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ABSTRACT. Several signed excedance-type statistics have nice formulae when summed over
the symmetric group and over the hyperoctahedral group. Motivated by these, we consider
sums of the form fχ,n(q) =

∑
w∈W χ(w)qexc(w) where W is a classical Weyl group of rank

n, χ is a non-trivial one-dimensional character of W , and exc(w) is the excedance statistic of
w.

We give formulae for these sums in a more general multivariate setting. We sharpen ex-
isting results for types A and B and give new results for classical Weyl groups of type B and
type D.

1. INTRODUCTION

For a positive integer n, let [n] = {1, 2, . . . , n} and let Sn be the set of permutations on [n].
Let Bn be the set of permutations σ of {−n,−(n−1), . . . ,−1, 1, 2, . . . n} satisfying σ(−i) =
−σ(i). Clearly any such σ is well defined when given σ(i) for i ∈ [n]. Bn is referred to as
the hyperoctahedral group or the group of signed permutations on [n]. Clearly, |Sn| = n! and
|Bn| = 2nn!. For σ ∈ Bn we alternatively denote σ(i) as σi. For 1 ≤ k ≤ n, we also denote
−k alternatively as k. For σ ∈ Bn, define NegSet(σ) = {σi : i > 0, σi < 0} be the set of
elements which occur with a negative sign. Define Dn = {σ ∈ Bn : |NegSet(σ)| is even}.
That is, Dn consists of the elements of Bn with an even number of negative elements. The
three families of groups Sn, Bn and Dn are the classical Weyl groups of type A, type B and
type D respectively.

Let π = π1, π2, . . . , πn ∈ Sn be the one-line representation of π. Define its excedance set
ExcSetA(π) as {i ∈ [n] : πi > i} and its number of excedances as exc(π) = |ExcSetA(π)|.
For π ∈ Sn, define its number of inversions as invA(π) = |{1 ≤ i < j ≤ n : πi > πj}|.

For a positive integer n ≥ 1, define SgnExcn(q) =
∑

π∈Sn
(−1)invA(π)qexc(π) as the signed

excedance enumerator of Sn. Let SDn be the set of derangements on [n]. We recall that, for
a non-negative integer i, its q-analogue is defined as [i]q = 1+q+q2+· · ·+qi−1, where q is an
indeterminate and [0]q = 0. For n ≥ 1, define DerSgnExcn(q) =

∑
π∈SDn

(−1)invA(π)qexc(π)
as the signed excedance enumerator over derangements. The motivation for this work stems
from the following two attractive results of Mantaci [6] and of Mantaci and Rakotondrajao
[7].

Theorem 1 (MANTACI). For n ≥ 1, SgnExcn(q) = (1− q)n−1.
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Theorem 2 (MANTACI AND RAKOTONDRAJAO). Let n ≥ 1 be a positive integer. Then,

DerSgnExcn(q) = (−1)n−1q · [n− 1]q.

The original proofs of both results used sign reversing involutions and both papers prove
more detailed results as well. An alternate proof of both these results was given by Siva-
subramanian in [9]. Later, in [10], Sivasubramanian extended these results to Bn, in a more
general bivariate setting.

For σ = σ1, σ2, . . . , σn ∈ Bn, Brenti [4] defined its number of excedances as exc(σ) =
|{i ∈ [n] : σ|σi| > σi}| + |{i ∈ [n] : σi = −i}|. This definition of Brenti was used
by Sivasubramanian in [10]. For a multivariable generalisation, one definition of the set of
excedances could thus be ExcSet(σ) = {i ∈ [n] : σ|σi| > σi} ∪ {i ∈ [n] : σi = −i}. We have
a different definition, which we give next.

For σ ∈ Bn, we define ExcSetA(σ) = {|σi| : σ|σi| > σi}, NegFixPtSet = {i ∈ [n] : σi =
−i} and ExcSetB(σ) = ExcSetA(σ)∪NegFixPtSet(σ). Note that the union above is a disjoint
union as ExcSetA(σ) ∩ NegFixPtSet(σ) = ∅. This definition of ExcSetB(σ) differs slightly
from ExcSet(σ) given in the previous paragraph, though we still have exc(σ) = |ExcSetB(σ)|.
We mention our reason for this change. One way to think of this definition of excedances is
to use the cycles of σ which we now discuss. Our definition of cycles of σ differs from the
standard definition and so we define what we mean by cycles of σ. For σ ∈ Bn, let |σ| ∈ Sn

be the permutation obtained by converting all negative entries i for each i ∈ NegSet(σ) to i.
Let C be a cycle of |σ| and in C change back each element i ∈ NegSet(σ) to i and do this for
all cycles C of σ. This gives the cycles of σ ∈ Bn.

When we write σ ∈ Bn or π ∈ Sn in one-line notation, then we do not place a parenthesis
bordering its elements, but we use parenthesis to write the cycles of σ or π as follows. For
example, if σ = 4, 2, 3, 5, 1, then |σ| = 4, 2, 3, 5, 1. The cycles of |σ| are C = (1, 4, 5),
D = (2) and E = (3). Hence, the cycles of σ are C ′ = (1, 4, 5), D′ = (2) and E ′ = (3)
and ExcSetB(σ) = {1, 2, 4}. For 1 ≤ i ≤ n, to get σi, we locate ±i among the cycles
of σ and define σi as the successor of ±i in that cycle. Our slightly modified definition of
ExcSetB(σ) is motivated by the Sn case where we say position i is an index of excedance if,
in the cycle containing i, its successor is larger than i. Zhao in [11] also defines the excedance
set ExcSetB(σ) as we have done, and uses it to define exc(σ) = |ExcSetB(σ)|, but does not
enumerate excedances with several variables as we do.

