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PLAYING JEU DE TAQUIN ON D-COMPLETE POSETS

LUKAS RIEGLER AND CHRISTOPH NEUMANN

Abstract. Using a modified version of jeu de taquin, Novelli, Pak and Stoyanovskii
gave a bijective proof of the hook-length formula for counting standard Young tableaux
of fixed shape. In this paper we consider a natural extension of jeu de taquin to arbitrary
posets. Given a poset P , jeu de taquin defines a map from the set of bijective labelings
of the poset elements with {1, 2, . . . , |P |} to the set of linear extensions of the poset. One
question of particular interest is for which posets this map yields each linear extension
equally often. We analyze the double-tailed diamond poset Dm,n and show that uniform
distribution is obtained if and only if Dm,n is d-complete. Furthermore, we observe that
the extended hook-length formula for counting linear extensions on d-complete posets
provides a combinatorial answer to a seemingly unrelated question, namely: Given a
uniformly random standard Young tableau of fixed shape, what is the expected value of
the left-most entry in the second row?

1. Introduction

1.1. Jeu de taquin on posets. Jeu de taquin (literally translated ’teasing game’)
is a board game (also known as 15-puzzle) where fifteen square tiles numbered with
{1, 2, . . . , 15} are arranged inside a 4 × 4 square. The goal of the game is to sort the
tiles by consecutively sliding a square into the empty spot (see Figure 1). In combina-
torics the concept of jeu de taquin was originally introduced by Schützenberger [Sch76]
on skew standard Young tableaux. Two related operations called promotion and evacu-
ation, which act bijectively on the set of linear extensions of a poset, were also defined
by Schützenberger [Sch72]. A modified version of jeu de taquin [NPS97] has an obvious
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Figure 1. An initial and final configuration of the board game jeu de
taquin.

extension to arbitrary posets, which we describe first: The goal of jeu de taquin on an
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n-element poset P is to transform any (bijective) labeling of the poset elements with
[n] := {1, 2, . . . , n} into a dual linear extension, i.e., a labeling ι such that ι(x) > ι(y)
whenever x < y in the poset. For this, we first fix a linear extension σ : P → [n] of
the poset, which defines the order in which the labels are sorted (see Figure 2). The
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Figure 2. Hasse diagram of a poset and a linear extension σ.

sorting procedure consists of n rounds where after the first i rounds the poset elements
{σ−1(1), σ−1(2), . . . , σ−1(i)} have dually ordered labels. To achieve this, we compare in
round i the current label of x := σ−1(i) with the labels of all poset elements covered by
x. If the current label is the smallest of them, we are done with round i. Otherwise, let
y be the poset element with the smallest label. Swap the labels of x and y and repeat
with the new label of y. An example can be seen in Figure 3. The fact that σ is a linear
extension together with the minimality condition in the sorting procedure ensures that
after i rounds the poset elements {σ−1(1), σ−1(2), . . . , σ−1(i)} have dually ordered labels.
In particular, the sorting procedure transforms each labeling of the poset into a dual linear
extension. The question we are interested in is: Given a uniformly random labeling of

5 2 4

673

1 8

9

 

5 2 6

473

1 8

9

 

5 7 6

423

1 8

9

 

5 7 8

463

1 2

9

 

9 7 8

465

3 2

1

Figure 3. Example of jeu de taquin with the order σ as given in Figure 2.

the poset elements, does jeu de taquin output a uniformly random dual linear extension
of the poset? More specifically, given a poset, is there an order σ such that playing jeu de
taquin with all possible labelings yields each dual linear extension equally often? If yes,
then jeu de taquin allows us to immediately extend each algorithm for creating uniformly
random permutations to an algorithm creating uniformly random linear extensions of the
poset.

1.2. (Shifted) standard Young tableaux and the hook-length formula. For cer-
tain classes of posets we know the answer: most famously, the Young diagram of an
integer partition λ = (λ1, λ2, . . . , λk) ⊢ n can be considered as a poset (see Figure 4).
A Young tableau is a bijective filling of the boxes with [n] and thus corresponds to a
labeling of the poset. A standard Young tableau is a filling of the boxes where entries in
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Figure 4. Young diagram of the partition (3, 3, 2, 1) and the corresponding poset.

each row (left-to-right) and column (top-down) are strictly increasing. Hence, standard
Young tableaux correspond to the dual linear extensions of the respective poset. Novelli,
Pak and Stoyanovskii gave a bijective proof [NPS97] of the fact that jeu de taquin with
column-wise order σ (as in Figure 2) yields uniform distribution among standard Young
tableaux. Their bijective proof can actually be extended to work for orders different from
column-wise order (see also [Sag01]).

A second class of posets where we know the answer corresponds to shifted Young
diagrams of strict integer partitions, i.e., partitions where λ1 > λ2 > · · · > λk. In this
case, the boxes of the shifted Young diagram are indented (see Figure 5). It was shown by
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Figure 5. A shifted standard Young tableau of shape (5, 4, 2, 1) and the
dual linear extension of the corresponding poset.

Fischer [Fis01] that row-wise order σ yields uniform distribution among shifted standard
Young tableaux (however column-wise order fails for the partition (4, 3, 2, 1)).

