 = 〈φπ1(Pu) | Σv〉 = 〈Pu | φ∨π1(Σv)〉,

which shows that, for all w ∈ Y ∗, φ∨π1(Σw) = Sw, and the claim follows. �

We can now state the following result.

Theorem 5. (1) The family {Πl}l∈LynY forms a basis of P .
(2) The family {Πw}w∈Y ∗ is a linear basis of K〈Y 〉.
(3) The family {Σw}w∈Y ∗ is a linear basis of the ϕ-shuffle algebra.
(4) The family {Σl}l∈LynY forms a pure transcendence basis of (K〈Y 〉, ϕ, 1Y ∗).

The first terms of these families, for the q-stuffle (see (8) and (10)) can be found in [3].

3.3. Local coordinates by ϕ-extended Schützenberger factorization. We have observed
very early (ϕ needs only to be associative) that the set of group-like series (for ∆ ϕ) forms
a (infinite-dimensional Lie) group (see Lemmas 3 and 4), its Lie algebra is the (Lie) algebra
of Lie series, and we have a nice log-exp correspondence (see Lemma 3). We will see in this
section that, when ϕ possesses all the “good” properties (moderate, dualizable, associative
and commutative), we have an analogue of the Wei–Norman theorem [2, 43, 44] which gives
a system of local coordinates for every finite-dimensional (real or complex) Lie group. Let
us recall it here.

Theorem 6 ([2, 43, 44]). Given a (finite-dimensional) Lie group G (real k = R or complex
k = C), its Lie algebra g, and a basis B = (bi)1≤i≤n of g, there exists a neighbourhood W
of 1G (in G) and n local coordinate analytic functions

W → k, (fi)1≤i≤n

such that, for all g ∈ W , we have

g =
→∏

1≤i≤n

eti(g)bi = et1(g)b1et2(g)b2 . . . etn(g)bn .

Now, we have seen that, if ϕ is moderate, dualizable, associative and commutative,

H ϕ = (K〈Y 〉, conc, 1Y ∗ ,∆ ϕ , ε) (49)

is isomorphic to the shuffle bialgebra algebra (K〈Y 〉, conc, 1Y ∗ ,∆tt , ε), therefore one can
construct bases {Πw}w∈Y ∗ ; {Σw}w∈Y ∗ of K〈Y 〉 with the following properties:

(1) the restricted family {Πl}l∈LynY is a basis of P = Prim(K〈Y 〉);
(2) the whole basis is constructed by decreasing concatenation (see Definition 5) and

hence of type PBW;
(3) they are in duality 〈Πu | Σv〉 = δu,v;
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(4) due to these three properties, we have

Σw =
Σ i1
l1

· · · Σ ik
lk

i1! · · · ik!
, for w = li11 . . . l

ik
k . (50)

Now, within the algebra of double series (whose support is KY ∗⊗Y ∗) endowed with the law
ϕ⊗̂conc, M.-P. Schützenberger (see [41]) gave the beautiful formula∑

w∈Y ∗
w ⊗ w =

↘∏
l∈LynY

eΣl⊗̂Pl , (51)

which can be used to provide a system of local coordinates on the Hausdorff group, i.e., the
group of series in K〈〈Y 〉〉 which are group-like for ∆ ϕ . Indeed, due to the fact that for
a group-like S, (S⊗̂Id) is compatible with the law of the double algebra, by applying the
operator (S⊗̂Id) to (51) we get30

S = (S⊗̂Id)(
∑
w∈Y ∗

w⊗̂w) =

↘∏
l∈LynY

e〈S|Σl〉 Pl , (52)

which is the perfect analogue of the theorem of Wei and Norman for the Hausdorff group
(group of group-like series).

4. CONCLUSION

In this paper, we have systematically studied the deformations of the shuffle product by
addition of a superposition term. Fortunately, this study provides necessary and sufficient
conditions for the objects (antipode, Ree ideal, bases in duality) and operators (infinite con-
volutional series, primitive projectors) to exist together with their consequences. We have es-
tablished a local system of coordinates for the (infinite-dimensional) Lie group of group-like
series. This system is the perfect analogue of the well-known theorem of Wei and Norman
which holds for every finite-dimensional Lie group.
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