We next give the definition of inversions in Bn. For σ ∈ Bn, recall that NegSet(σ) =
{σi : σi < 0} is the set of negative values taken by σ, and let nsum(σ) = −

∑
i∈NegSet(σ) i

be the absolute value of the sum of the negative elements that occur in σ. Define the number
of type-A inversions of σ as before as invA(σ) = |{1 ≤ i < j ≤ n : σi > σj}|. Here,
comparison is done with respect to the standard order on Z. Define the number of inversions
of σ ∈ Bn as invB(σ) = nsum(σ) + invA(σ). This combinatorial definition of inversions in
Bn is also due to Brenti (see [4, Proposition 3.1]). If σ ∈ Bn, define pos n(σ) as the index
i ∈ [n] such that |σi| = n. Define

BSgnExcn(q, t) =
∑
σ∈Bn

(−1)invB(σ)qexc(σ)tpos n(σ).

Let BDn = {σ ∈ Bn : σi 6= i, for all i ∈ [n]} be the set of type-B derangements. Define

BDerSgnExcn(q, t) =
∑

σ∈BDn

(−1)invB(σ)qexc(σ)tpos n(σ).
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The following was shown by Sivasubramanian [10, Theorems 8, 22].

Theorem 3 (SIVASUBRAMANIAN). For n ≥ 1, BSgnExcn(q, t) = tn(1−q)n and, for n ≥ 1,
BDerSgnExcn(q, t) = (−qt)n.

More general results with the exponent of t being the position of i were also given in
[10]. Inspired by this result, Sivasubramanian proved the following bivariate generalisation of
Theorem 1 and Theorem 2 for the type-A case. For π = π1, π2, . . . , πn ∈ Sn, define pos n(π)
as the index i such that πi = n and define SgnExcn(q, t) =

∑
π∈Sn

(−1)invA(π)qexc(π)tpos n(π).
Similarly, for a positive integer n, define

DerSgnExcn(q, t) =
∑

π∈SDn

(−1)invA(π)qexc(π)tpos n(π).

Sivasubramanian showed the following in [10, Theorems 10, 24].

Theorem 4 (SIVASUBRAMANIAN). For n ≥ 1, SgnExcn(q, t) = tn−1(1− q)n−2(t− q) and
for n ≥ 1, DerSgnExcn(q, t) = (−1)n−1qt[n− 1]qt.

Note that setting t = 1 in Theorem 4 gives us Theorem 1 and Theorem 2. In this paper,
we give multivariate generalisations of both results given in Theorem 4 (see Theorem 6 and
Theorem 7) and, more generally, give similar multivariate results for classical Weyl groups
when a non-trivial linear character of the Weyl group is used. Among other results, we prove
the following more general type-B generalisation of Theorem 3. For σ ∈ Bn, define the
monomial mσ =

∏
i∈ExcSetB(σ) qi, where the qi’s are commuting variables, and define the

multivariate polynomial BSgnMultiExcn(q1, q2, . . . , qn, t) =
∑

σ∈Bn
(−1)invB(σ)tpos n(σ)mσ.

In Section 4, we prove the following.

Theorem 5. For n ≥ 1, we have

BSgnMultiExcn(q1, q2, . . . , qn, t) = tn
n∏
i=1

(1− qi).

Note that setting qi = q for all i ∈ [n] results in mσ = qexc(σ). A similar multivariate
result when enumeration is done over SDn is given in Theorem 13. Thus, Theorem 3 is
a special case of Theorem 5 and Theorem 13. The proof in this paper is entirely different
from the proof of Theorem 3 given in [10] and shows somewhat surprisingly, that when we
fix S, the set of negative elements that σ ∈ Bn can take, then there are only four choices
for S that result in non-zero enumerators (see Theorem 11). A similar four-choice based
result is true when the term (−1)invB(σ) is replaced by another non-trivial linear character (see
Theorem 14).

Further, as a simple corollary of our proofs, we get similar signed excedance enumerators
for type D Weyl groups. Recall that Dn = {σ ∈ Bn : |NegSet(σ)| is even}. The definition of
excedance for elements σ ∈ Dn is identical to the definition when considered as an element
of Bn. For σ ∈ Dn, the minimum number of generators required to write σ as a word for a
suitable choice of generators (that is, its length in the Coxeter sense) is defined as invD(σ),
see Section 5. With these generators, it is known that invD(σ) = invB(σ)− |NegSet(σ)| (see
Brenti [4, Equation 45]). Thus, for σ ∈ Dn, we have (−1)invD(σ) ≡ (−1)invB(σ) (mod 2). Our
main result about excedance enumeration in type-D Weyl groups is Theorem 18.

Reiner [8] enumerated descents in classical Weyl groups with respect to a linear character,
and our work can be thought of as a counterpart of his, with excedances replacing descents.
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For the symmetric group Sn it is well known that excedances and descents are identically
distributed and that both are enumerated by the Eulerian polynomial (see MacMahon [5,
vol. I, p. 186]). A comparison of Reiner’s results with ours reveals striking similarities when
we enumerate descents and excedances along with non-trivial linear characters. This is true
in the univariate case and true most of the times in the multivariate setting.

Signed enumeration of Mahonian statistics is also a well studied area. Adin, Gessel and
Roichman gave formulae enumerating signed major indices in classical Weyl groups [1].
Later, Biagioli [2] gave formulae enumerating major indices twisted by a linear character in
classical Weyl groups. Here we also give similar formulae, though we enumerate Eulerian
statistics twisted by linear characters in classical Weyl groups.