What both classes have in common is that the number of different standard fillings of
fixed shape λ can be obtained by a simple product formula, called hook-length formula:
in the case of Young diagrams the hook of a cell consists of all cells to the right in the
same row, all cells below in the same column and the cell itself. The hook-length hc of
a cell c is the number of cells in its hook (see Figure 6(a)). The number fλ of standard
Young tableaux of fixed shape λ is then given by ([FRT54], [Gan78])

fλ =
n!

∏

c∈λ

hc

, (1.1)

where the product is taken over all cells c in the Young diagram. For shifted Young
diagrams the number of standard fillings can be obtained by the same hook-formula (1.1)
by modifying the definition of the hooks: the shifted hook of a cell contains the same cells
as the hook before, and additionally, if the hook contains the left-most cell in row i, then
the shifted hook is extended to all cells in row i+ 1 (see Figure 6(b)).
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Figure 6. The hook-lengths of all cells in a Young diagram and a shifted
Young diagram.

1.3. d-complete posets. The definition of the hook-lengths can be generalized so that
the hook-length formula extends to further classes of posets, called d-complete posets
[Pro99].

For m,n ≥ 2 the poset Dm,n consists of m+n elements for which the Hasse diagram is
obtained by taking a diamond of four elements and appending a chain of m− 2 elements
at the top element of the diamond and a chain of n− 2 elements at the bottom element
of the diamond (see Figure 7). The poset Dm,n is referred to as double-tailed diamond.
As elementary building blocks the double-tailed diamonds play a fundamental role in the
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Figure 7. Hasse diagram of the double-tailed diamond Dm,n.

definition of d-complete posets [Pro99]: Given a poset P and k ≥ 3, an interval [w, z]
in the poset is called a dk-interval if [w, z] ∼= Dk−1,k−1. An interval [w, y] is called a d−k -
interval if [w, y] ∼= Dk−2,k−1 (in the special case k = 3 let us abuse notation and say that
a d−3 -interval is a diamond with top element removed). A poset P is called dk-complete if
it satisfies the following three conditions:

(1) [w, y] is a d−k -interval ⇒ ∃ z ∈ P : [w, z] is a dk-interval,
(2) [w, z] is a dk-interval ⇒ z does not cover an element outside of [w, z] and
(3) [w, z] is a dk-interval ⇒ there exists no w′ 6= w such that [w′, z] is a dk-interval.

A poset P is called d-complete if and only if P is dk-complete for all k ≥ 3. The posets
corresponding to Young diagrams and shifted Young diagrams are examples of d-complete
posets (see Figure 8). A full classification of d-complete posets can be found in [Pro99].

Recall that for any poset P a map σ : P → N is called P -partition of n if σ is order-
reversing and satisfies

∑

x∈P σ(x) = n. Let GP (x) denote the corresponding generating
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Figure 8. Two d-complete posets with assigned hook-lengths.

function, i.e.,

GP (x) :=
∑

n≥0

anx
n,

where an denotes the number of P -partitions of n. As a result by R.P. Stanley [Sta11,
Theorem 3.15.7] the generating function can be factorized into

GP (x) =
WP (x)

(1− x)(1 − x2) · · · (1− x|P |)
(1.2)

with a polynomial WP (x) such that WP (1) is the number of linear extensions of P . A
poset P is called hook-length poset if there exists a map h : P → Z

+ such that

GP (x) =
∏

z∈P

1

1− xh(z)
. (1.3)

The number fP of linear extensions of a hook-length poset can be obtained by equating
(1.2) and (1.3), and taking the limit x → 1:

fP =
|P |!

∏

z∈P h(z)
. (1.4)

Every d-complete poset is a hook-length poset [Pro]. In fact, d-complete posets were
generalized to so-called leaf posets [IT07], which are also hook-length posets. The hook-
lengths hz := h(z) for d-complete posets can be obtained in the following way:

(1) Assign all minimal elements of the poset the hook-length 1.
(2) Repeat until all elements have their hook-length assigned: choose a poset element

z where all smaller elements have their hook-length assigned. Check whether z is
the top element of a dk-interval [w, z].

• If no, set hz := #{y ∈ P : y ≤ z}.
• If yes, set hz := hl+hr−hw, where l and r are the two incomparable elements
of the double-tailed diamond [w, z].

By definition of d-complete posets the procedure is well-defined (there exists at most one
dk-interval with z as top element). Moreover, it is a nice exercise to check that this defi-
nition is equivalent to the previous definition of hook-lengths for Young diagrams (which
only contain D2,2 intervals) and shifted Young diagrams (which additionally contain D3,3

intervals along the left rim). As an example compare Figure 6 and Figure 8.
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1.4. Jeu de taquin on the double-tailed diamond. Since there is exactly one pair
of incomparable elements in the double-tailed diamond Dm,n, there are two different dual
linear extensions T1 and T2 of Dm,n (see Figure 9). For jeu de taquin we choose without
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m+ 3

m+ n

T1: 1

m− 2

m+ 1m

m− 1

m+ 2

m+ 3
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T2:

Figure 9. The two possible dual linear extension of Dm,n.

loss of generality the order σ that corresponds to the reverse order of T1. In Section 2 we
show that jeu de taquin yields uniform distribution if and only if m ≥ n. We proceed by
defining a related statistic on permutations generalizing right-to-left minima. In terms
of this statistic we can analyze a refined counting problem, namely counting the number
of permutations for which jeu de taquin swaps the order between the labels of the two
incomparable elements exactly k times. As it turns out this counting problem has a nice
closed solution (Proposition 2.2) as well as the resulting difference between the number
of permutations yielding T1 and T2.