2. PRELIMINARIES ON LINEAR CHARACTERS

We mention very briefly the relevant background on linear characters in this section. For a
classical Weyl group W , a linear character is a group homomorphism χ : W → C∗ where C∗
is the multiplicative group of non-zero complex numbers. It is known that Sn has two linear
characters, denoted triv and sign. For all positive integers n and π ∈ Sn, we have

1. the trivial character triv(π) = 1 and 2. the sign character sign(π) = (−1)invA(π).
Bn has four linear characters denoted trivB, signB, negB and prodB defined as follows. For

all n ≥ 1, and σ ∈ Bn, we have

(1) the trivial character trivB(σ) = 1,
(2) the sign character signB(σ) = (−1)invB(σ),
(3) the negative character negB(σ) = (−1)|NegSet(σ)|, and
(4) the product character prodB(σ) = (−1)invB(σ)+|NegSet(σ)|. It can be checked that

prodB(σ) = sign(|σ|).

Dn has two linear characters, denoted trivD and signD. For all n ≥ 1 and σ ∈ Dn, we have
1. the trivial character trivD(σ) = 1 and 2. the sign character signD(σ) = (−1)invD(σ).
It can again be checked that signD(σ) = sign(|σ|). We refer the reader to Reiner [8] for a

proof that these are the only linear-characters for W . Since enumerating excedance with the
trivial character gives us Eulerian polynomials of types A, B and D respectively, we focus in
this paper on enumeration with non-trivial linear characters.

3. TYPE A WEYL GROUPS

In this section, we present Theorem 6, which is a multivariate generalization of a part of
Theorem 4.

For π = π1, π2, . . . , πn ∈ Sn, recall that ExcSetA(π) = {i ∈ [n] : πi > i}. Let pos n(π)
be the index i such that πi = n. Furthermore, let mπ =

∏
i∈ExcSetA(π) qi, where the qi’s are

commuting variables. Define

SgnMultiExcn(q1, q2, . . . , qn−1, t) =
∑
π∈Sn

(−1)invA(π)tpos n(π)mπ.

Note that when qi = q for all i, then SgnMultiExcn(q1, q2, . . . , qn−1, t) = SgnExcn(q, t).
Define the n×n matrix Mn = (mi,j)1≤i,j≤n as follows. If j 6= n and if i < j set mi,j = qi.

If j 6= n and if i ≥ j, set mi,j = 1. If j = n and if i < n, set mi,n = qit
i and set mn,n = tn.
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In other words,

Mn =


1 q1 q1 · · · q1t
1 1 q2 · · · q2t

2

...
...

... . . . ...
1 1 1 · · · tn

 .

Theorem 6. For n ≥ 2, we have

SgnMultiExcn(q1, q2, . . . , qn−1, t) = tn−1(t− qn−1)
n−2∏
i=1

(1− qi).

Proof. We only sketch the proof as one part of it is identical to the proof of [10, Theorems 10,
24]. The identical part of the proof is to show SgnMultiExcn(q1, q2, . . . , qn−1, t) = detMn.
We then need to evaluate detMn. For this, we will induct on n. The base case when n = 2 is
clear. For 1 ≤ i ≤ n, let Ci denote the i-th column of Mn. Performing the column operation
C1 = C1 − C2 and then evaluating the determinant, we get detMn = t(1 − q1) detM ′

n−1,
whereM ′

n−1 is a matrix almost identical toMn, but with variables q2, q3, . . . , qn−1. Evaluating
detM ′

n−1 by induction completes the proof. �

3.1. Enumeration over derangements. In this subsection, we derive a multivariate gener-
alization of a part of Theorem 4 on derangements. For π = π1, π2, . . . , πn ∈ SDn, let mπ be
as defined above in Section 3. Define

DerSgnMultiExcn(q1, q2, . . . , qn−1, t) =
∑
π∈Sn

(−1)invA(π)tpos n(π)mπ.

Note that, when qi = q for all i, then

DerSgnMultiExcn(q1, q2, . . . , qn−1, t) = DerSgnExcn(q, t).

Define the n× n matrix DMn = (mi,j)1≤i,j≤n as follows. First set DMn =Mn and then reset
all its diagonal elements to be zero. In other words,

DMn =


0 q1 q1 · · · q1t
1 0 q2 · · · q2t

2

...
...

... . . . ...
1 1 1 · · · 0

 .

Theorem 7. For n ≥ 2, we have

DerSgnMultiExcn(q1, q2, . . . , qn−1, t) = (−1)n−1
{
n−1∑
i=1

ti
i∏

j=1

qj

}
.

We again omit our proof as it is identical to the proof of Theorem 6. We only mention that
we show DerSgnMultiExcn(q1, q2, . . . , qn−1, t) = detDMn and we then evaluate detDMn .

4. TYPE B WEYL GROUPS

In this section, we prove results for excedance enumeration in Bn. There are three main
results, one for each non-trivial linear character. In each case, we enumerate multivariate ex-
cedance with a different non-trivial linear character. In Subsection 4.1 we prove Theorem 11,
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in Subsection 4.2 we prove Theorem 14 and in Subsection 4.3 we prove Theorem 16. Fur-
ther, we show results when summation is over the set of derangements BDn for two linear
characters. These results are given in Subsections 4.1.1 and 4.3.1.

4.1. The linear character signB. For a subset S ⊆ [n], define

Bn,S = {σ ∈ Bn : NegSet(σ) = S}
to be the set of signed permutations in Bn with S as its set of negative elements. Clearly, for
all S ⊆ [n], we have |Bn,S| = n!. Define

BSgnMultiExcn,S(q1, q2, . . . , qn, t) =
∑

σ∈Bn,S

(−1)invB(σ)tpos n(σ)mσ.

We will need the following refinement of Bn,S . Let n ≥ 1 and let S ⊆ [n]. For 1 ≤ k ≤ n,
define Bn,S,k = {σ ∈ Bn,S : pos n(σ) = k}. Define

BSgnMultiExcn,S,k(q1, q2, . . . , qn, t) =
∑

σ∈Bn,S,k

(−1)invB(σ)tpos n(σ)mσ.

Lemma 8. For n ≥ 3 and all S ⊆ [n], BSgnMultiExcn,S,k(q1, q2, . . . , qn, t) = 0 for k ≤
n− 2.

Proof. Let σ ∈ Bn,S,k. Clearly, pos n(σ) = k where k 6= n, n − 1. Let σn−1 = α and let
σn = β. Since pos n(σ) 6= n, n− 1, we get α 6= n and β 6= n. Let ψ be obtained from σ by
swapping α and β. That is ψ = σ ◦ sn−1, where sn−1 is the transposition (n− 1, n). Clearly
ψ ∈ Bn,S,k.

We claim that we have invB(σ) 6≡ invB(ψ) (mod 2), pos n(π) = pos n(σ) and mσ = mψ.
Since ψ = σ◦sn−1, clearly invB(σ) 6≡ invB(ψ) (mod 2). Further, since pos n(σ) 6∈ {n−1, n},
we get pos n(σ) = pos n(ψ). Let C1 be the cycle of σ that contains the element ±n with
the sign of n as it occurs in σ and likewise let cycle C2 contain ±(n − 1). Since σn−1 = α
and σn = β, in C1, β will be the successor of n and, in C2, α will be the successor of n− 1.
Clearly, swapping α and β will not have any effect on elements i ∈ ExcSetB with |i| < n−1.
If i = n− 1, then i ∈ ExcSetB(σ) if and only if n− 1 occurs in σ with negative sign and this
is independent of α and β. A similar argument is true for i = n as well. Thus, when i = n−1
or i = n, i ∈ ExcSetB(σ) if and only if i ∈ ExcSetB(ψ). Thus, ExcSetB(σ) = ExcSetB(ψ)
and hence mσ = mπ.

As we have paired up elements σ and ψ of Bn,S,k such that mσ = mψ, pos n(σ) =
pos n(ψ) and invB(σ) 6≡ invB(ψ) (mod 2), the sum over elements of Bn,S,k is zero, complet-
ing the proof. �

Thus, for all S ⊆ [n], to calculate BSgnExcn,S(q1, q2, . . . , qn, t), we only need to sum over
those σ ∈ Bn,S with pos n(σ) ∈ {n− 1, n}. We next show that both of these can be done by
induction on n. We need the following lemma when n = 2 for various subsets S ⊆ [n].

Lemma 9. Fix n = 2. Then,

BSgnMultiExc2,S(q1, q2, t) =


t2 − tq1, if S = ∅,
q1(t− t2), if S = {1},
q2(t− t2), if S = {2},
t2q1q2 − tq2, if S = {1, 2}.
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Proof. A simple calculation completes the proof. �

A simple consequence of Lemma 9 is obtained in the case |S| = 1, upon setting t = 1.

Corollary 10. For any S ⊆ [2] with |S| = 1, BSgnMultiExc2,S(q1, q2, 1) = 0.

Our next result is the main result of this subsection. It shows, surprisingly, that only four
of the 2n choices for S give non-zero enumerator values.

Theorem 11. Let n ≥ 2 and S ⊆ [n]. Then BSgnMultiExcn,S(q1, q2, . . . , qn, t) takes the
following values:

S BSgnMultiExcn,S(q1, q2, . . . , qn, t)

∅ tn−1(t− qn−1)
∏n−2

i=1 (1− qi)

[n]− {n} (tn−1 − tn)qn−1
∏n−2

i=1 (1− qi)

{n} (tn−1 − tn)qn
∏n−2

i=1 (1− qi)

[n] −tn−1qn(1− tqn−1)
∏n−2

i=1 (1− qi)

otherwise 0

Proof. Recall that S is the set of negative elements for all the σ that we consider. When n = 2,
the proof follows from Lemma 9 and so we assume n ≥ 3. When NegSet(σ) = S = ∅, there
are no negative elements. When there are no negative elements, such σ ∈ Bn are actually
elements of Sn. Considering π ∈ Sn as an element of Bn, from the definition, we clearly
have invA(π) = invB(π). Thus, this case follows from Theorem 6. Hence, assume that S 6= ∅.
We split the rest of the proof into two cases.

Case 1 (when n 6∈ S): Thus n occurs for all such σ as +n and S ⊆ [n − 1]. By Lemma 8,
we only need to sum over σ ∈ Bn,S,k for k = n− 1 and k = n.

First, consider the case when k = n. Recall that Bn,S,n = {σ ∈ Bn,S : pos n(σ) = n},
and recall that

BSgnMultiExcn,S,n(q1, q2, . . . , qn, t) =
∑

σ∈Bn,S,n

(−1)invB(σ)tpos n(σ)mσ.

For σ ∈ Bn,S,n, since pos n(σ) = n we get a common factor tn from all terms in the
summation. Since n 6∈ S, we must have σn = +n for all σ ∈ Bn,S,n. Let ψ be the re-
striction of σ to indices 1, 2, . . . , n − 1. Clearly ψ ∈ Bn−1,S and all elements of Bn−1,S
arise in this manner. Clearly, invB(σ) = invB(ψ). Further, as n occurs as +n in σ, n 6∈
ExcSetB(σ) and as other indices of excedance are identical, ExcSetB(σ) = ExcSetB(ψ). Thus,
BSgnMultiExcn,S,n(q1, q2, . . . , qn, t) is tn times BSgnMultiExcn−1,S(q1, q2, . . . , qn−1, t) with
t set to 1. That is,

BSgnMultiExcn,S,n(q1, q2, . . . , qn, t) = tnBSgnMultiExcn−1,S(q1, q2, . . . , qn−1, t = 1).

Next, consider σ ∈ Bn,S with pos n(σ) = n− 1. Recall that

Bn,S,n−1 = {σ ∈ Bn,S : pos n(σ) = n− 1},
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and recall that

BSgnMultiExcn,S,n−1(q1, q2, . . . , qn, t) =
∑

σ∈Bn,S,n−1

(−1)invB(σ)tpos n(σ)mσ.