Theorem 1.1. Let s
(1)
m,n (respectively s

(2)
m,n) denote the number of permutations in Sm+n

which jeu de taquin on Dm,n with the order σ maps to T1 (respectively T2). Then

s(1)m,n − s(2)m,n = (−1)m
(

n− 1

m

)

m! n!, m, n ≥ 2. (1.5)

In particular, s
(1)
m,n = s

(2)
m,n if and only if m ≥ n.

What is interesting about the result is that the poset Dm,n is d-complete if and only if
m ≥ n. Together with Young diagrams and shifted Young diagrams (two further classes
of d-complete posets) this hints towards a connection between d-completeness of a poset
and the property that jeu de taquin with respect to an appropriate order yields uniform
distribution.

In Section 3 we give a purely combinatorial proof of Theorem 1.1 by constructing an
appropriate involution Φm,n on Sm+n if m ≥ n. In the case m < n we identify a set E of
of

(

n−1
m

)

m!n! exceptional permutations and construct an appropriate involution Φm,n on
Sm+n \ E .

1.5. Jeu de taquin on insets. The class of insets (fourth class in the classification of
d-complete posets in [Pro99]) can be defined in terms of the shape of its corresponding
diagram. For k ≥ 2 and λ = (λ1, . . . , λk) ⊢ n the inset Pk,λ is obtained by taking the
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Young diagram corresponding to λ and adding k− 1 boxes at the left end of the first row
and one box at the left end of the second row (see Figure 10). The hook-lengths of the

Figure 10. The inset P4,(3,2,2,1) and its corresponding box diagram.

cells in λ can be computed like for Young diagrams. The additional box in the second
row is not the maximum of a double-tailed diamond interval, whereas each of the k − 1
additional boxes in the first row is the top element of a double-tailed diamond interval.
The resulting hook-lengths are depicted in Figure 11. The hook-length formula (1.4)

n−λk+k

λk

standard

n−λ3+3 n−λ2+2 k+λ1−1

n−λ1+1 k+λ2−2

k+λ3−3

hook-lengths

Figure 11. The hook-lengths of Pk,λ with λ = (λ1, . . . , λk) ⊢ n.

implies that the number fk,λ of standard fillings is given by

fk,λ =
(n + k)!

(

∏

c∈λ

hc

)(

k
∏

i=1

(n− λi + i)

) . (1.6)

Computational experiments indicate that jeu de taquin on Pk,λ with row-wise order again
yields uniform distribution. Even though we were so far not able to modify the techniques
of [NPS97] and [Fis01] to prove that jeu de taquin indeed yields uniform distribution, a
quick analysis of insets yields a solution to a different, nice problem:

Fix an integer partition λ = (λ1, . . . , λk) and consider uniform distribution on the set
of standard Young tableaux of shape λ. What is the expected value of the left-most entry
in the second row? Three examples are depicted in Figure 12. In Section 4 we prove the
answer given in Corollary 1.2.

Corollary 1.2. Fix a partition λ = (λ1, . . . , λk) ⊢ n. Let (Ω, 2Ω, P ) be the probability
space containing the fλ different standard Young tableaux of shape λ and uniform proba-
bility measure P . Let Xλ ∈ {2, 3, . . . , λ1 + 1} denote the random variable measuring the
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Figure 12. What is EXλ under uniform distribution among standard
Young tableaux?

left-most entry in the second row. Then

EXλ =
fk,λ

fλ
=

k
∏

i=1

n + i

n+ i− λi

. (1.7)

Take for example the partition (3, 3, 2, 1) from Figure 6(a) which has according to the
hook-length formula 9!

6·5·4·3·3·2
= 168 different standard Young tableaux. The correspond-

ing inset has f 4,(3,3,2,1) = 429 standard fillings. Hence, (1.7) tells us that in a standard
Young tableau of shape (3, 3, 2, 1) the left-most entry in the second row is on average
429
168

≈ 2.554.
The expected value could also be expressed as a sum of determinants by Aitken’s

determinant formula for skew standard Young tableaux [Ait43; Sta01, Corollary 7.16.3].
It should be possible to derive the same product formula (1.7) from this expression. We,
however, give a combinatorial argument in Section 4 to show that (1.6) implies (1.7).

A different approach for generating uniformly random linear extensions was taken by
Nakada and Okamura [NO10,Nak12]. They use a probabilistic algorithm for generating
linear extensions and compute the probability p(L) that a fixed linear extension L is
generated by the algorithm. Since they show that p(L) actually does not depend on L
their statement not only implies that the algorithm yields uniform distribution among
linear extensions but also that the number of linear extensions is given by 1

p
.

2. Jeu de taquin on the double-tailed diamond

2.1. Reducing the problem to understanding a permutation statistic. For the
purpose of this section let us visualize the elements of the double-tailed diamond Dm,n as
boxes and labelings as fillings of the boxes. Let Bi,j denote the box in row i and column
j and given a filling of the boxes let Ti,j denote the entry in box Bi,j (see Figure 13). We

(1, 1)(1, 2)(1, 3)(1, 4)(1, 5)

(2, 5)(2, 6)

(3, 6)

(4, 6)

(5, 6)

(1, 6) 8 2 7 3 10

5 11

1

9

6

4

Figure 13. Coordinates of the boxes in D6,5 and a filling.

perform modified jeu de taquin on Dm,n with respect to the linear extension σ satisfying
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σ(B2,m−1) = n and σ(B1,m) = n + 1. Given a permutation π = π1π2 . . . πm+n ∈ Sm+n we
start jeu de taquin by assigning (π1, π2, . . ., πm+n) to the boxes in reverse order of σ (see
Figure 14).

11 10 9 8 7 6

5 4

3

2

1

σ: π1 π2 π3 π4 π5 π6

π7 π8

π9

π10

π11

Figure 14. Linear extension σ for jeu de taquin and the initial filling.

Let xi := xi(π) (respectively yi := yi(π)) denote the entry T1,m (respectively T2,m−1)
after i rounds of jeu de taquin. So, the initial values are x0 = πm and y0 = πm+1 and
we know that in the end we have {xm+n, ym+n} = {m,m + 1}. As in Theorem 1.1 we

denote by s
(1)
m,n the number of permutations π ∈ Sm+n with xm+n(π) = m and by s

(2)
m,n the

number of permutations with xm+n(π) = m+ 1.
In the first n rounds of jeu de taquin the elements πm+n, πm+n−1, . . . , πm+1 are simply

sorted in increasing order (cf. Insertion-Sort algorithm). Therefore

xn(π) = πm and yn(π) = min{πm+1, πm+2, . . . , πm+n}.

In the following we are no longer interested in the exact values of xi and yi but only
whether xi < yi or xi > yi. If xn < yn, then xn < T2,m, so nothing happens in the (n+1)-
st round of jeu de taquin and xn+1 < yn+1. If on the other hand xn > yn, then T1,m may
or may not be swapped with T2,m (and further entries), but in any case xn+1 > yn+1.
Therefore, xn+1(π) < yn+1(π) if and only if πm = min{πm, πm+1, . . . , πm+n}, i.e., if πm is
a right-to-left minimum of π.

For the remaining rounds we observe the following: before moving πi at the start of
round m + n + 1 − i the boxes B1,i+1, . . . , B1,m, B2,m−1 contain the m + 1 − i smallest
elements of {πi+1, πi+2, . . . , πm+n}. We have to distinguish between two cases, namely
whether πi is among the m+ 1− i smallest elements of {πi, πi+1, . . . , πm+n} or not.

If on the one hand πi > max{xm+n−i, ym+n−i}, then jeu de taquin first moves πi to
B1,m−1 and then swaps πi with min{xm+n−i, ym+n−i}, which – by assumption – changes
the order between T1,m and T2,m−1. After that πi may or may not move further, but in
any case the order between xm+n−i+1 and ym+n−i+1 is exactly the opposite of the order
between xm+n−i and ym+n−i. If on the other hand πi < max{xm+n−i, ym+n−i}, then jeu
de taquin moves πi at most to B1,m or B2,m−1 and – by assumption – does not change the
order. Thus xm+n−i+1 and ym+n−i+1 are in the same order as xm+n−i and ym+n−i.

Summed up, we have observed that xn+1(π) < yn+1(π) if and only if πm is a right-
to-left minimum. After that, the order between T1,m and T2,m−1 is kept the same in the
round starting with πi if and only if πi is among the m + 1 − i smallest elements of
{πi, πi+1, . . . , πm+n}. Therefore, we have reduced the problem to understanding a corre-
sponding statistic on permutations.

2.2. Definition and analysis of a statistic on permutations. The previous observa-
tions motivate the following definition generalizing right-to-left-minima of permutations.
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Definition 2.1 (RLk –min). Let π = π1π2 . . . πn ∈ Sn. We say that πi is a RLk –min if
and only if πi is among the k smallest elements of {πi, πi+1, . . . , πn}.

To solve our counting problem, we need to understand the distribution of

cm,n(π) :=

m
∑

i=1

[πi is RLm+1−i –min] , π = π1 · · ·πm+n ∈ Sm+n, (2.1)

where the square brackets denote Iverson brackets, i.e., [φ] := 1 if φ is true, and 0 oth-
erwise. As it turns out the distribution of cm,n can be simply expressed in the following
way.

Proposition 2.2. Let

cm,n,k := |{π ∈ Sm+n : cm,n(π) = m− k}| , m, n ≥ 1, 0 ≤ k ≤ m.

Then

cm,n,k = nk

[

m+ 1

k + 1

]

n!, (2.2)

where
[

s

t

]

denotes the unsigned Stirling numbers of first kind, i.e., the number of permu-
tations of s elements with t disjoint cycles.