Again, for all σ ∈ Bn,S,n−1, since pos n(σ) = n − 1 we get a common factor of tn−1 from
all terms. As before, since n 6∈ S, we must have σn−1 = +n. Writing σ in cycle notation, we
see that in the cycle containing n, the predecessor of n exists and is either n− 1 if n− 1 6∈ S
or n− 1 if n − 1 ∈ S. Let ψ be obtained from σ by deleting the occurrence of +n from
the cycles of σ. This means in cycle notation, we short circuit +n and set the successor of
±(n − 1) in ψ to be the successor of +n in σ. Clearly ψ ∈ Bn−1,S and all elements of
Bn−1,S arise in this manner. We claim that invB(σ) 6≡ invB(ψ) (mod 2). To see this, define
ψ′ ∈ Bn,S by ψ′(i) = ψ(i) for 1 ≤ i ≤ n − 1 and ψ′(n) = n. Then it is easy to see that
invB(ψ) ≡ invB(ψ

′) (mod 2). Since ψ′ = σ ◦ sn−1, we have invB(ψ
′) 6≡ invB(σ) (mod 2).

Thus, invB(σ) 6≡ invB(ψ) (mod 2). The relation between ExcSetB(σ) and ExcSetB(ψ) needs
two more cases.

If n − 1 ∈ S, then, we claim ExcSetB(σ) = ExcSetB(ψ). To see this last equality, since
n− 1 ∈ S, all σ have only occurrences of n− 1. Thus, n− 1 ∈ ExcSetB(ψ) as n− 1 is the
minimum element and all successors of n− 1 in the cycle of ψ containing it will be equal or
larger. In σ, the successor of n− 1 is +n and so n − 1 ∈ ExcSetB(σ) and similarly, as n is
the largest element, n 6∈ ExcSetB(σ). Thus, in this case,

BSgnMultiExcn,S,n−1(q1, q2, . . . , qn, t) = −tn−1BSgnMultiExcn−1,S(q1, q2, . . . , qn−1, 1).

If n− 1 6∈ S, then, we claim ExcSetB(σ) = ExcSetB(ψ) ∪ {n− 1}. To see this, note that,
as n− 1 6∈ S, and as (n− 1) is the largest element of ψ, n− 1 6∈ ExcSetB(ψ). In σ, since the
successor of n− 1 is +n, we have n− 1 ∈ ExcSetB(σ) and, clearly, other excedance indices
remain identical. Thus, in this case, we get

BSgnMultiExcn,S,n−1(q1, q2, . . . , qn, t)

= −tn−1qn−1BSgnMultiExcn−1,S(q1, q2, . . . , qn−1, 1).

Summing the relevant cases, if n 6∈ S, we get

(1) BSgnMultiExcn,S(q1, q2, . . . , qn, t)

=

{
(tn − tn−1qn−1)BSgnMultiExcn−1,S(q1, q2, . . . , qn−1, 1), if n− 1 6∈ S.
(tn − tn−1)BSgnMultiExcn−1,S(q1, q2, . . . , qn−1, 1), if n− 1 ∈ S.

Case 2 (when n ∈ S): Thus, n appears in σ. The arguments are similar in this case. As
before, we just need to sum the two cases when pos n(σ) = n and when pos n(σ) = n − 1.
Recall the definitions of Bn,S,n and Bn,S,n−1 and let T = S − {n}. When pos n(σ) = n, we
claim that BSgnExcn,S,n(q1, q2, . . . , qn, t) = −tnqnBSgnExcn−1,T (q1, q2, . . . , qn−1, 1). To
see this, restricting σ ∈ Bn,S,n to indices in [n − 1] gives us ψ where ψ ∈ Bn−1,T and
every ψ ∈ Bn−1,T appears in this manner. Under this restriction, clearly ExcSetB(σ) =
ExcSetB(ψ) ∪ {n} as σn = n. Moreover, it is easy to see that invB(σ) 6≡ invB(ψ) (mod 2).
Thus, we get

BSgnMultiExcn,S,n(q1, q2, . . . , qn, t) = −tnqnBSgnMultiExcn−1,T (q1, q2, . . . , qn−1, 1).
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If pos n(σ) = n−1, and if n−1 6∈ S, then n−1 occurs as +(n−1). Hence, when viewed
as cycles, n − 1 is succeeded by n. We claim that BSgnMultiExcn,S,n−1(q1, q2, . . . , qn, t) =
tn−1qnBSgnMultiExcn−1,T (q1, q2, . . . , qn−1, 1). To see this, note that pos n(σ) = n− 1, and
so we get a common factor of tn−1 from all such terms. Further, we have ExcSetB(σ) =
ExcSetB(ψ) ∪ {n}. To see this, as n is the least element of σ, it will be smaller than its
successor and so n ∈ ExcSetB(σ). Clearly, the other excedance indices are identical. Further,
it is easy to see that invB(σ) ≡ invB(ψ) (mod 2). Thus, we get

BSgnMultiExcn,S,n−1(q1, q2, . . . , qn, t) = tn−1qnBSgnMultiExcn−1,T (q1, q2, . . . , qn−1, 1).

If pos n(σ) = n− 1, and if n− 1 ∈ S, then n− 1 occurs as n− 1. In this case, we claim
that

BSgnMultiExcn,S,n−1(q1, q2, . . . , qn, t)

= tn−1qn/qn−1BSgnMultiExcn−1,T (q1, q2, . . . , qn−1, 1).

To see this, let ψ ∈ Bn−1,T be obtained from σ ∈ Bn,S by short-circuiting n. Under
this correspondence, it is easy to see that invB(σ) ≡ invB(ψ) (mod 2). Further, we claim
that ExcSetB(σ) = ExcSetB(ψ) − {n − 1} ∪ {n}. To see this, note that, as n− 1 is the
smallest element of ψ, n− 1 ∈ ExcSetB(ψ). In σ, however, since n is the successor of n− 1,
n−1 6∈ ExcSetB(σ), while n ∈ ExcSetB(σ) as n is the smallest element. As the other indices
of excedance are identical, we get

BSgnMultiExcn,S(q1, q2, . . . , qn, t)

= tn−1qn/qn−1 · BSgnMultiExcn−1,T (q1, q2, . . . , qn−1, 1).