Remark 2.3. From the previous observations it follows that cm,n,k counts the number of
π ∈ Sm+n for which the order between T1,m and T2,m−1 in jeu de taquin is changed exactly
k times (with πm contributing to k if and only if πm is not a right-to-left minimum). In
particular, xm+n(π) < ym+n(π) if and only if k = m− cm,n(π) is even.

Proof of Proposition 2.2. The proof is split into the two edge cases k = m and k = 0 and
the case 0 < k < m.

• k = 0: We show that

cm,n(π) = m ⇐⇒ {π1, . . . , πm} = {1, . . . , m}.

Assume s(πi) := [πi is RLm+1−i –min] = 1 for all i = 1, . . . , m. Then s(πm) =
1 implies 1 ∈ {π1, . . . , πm}. Suppose there exists 2 ≤ k ≤ m such that k ∈
{πm+1, . . . , πm+n}. It then follows from s(πm) = s(πm−1) = · · · = s(πm+2−k) = 1
that none of πm, πm−1, . . . , πm+2−k can be greater than k, i.e., {πm+2−k, . . . , πm} =
{1, 2, . . . , k − 1}. But this contradicts πm+1−k being a RLk –min. The reverse
direction is obvious. Since there are exactly m! permutations in Sm+1 consisting
of one cycle, we obtain

cm,n,0 = m! n! = n0

[

m+ 1

1

]

n!.

• k = m: In this case we observe that

cm,n(π) = 0 ⇐⇒ j ∈ {πm+2−j , πm+3−j , . . . , πm+n} for all j = 1, . . . , m.

Suppose j /∈ {πm+2−j , πm+3−j , . . . , πm+n}. Then there exists an i ∈ {1, . . . , m +
1−j} such that πi = j ≤ m+1− i. But this implies that πi is a RLm+1−i –min, so
cm,n(π) > 0. If we conversely assume that {1, 2, . . . , m+1− i} ⊆ {πi+1, . . . , πm+n}
for all i = 1, . . . , m, it follows that πi is not among the m+1− i smallest elements
of {πi, . . . , πm+n}, and therefore cm,n(π) = 0.
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Therefore we have exactly nm possibilities to choose the preimage of {1, 2, . . . , m}
and for each such choice the preimages of {m + 1, . . . , m + n} can be chosen in
any order, i.e.,

cm,n,m = nmn! = nm

[

m+ 1

m+ 1

]

n!.

• 0 < k < m: We proceed by induction on m. From the recurrence relation
[

s+1
t

]

=

s
[

s

t

]

+
[

s

t−1

]

and the induction hypothesis (respectively the edge cases) it follows
that

nk

[

m+ 1

k + 1

]

n! = nkm

[

m

k + 1

]

n! + nk

[

m

k

]

n! = m cm−1,n,k + n cm−1,n,k−1.

So it only remains to show that

m cm−1,n,k + n cm−1,n,k−1 = cm,n,k. (2.3)

For a bijective proof of (2.3) consider the position of 1 in π1 . . . πmπm+1 . . . πm+n.
Let π′ denote the permutation π with πj = 1 removed and each number reduced
by 1, so that π′ ∈ Sm+n−1.
If on the one hand 1 ≤ j ≤ m, note that cm−1,n(π

′) = cm,n(π) − 1 and thus
cm−1,n(π

′) = (m − 1) − k if and only if cm,n(π) = m − k. For each 1 ≤ j ≤ m
this establishes a one-to-one correspondence between the permutations π ∈ Sm+n

with πj = 1 that are counted by cm,n,k and permutations π′ ∈ Sm+n−1 counted by
cm−1,n,k.
If on the other hand m + 1 ≤ j ≤ m + n, note that cm−1,n(π

′) = cm,n(π) and
therefore cm−1,n(π

′) = (m− 1)− (k − 1) if and only if cm,n(π) = m− k. For each
m+1 ≤ j ≤ m+n this is a one-to-one correspondence between the permutations
π ∈ Sm+n with πj = 1 that are counted by cm,n,k and permutations π′ ∈ Sm+n−1

counted by cm−1,n,k−1.

�

Proof of Theorem 1.1. In Remark 2.3 we have observed that

s(1)m,n − s(2)m,n = |{π ∈ Sm+n : m− cm,n(π) is even}| − |{π ∈ Sm+n : m− cm,n(π) is odd}| .

Together with Proposition 2.2 it follows that

s(1)m,n − s(2)m,n =
m
∑

k=0

(−1)kcm,n,k =
m+1
∑

k=1

(−1)k−1nk−1

[

m+ 1

k

]

n!

= (−1)m(n− 1)!

m+1
∑

k=0

(−1)m+1−k

[

m+ 1

k

]

nk.

Since

(x)s := x(x− 1) · · · (x− s+ 1) =
s

∑

k=0

(−1)s−k

[

s

k

]

xk

we obtain

s(1)m,n − s(2)m,n = (−1)m(n− 1)!(n)m+1 = (−1)m
(

n− 1

m

)

m! n!. �
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So, in particular jeu de taquin yields uniform distribution on the double-tailed diamond
Dm,n if and only if m ≥ n.