Adding the relevant cases, if n ∈ S, recalling T = S − {n}, we get

(2) BSgnMultiExcn,S(q1, q2, . . . , qn, t)

=

{
(tn−1 − tn)qnBSgnMultiExcn−1,T (q1, q2, . . . , qn−1, 1), if n− 1 6∈ S,
(tn−1/qn−1 − tn)qnBSgnMultiExcn−1,T (q1, q2, . . . , qn−1, 1), if n− 1 ∈ S.

We next show by induction on n that BSgnMultiExcn,S(q1, q2, . . . , qn, 1) 6= 0 only when
S = ∅ and S = [n]. The base case is when n = 2 and follows from Corollary 10. Assume that
the statement is true for all positive integers up to n− 1 and for all S ⊆ [n− 1]. Consider the
next positive integer n. If BSgnMultiExcn,S(q1, q2, . . . , qn, 1) 6= 0, and if n 6∈ S, by reverse
induction on n, using (1) we get that S = ∅ is the only possibility. Similarly, if n ∈ S, using
(2) we get that S = [n] is the only possibility.

When S = ∅, it is easy to see from (1) that

BSgnMultiExcn,∅(q1, q2, . . . , qn, 1) =
n−1∏
i=1

(1− qi).

This also follows from the type-A result, that is, from Theorem 6. When S = [n], we claim
that

BSgnMultiExcn,[n](q1, q2, . . . , qn, 1) = −qn
n−1∏
i=1

(1− qi).

This can be seen as follows. Let π = π1, π2, . . . , πn ∈ Sn and let π ∈ Bn be obtained from
π by negating πi for all i ∈ [n]. It is easy to see when π and π are viewed as elements of Bn,
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that invB(π) = (−1)n · invB(π) and that ExcSetB(π) = [n] − ExcSetB(π). Coupling these
observations with Theorem 6 gives us

BSgnExcn,[n](q1, q2, . . . , qn, 1) = −qn
n−1∏
i=1

(1− qi).

Hence, we infer that BSgnMultiExcn,S(q1, q2, . . . , qn, t) 6= 0 for only four values of S.
These four values are given in the statement of the theorem. Further, it is simple to compute
this value for each of the four choices of S and to see that they agree with the given expression.
This completes the proof of the theorem. �

A simple corollary of Theorem 11 is Theorem 5.

Proof of Theorem 5. BSgnMultiExcn(q1, q2, . . . , qn, t) = tn
∏n

i=1(1−qi) can be obtained by
summing over the four choices of S given in Theorem 11, completing the proof. �

4.1.1. Enumeration over Derangements. Recall that BDn ⊆ Bn is the set of type B de-
rangements. Here, we present results when enumeration is done over BDn. However, we
are unable to find results when the set S of negative elements is fixed. Hence, our proof is
somewhat different.

Before we state Theorem 13, which is our main result, we need a preliminary lemma. At
the heart, our proof is identical to the proof of [10, Theorem 8]. However, since the definition
of ExcSetB(σ) is different in this paper when compared to that given in [10], we present a
proof.

The involution τr: For r ∈ [n], define an involution τr : Bn → Bn as follows. We let
τr(σ) = ψ1ψ2 . . . ψn, where ψi = σi if ψi 6= ±r, and ψi = −σi otherwise. We prove the
following property of τr.

Lemma 12. Let σ ∈ Bn and m > 0 be the minimal element in absolute value in a cycle
of σ of length at least two. That is, m 6= |σm| and m = min(m, |σ(m)|, |σ2(m)|, . . .).
Furthermore, let ψ = τ|m|(σ). Then ExcSetB(σ) = ExcSetB(ψ).

Proof. Let C be a cycle of σ with length larger than two and let m = min{|x| : x ∈ C}.
Assume that m appears with positive sign in σ and m appears in ψ (otherwise, change the
names of σ and ψ). Thus, for this proof we may assumem > 0. AsC has length larger than 2,
denote the successor of m by succ(m) and the predecessor of m by pred(m). The cycles of
ψ are identical to those of σ, with the only difference being the sign of m. Since m changes
sign, ExcSetA(σ)− ExcSetA(ψ) ⊆ {m, pred(m)}. We claim that ExcSetA(σ) = ExcSetA(ψ).

Since ExcSetA(σ) = {|σi| : σ|σi| > σi}, if m ∈ ExcSetA(σ), then m < succ(m). Thus
−m < succ(m) and m ∈ ExcSetA(ψ). Similarly, if m 6∈ ExcSetA(σ), then by definition
m > succ(m). As m has least |x| value over x ∈ C, we must have succ(m) < 0. Hence m >
succ(m) and so m 6∈ ExcSetA(ψ). Thus, m ∈ ExcSetA(σ) if and only if m ∈ ExcSetA(ψ).

If pred(m) ∈ ExcSetA(σ), then we must have pred(m) < m. Since m > 0 and m has least
absolute value, pred(m) < 0. Thus, in our notation, |pred(m)| ∈ ExcSetA(σ) and we clearly
have pred(m) < m and so |pred(m)| ∈ ExcSetA(ψ). Likewise, if pred(m) 6∈ ExcSetA(σ),
then, we must have pred(m) > m. Since m > 0, and m has least absolute value, pred(m) >
m > 0. Thus, pred(m) > m and thus pred(m) 6∈ ExcSetA(ψ). Thus, pred(m) ∈ ExcSetA(σ)
if and only if pred(m) ∈ ExcSetA(ψ). Since NegFixPtSet(σ) = NegFixPtSet(ψ), we have
ExcSetB(σ) = ExcSetB(ψ). �
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For n ≥ 1, define

BDerSgnMultiExcn(q1, q2, . . . , qn, t) = (−1)invB(σ)tpos n(σ)mσ.