Let us close this section by noting that the if-direction can also be obtained by a
simple inductive argument, which can be extended to general posets: if we play jeu de
taquin on Dm,m with all permutations where π1 has a fixed value and stop the sorting
procedure before π1 is moved, then we obtain a (non-uniform) distribution (α, β) with
α+β = (2m−1)! and α, β independent from π1. As previously observed π1 does not change
the order between T1,m and T2,m−1 if and only if π1 is a RLm –min, i.e., π1 ∈ {1, 2, . . . , m}.
After completing jeu de taquin by moving π1, we therefore obtain the distribution (α, β)
if π1 ∈ {1, 2, . . . , m} and the distribution (β, α) if π1 ∈ {m + 1, m + 2, . . . , 2m}. In
total each of the two standard fillings occurs m(α + β) times, i.e., jeu de taquin yields a
uniform distribution on Dm,m. In the same way we can now fix π1 in jeu de taquin on
Dm,n with m > n. Inductively we obtain a uniform distribution on Dm−1,n for each fixed
π1 ∈ {1, 2, . . . , m + n}. Since each fixed π1 either always or never changes the order of
the entries in the incomparable boxes, we also obtain a uniform distribution on Dm,n.

Given an n-element poset P and an order σ such that jeu de taquin yields uniform
distribution, we can extend this property to the poset P ′ obtained by adding a maximum
element m to P : first it is clear that the total number of (dual) linear extensions remains
the same, i.e., fP = fP ′

. As order for jeu de taquin choose σ′|P := σ|P and σ′(m) := n+1.
Now consider all labelings π of P ′ where πm = i is fixed. If we play jeu de taquin with all
such labelings and stop before moving i we obtain (restricted to P ) a uniform distribution
among the fP different dual linear extensions (with entries [n+1]\{i}). Note that in each
dual linear extension of P ′ the label i has a unique reverse path back to the top. Thus,
moving i in the last step of jeu de taquin preserves the uniform distribution. Having a
uniform distribution for each πm = i ∈ [n + 1] implies uniform distribution in total.

Since jeu de taquin with row-wise order on Young tableaux yields a uniform distribution
[NPS97], it follows from the previous observation that the poset obtained from removing
the top row of Pk,λ has the same property. It remains an open problem to understand
why the uniform distribution is also preserved when adding the top row.

3. A combinatorial proof of Theorem 1.1

In this section we give a bijective proof of Theorem 1.1. For this purpose we define the
type τ for each permutation π ∈ Sm+n by setting τ(π) := 1 if jeu de taquin with input
permutation π yields the output tableau T1, and τ(π) = −1 if the output tableau is T2

(see Figure 9 and Figure 14). Given two subsets S1, S2 ⊆ Sm+n we say that f : S1 → S2

is type-inverting if τ(π) = −τ(f(π)) for all π ∈ S1. To give a combinatorial proof of
Theorem 1.1 we define a type-inverting involution Φm,n : Sm+n → Sm+n for all m ≥ n.
In the case m < n we identify a set E of

(

n−1
m

)

m!n! exceptional permutations in Sm+n of
the same type. On the remaining set Sm+n \ E we then define a type-inverting involution
Φm,n.

As in Section 2 let xi(π) and yi(π) denote the entries T1,m and T2,m−1 after i rounds of
jeu de taquin. Before giving the formal definition of Φm,n let us first state the basic ideas:

First, if the last i entries of π are in the same relative order as the last i entries of π′, then
xi(π) < yi(π) if and only if xi(π

′) < yi(π
′). This means that whether or not xi(π) < yi(π)

for i = n + 1, . . . , n +m depends on the relative order of πm+n+1−i, πm+n+2−i, . . ., πm+n

but not the absolute values.
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Second, we have noted in Section 2 that πi does not change the order between T1,m and
T2,m−1 if and only if πi is among the m+ 1 − i smallest elements of {πi, πi+1, . . . , πm+n}.
This implies that whether or not πi changes the order only depends on the set of elements
{πi+1, πi+2, . . . , πm+n}, but not their relative order. In particular, π1 changes the order
between T1,m and T2,m−1 if and only if π1 > m.

In the case m = n we therefore construct an involution Φn,n on S2n such that the
relative order of all entries in π and the relative order of all entries in π′ := Φn,n(π) is
the same if we exclude π1 and π′

1 = 2n + 1 − π1. In the case m > n we let Φm,n fix the
first m − n entries of each permutation and apply the type-inverting involution Φn,n to
the bottom 2n entries. If m < n we apply Φm,m to the smallest 2m entries if π1 ≤ 2m.
Otherwise, we apply Φm−1,m−1 to the smallest 2(m− 1) entries if π2 ≤ 2(m− 1), and so
on. Either one of the first m entries is small enough to apply the type-inverting involution
Φm+1−i,m+1−i or π1, π2, . . ., πm are all too large. In the latter case we call the permutation
exceptional and exclude it from the involution Φm,n. As it turns out there are exactly
(

n−1
m

)

m!n! exceptional permutations all having the same type, thus proving Theorem 1.1.
Let us now formally define the involution Φm,n in all three cases, prove the correctness

and give examples.

3.1. Case m = n. For n ∈ N and 1 ≤ t ≤ 2n define the permutation χn,t ∈ S2n by

1 ≤ t ≤ n : χn,t(i) :=











2n+ 1− t if i = t,

i− 1 if t < i ≤ 2n+ 1− t,

i otherwise.

(3.1)

n+ 1 ≤ t ≤ 2n : χn,t(i) :=











2n+ 1− t if i = t,

i+ 1 if 2n+ 1− t ≤ i < t,

i otherwise.

(3.2)

For all 1 ≤ t ≤ 2n we have

χn,t ◦ χn,2n+1−t = χn,2n+1−t ◦ χn,t = id

and χn,t

∣

∣

[2n]\t
is order-preserving. The desired involution Φn,n : S2n → S2n is

Φn,n(π) := χn,π1
◦ π. (3.3)

An example can be seen in Figure 15. As composition of permutations it is clear that

2 5 6 3

1 7

4

8

7 4 5 2

1 6

3

8

Φ4,4

Figure 15. The involution Φ4,4 applied to π = 25631748.

Φn,n(π) ∈ S2n, and from χn,π1
(π1) = 2n + 1− π1 it follows that

Φ2
n,n(π) = Φn,n(χn,π1

◦ π) = χn,2n+1−π1
◦ χn,π1

◦ π = π,
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i.e., Φn,n is an involution. Since χn,π1
is order-preserving except for π1 the entries of π

and π′ := Φn,n(π) have the same relative order except for π1 and π′
1. Therefore

x2n−1(π) < y2n−1(π) ⇐⇒ x2n−1(π
′) < y2n−1(π

′).

As π′
1 = 2n+1−π1 exactly one of π1 > n or π′

1 > n holds, and thus the two permutations
π and π′ are of different type, i.e., Φn,n is a type-inverting involution on S2n.

3.2. Case m > n. Given two subsets A,B ⊆ N with |A| = |B|, let σA,B : A → B
denote the unique order-preserving bijection between A and B, i.e., the bijection satisfying
(a1 < a2) → (σA,B(a1) < σA,B(a2)) for all a1, a2 ∈ A. Obviously, we have σB,A ◦ σA,B =
σA,B ◦ σB,A = id.

Ifm > n and π ∈ Sm+n set A := Aπ := {πm−n+1, πm−n+2, . . . , πm+n}, B := {1, 2, . . . , 2n}
and t := tπ := σA,B(πm−n+1). The type-inverting involution Φm,n in this case is

Φm,n(π) :=

{

i 7→ πi if 1 ≤ i ≤ m− n,

i 7→ σB,A ◦ χn,t ◦ σA,B(πi) if m− n+ 1 ≤ i ≤ m+ n.
(3.4)

Note that Φm,n(π) is well-defined and an element of Sm+n (see Figure 16 for an example).
Moreover we have

1 3 5 7

8 2

6

Φ5,3

4 1 7 3 6

8 2

5

4

Figure 16. The involution Φ5,3 applied to π = 41357826 with Aπ = {2, 3, 5, 6, 7, 8}.

Φm,n(π)
∣

∣

{1,...,m−n}
= π,

Φm,n(π)
∣

∣

{m−n+1,...,m+n}
= σB,A ◦ χn,t ◦ σA,B ◦ π.

Therefore AΦm,n(π) = Aπ and tΦm,n(π) = σA,B(σB,A ◦ χn,tπ ◦ σA,B(πm−n+1)) = χn,tπ(t
π) =

2n+ 1− tπ. It follows that

Φ2
m,n(π)

∣

∣

{1,...,m−n}
= π

∣

∣

{1,...,m−n}

and

Φ2
m,n(π)

∣

∣

{m−n+1,...,m+n}
= Φm,n(σB,A ◦ χn,tπ ◦ σA,B ◦ π)

∣

∣

{m−n+1,...,m+n}

= σB,A ◦ χn,2n+1−tπ ◦ σA,B ◦ σB,A ◦ χn,tπ ◦ σA,B ◦ π
∣

∣

{m−n+1,...,m+n}
= π

∣

∣

{m−n+1,...,m+n}
,

i.e., Φ2
m,n = id. As in the case m = n the relative order of the last 2n − 1 entries of

π and π′ := Φm,n(π) is the same. The entry πm−n+1 is among the n smallest elements
of {πm−n+1, . . . , πm+n} if and only if π′

m−n+1 is not among the n smallest elements of
{π′

m−n+1, . . . , π
′
m+n}. Therefore

x2n(π) < y2n(π) ⇐⇒ x2n(π
′) > y2n(π

′).

Since πi = π′
i for all i = 1, . . . , m− n, the permutations π and π′ are of different type.
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3.3. Case m < n. In the case m < n let us define a subset E ⊆ Sm+n of exceptional
permutations which we exclude from the involution: we say that π = π1 . . . πm+n is
exceptional if and only if πi > 2(m + 1 − i) for all i = 1, . . . , m. Note that the number
of exceptional permutations is (n − m)(n − m + 1) · · · (n − 1) n! =

(

n−1
m

)

m!n!. Given
π ∈ Sm+n \ E , let k := kπ ≥ 1 minimal such that πk ≤ 2(m+ 1− k). Define

Φm,n(π) :=

{

i 7→ πi if πi > 2(m+ 1− k),

i 7→ χm+1−k,πk
(πi) otherwise.