Our main result is the following generalization of a part of Theorem 3.

Theorem 13. For n ≥ 1, we have

BDerSgnMultiExcn(q1, q2, . . . , qn, t) = (−t)n
n∏
i=1

qi.

Proof. For σ ∈ BDn, let `(σ) be the largest index i ∈ [n] such that σi 6= −i. As σ ∈ BDn,
σi 6= i for all i, and thus `(σ) is not defined if and only if |σ| is the identity permutation id.

For σ ∈ BDn with |σ| 6= id, let m be the smallest element in absolute value such that
σ(m) 6= −m and let ψ = τ|m|(σ). Clearly, ψ ∈ BDn. By Lemma 12, ExcSetB(σ) =
ExcSetB(ψ). By [10, Lemma 3], invB(σ) 6≡ invB(ψ) (mod 2). Thus, the multivariate poly-
nomial BDerSgnMultiExcn,S(q1, q2, . . . , qn, t) will not get any contribution from any such
σ.

Hence, the only σ that contribute are those with `(σ) undefined. Stated differently, only
σ such that |σ| = id survive the cancellations. Thus, only one element ψ = −id ∈ BDn

with ψi = −i for i ∈ [n] contributes. Clearly, pos n(ψ) = n, signB(ψ) = (−1)n and
since ExcSetB(ψ) = [n], mψ =

∏n
i=1 qi. That is, BDerSgnMultiExcn,S(q1, q2, . . . , qn, t) =

(−t)n
∏n

i=1 qi, completing the proof. �

4.2. The linear character prodB. Recall that prodB(σ) = (−1)invB(σ)+|NegSet(σ)| for σ ∈ Bn.
For a positive integer n ≥ 1, define

BProdMultiExcn(q1, q2, . . . , qn, t) =
∑
σ∈Bn

prodB(σ)t
pos n(σ)mσ

As before, define

BProdMultiExcn,S(q1, q2, . . . , qn, t) =
∑

σ∈Bn,S

prodB(σ)t
pos n(σ)mσ

for S ⊆ [n]. The main result of this section is the following counterpart of Theorem 11.

Theorem 14. Let n ≥ 2. Then BProdMultiExcn,S(q1, q2, . . . , qn, t) takes the following
values:

S BProdMultiExcn,S(q1, q2, . . . , qn, t)

∅ tn−1(t− qn−1)
∏n−2

i=1 (1− qi)

[n]− {n} (−1)n(tn − tn−1)qn−1
∏n−2

i=1 (1− qi)

{n} (tn − tn−1)qn
∏n−2

i=1 (1− qi)

[n] (−t)n−1qn(1− tqn−1)
∏n−2

i=1 (1− qi)

otherwise 0
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Proof. The proof of this theorem works in the same way as the proof of Theorem 11, and
hence we only sketch the salient points. To see that the earlier proof works, note that those
terms which cancel due to Lemma 8 when the exponent of (−1) is invB(σ) also cancel when
the exponent of (−1) is invB(σ) + |NegSet(σ)|, as we only switch the elements at the two
positions n − 1, n, and thus NegSet(σ) = NegSet(ψ), where ψ is as defined in Lemma 8.
Moreover, cancellations in the inductive step also work as we do not flip the sign of any
element in the earlier proof. The only difference is that, since the exponent of (−1) now has
an extra term of |NegSet(σ)|, we multiply the enumerator in the case when NegSet(σ) = S
by |S|. This change manifests itself in slightly modified enumerators. This completes the
proof of the theorem. �

Define without the term tpos n(σ),

BProdMultiExcn(q1, q2, . . . , qn) =
∑
σ∈Bn

prodB(σ)mσ.

A simple corollary of Theorem 14 is the following, whose straightforward proof we omit.

Theorem 15. For positive integers n, we have

BProdMultiExcn(q1, q2, . . . , qn, t)

=

{
tn(1 + qn)

∏n−1
i=1 (1− qi), if n is odd,

{tn(1 + qn−1 + qn + qnqn−1)− 2tn−1(qn−1 + qn)}
∏n−2

i=1 (1− qi), if n is even.

In particular, for positive integers n, we have

BProdMultiExcn(q1, q2, . . . , qn) =

{
(1 + qn)

∏n−1
i=1 (1− qi), if n is odd,∏n

i=1(1− qi), if n is even.

4.3. The linear character negB. Recall that negB(σ) = (−1)|neg(σ)| for σ ∈ Bn. For a
positive integer n ≥ 1, define

BNegMultiExcn(q1, q2, . . . , qn, t) =
∑
σ∈Bn

negB(σ)t
pos n(σ)mσ.

For this enumerator, we are unable to get detailed information with respect to a given subset S
of negative elements as in the previous two subsections. Nonetheless, we show the following
about BNegMultiExcn(q1, q2, . . . , qn, t). Our proof needs both the involution τr defined in
Subsubsection 4.1.1 and Lemma 12. Our main result is the following.

Theorem 16. For n ≥ 1, we have BNegMultiExcn(q1, q2, . . . , qn, t) = tn
∏n

i=1(1− qi).

Proof. For σ ∈ Bn, let `(σ) be the largest index i ∈ [n] such that σi 6= ±i. Note that `(σ)
is not defined if and only if |σ| is the identity permutation id. For σ ∈ Bn with |σ| 6= id, let
m be the smallest element in absolute value such that σ(m) 6= −m and let ψ = τ|m|(σ). By
Lemma 12, ExcSetB(σ) = ExcSetB(π) and, since the element m has its sign changed,

|NegSet(σ)| 6≡ |NegSet(ψ)| (mod 2).