(3.5)

An example can be seen in Figure 17. Note that Φm,n(π) is well-defined and since

10 2 5 7

12 4

6

Φ5,7

11

1

9

3

8

10 5 4 7

12 3

6

11

1

9

2

8

Figure 17. The involution Φ5,7 with kπ = 3.

χm+1−k,πk
(πk) = 2(m + 1 − k) + 1 − πk we have kΦm,n(π) = kπ and Φm,n(π) ∈ Sm+n \ E .

With L := {1 ≤ i ≤ m+ n : πi > 2(m+ 1− k)} it follows that

Φ2
m,n(π)

∣

∣

L
= Φm,n(π)

∣

∣

L
= π

∣

∣

L

and

Φ2
m,n(π)

∣

∣

[m+n]\L
= Φm,n(χm+1−k,πk

◦ π)
∣

∣

[m+n]\L

= χm+1−k,2(m+1−k)+1−πk
◦ χm+1−k,πk

◦ π
∣

∣

[m+n]\L
= π

∣

∣

[m+n]\L
,

i.e., Φm,n is an involution. The relative order of the entries in π and π′ := Φm,n(π) is
the same except for πk and π′

k. Since πk is among the m + 1 − k smallest elements
of {πk, . . . , πm+n} if and only if π′

k is not among the m + 1 − k smallest elements of
{π′

k, . . . , π
′
m+n} the involution Φm,n is type-inverting. We can conclude the proof by noting

that all exceptional permutations are of the same type, since πi > 2(m+1− i) for all i =
1, . . . , m implies that πi is not among them+1−i smallest elements of {πi, πi+1, . . . , πm+n}.

4. Proof of Corollary 1.2 and Examples

The statement of Corollary 1.2 can be observed by computing the number fk,λ of
standard fillings of Pk,λ in two different ways. On the one hand we can use the hook-
length formula (1.6) for insets. On the other hand we could refine the counting with
respect to the left-most entry in the second row: in each standard filling of Pk,λ the
k − 1 left-most entries in the first row are (T1,1, T1,2, . . . , T1,k−1) = (1, 2, . . . , k − 1). For

i = 0, 1, . . . , λ1 let f
k,λ
i denote the number of standard fillings of Pk,λ where the left-most

entry in the second row is T2,k−1 = k + i (see Figure 18). Now note that for each fixed
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k+i−11 k−2 k−1 k

k+i

Figure 18. Standard fillings counted by fk,λ
i .

i ∈ {0, 1, . . . , λ1} the standard fillings counted by fk,λ
i are in one-to-one correspondence

with standard Young tableaux of shape λ where the left-most entry in the second row is
at least i + 1 (by considering the entries in λ and the order-preserving map). Together

with fk,λ =
∑λ1

i=0 f
k,λ
i , (1.1) and (1.6) we obtain

EXλ =
λ1+1
∑

i=1

P{Xλ ≥ i} =
λ1
∑

i=0

fk,λ
i

fλ
=

fk,λ

fλ
=

k
∏

i=1

n + i

n+ i− λi

.

Let us apply this result to the three families of partitions in Figure 12.

Example 4.1. Consider the partition λ = (k, 1k−1) ⊢ 2k − 1. From Corollary 1.2 we
obtain

EXλ =
k
∏

i=1

2k − 1 + i

2k − 1 + i− λi

=
2k

k

k
∏

i=2

2k − 1 + i

2k − 2 + i
= 3−

1

k
.

Of course, this could also be obtained by the elementary observation that fλ =
(

2k−2
k−1

)

and

EXλ =
∑

i≥1

P(Xλ ≥ i) =
1

(

2k−2
k−1

)

[

(

2k − 2

k − 1

)

+
∑

i≥2

(

2k − i

k − 1

)

]

= 1 +

(

2k−1
k

)

(

2k−2
k−1

) = 3−
1

k
.

Example 4.2. Fix c ≥ 1 and consider the partition λ = (c, . . . , c) ⊢ kc. For k ≥ c it
follows that

EXλ =
k
∏

i=1

kc+ i

kc+ i− c
=

c
∏

i=1

k(c+ 1) + 1− i

kc+ 1− i

k→∞
−−−→

(

1 +
1

c

)c

.

Example 4.3. Let λ = (k, k − 1, . . . , 1) ⊢
(

k+1
2

)

be of staircase shape. After a short
computation one obtains

EXλ =

((

k+1
2

)

+ k
)

!!
((

k+1
2

)

− k − 1
)

!!
(

k+1
2

)

!
,

where !! denotes the double factorial, i.e., (2n)!! = 2nn! and (2n−1)!! = (2n)!
2nn!

. By applying
Stirling’s formula one can show that asymptotically EXλ ∼ e ≈ 2.71828.
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