Thus, all such σ do not contribute to BNegMultiExcn(q1, q2, . . . , qn, t).
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Hence, only those σ obtained by changing the signs of some elements of the identity
permutation id survive. All such permutations have pos n(σ) = n and any such σ with
NegSet(σ) = S will contribute (−1)|S|

∏
i∈S qi. Since S ⊆ [n], we have

BNegMultiExcn(q1, q2, . . . , qn, t) = tn
∑
S⊆[n]

(−1)|S|
∏
i∈S

qi.

That is,

BNegMultiExcn(q1, q2, . . . , qn, t) = tn
n∏
i=1

(1− qi),

completing the proof. �

4.3.1. Enumeration over Derangements. We prove an analogue of Theorem 13 for the linear
character negB(σ). Define

BDerNegMultiExcn(q1, q2, . . . , qn, t) =
∑

σ∈BDn

negB(σ)t
pos n(σ)mσ.

For this enumerator, we show the following.

Theorem 17. For n ≥ 1, we have

BDerNegMultiExcn(q1, q2, . . . , qn, t) = (−t)n
n∏
i=1

qi.

Proof. Arguments as in the proof of Theorem 13 show that only one σ ∈ Bn survives the
cancellations. This is the permutation ψ = −id with ψi = −i for all i ∈ [n]. We clearly get

BDerNegMultiExcn(q1, q2, . . . , qn, t) = (−t)n
n∏
i=1

qi,

completing the proof. �

5. TYPE D WEYL GROUPS

Recall that Dn = {σ ∈ Bn : |NegSet(σ)| = even}. It is well known (see [3]) that Dn

is generated by s1, s1, s2, . . . , sn−1, where s1 = (−2,−1) and si for 1 ≤ i < n is as in the
type-A case. Define

DSgnExcn(q1, q2, . . . , qn, t) =
∑
σ∈Dn

(−1)invD(σ)tpos n(σ)mσ.

The main result of this section is the following.

Theorem 18. For even positive integers n = 2k, with k ≥ 1, we have

DSgnExcn(q1, q2, . . . , qn, t) =

(
n−2∏
i=1

(1− qi)

)
[tn−1(−qn−1 − qn) + tn(1 + qn−1qn)].

For odd positive integers n = 2k+1, we have DSgnExcn(q1, q2, . . . , qn, t) = tn
∏2k

i=1(1−qi).
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Proof. As mentioned in Section 1, though each σ ∈ Dn has two statistics invB(σ) and
invD(σ), we have (−1)invB(σ) ≡ (−1)invD(σ) (mod 2). Thus, we have

DSgnExcn(q1, q2, . . . , qn, t) =
∑

S⊆[n],|S| even

BSgnExcn,S(q1, q2, . . . , qn, t).

Consider the case when n is an even positive integer first. For n ≥ 2, from Theorem 11, we
need to add the two cases when S = ∅ and when S = [n]. A simple addition proves the
result. Next, consider the case when n is odd. Here, we need to add the cases when S = ∅
and S = [n]− {n}. Adding these two cases completes the proof. �

We end this paper with a problem. The set Tn of σ ∈ Dn which survive the cancellations
that occur in the proof of Theorem 18 has an inductive structure. We have another candidate
set Qn with ∑

σ∈Qn

(−1)invD(σ)tpos n(σ)mσ = DSgnExcn(q1, q2, . . . , qn, t).

However, we are unable to show a sign reversing involution on the elements σ ∈ Dn − Qn.
We define the setQn for even positive integers n first. For n = 2,Q2 = D2. For n = 2(k+1),
consider each σ ∈ Q2k and form four signed permutations ψr for r = 1, 2, 3, 4 as follows.
For each r = 1, 2, 3, 4 and i ∈ [2k], define ψr(i) = σ(i). Further, define

ψ1(2k + 1) = 2k + 1 and ψ1(2k + 2) = 2k + 2,

ψ2(2k + 1) = 2k + 2 and ψ2(2k + 2) = 2k + 1,

ψ3(2k + 1) = −(2k + 1) and ψ3(2k + 2) = −(2k + 2),

ψ4(2k + 1) = −(2k + 2) and ψ4(2k + 2) = −(2k + 1).

Thus, we get four signed permutations for each σ ∈ Q2k and denote by Q2k+2 the set of such
signed permutations obtained. Clearly, for all k, Q2k ⊆ D2k and |Q2k| = 22k. As an example,
we illustrate this procedure and get Q4 from Q2. We write σ ∈ Dn consecutively for brevity.
Since Q2 = {12, 21, 12, 21}, we get

Q4 = {1234, 1243, 1234, 1243} ∪ {2134, 2143, 2134, 2143}
∪ {1234, 1243, 1234, 1243} ∪{2134, 2143, 2134, 2143},

where the set of ψi’s obtained from each σ ∈ D2 is given separately for clarity. For odd
positive integers n = 2k + 1 define Qn as follows. In this case, we obtain Q2k+1 from Q2k

by the following process. For each σ ∈ Q2k, define ψ by ψ(i) = σ(i) for i ∈ [2k] and define
ψ(2k + 1) = 2k + 1. Do this for each σ ∈ Q2k and let Q2k+1 be the set of ψ so obtained.
Clearly, Q2k+1 ⊆ D2k+1 and |Q2k+1| = 22k. For example, Q3 = {123, 213, 123, 213}. It is
easy to check by induction on n that∑

σ∈Qn

(−1)invD(σ)tpos n(σ)mσ = DSgnExcn(q1, q2, . . . , qn, t).

With this notation, we state our problem below.

Problem 19. Show that for all n there is an involution φ : (Dn − Qn) → (Dn − Qn) such
that for all σ ∈ Dn − Qn, pos n(σ) = pos n(φ(σ)), ExcSetB(σ) = ExcSetB(φ(σ)) and
invD(σ) 6≡ invD(φ(σ)) (mod 2).
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