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order beyond periodicity

— motivation

motivation

every lattice A C R? is

= uniformly discrete: 3r >0 Vx € R : AN B,(x)| <1
u relatively dense: 3R > 0: ABg(0) = RY
m periodic with d linearly independent periods

m “pure point diffractive”

we are interested in “ordered” point sets which generalise lattices
m |: order beyond periodicity
m |I: cut-and-project sets: geometry and combinatorics

m IlI: cut-and-project sets: diffraction and harmonic analysis
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order beyond periodicity

‘—motivation

some classes of point sets

m Here uniformly discrete point sets A. Then uniformly in x
AN Bs(x)| = O(vol(Bs)) (s = o)

m A\ Delone <= A relatively dense, uniformly discrete
examples: lattice, random distortion of lattice, tilings, ...

u A Meyer <= A relatively dense, AA~! uniformly discrete
m cut-and-project sets (certain projected subsets of a lattice)

Meyer sets are highly structured
u AN~ uniformly discrete: finitely many “local configurations”
m any Meyer set is a subset of a cut-and-project set (Meyer 72)

m diffraction of Delone sets: Bragg peaks of high intensity
Meyer, if relatively dense (Lenz—Strungaru 14)
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order beyond periodicity

Lfinite local complexity

patterns in uniformly discrete point sets

consider (centered ball) patterns:

m r-pattern of A centered in p € A
AN B (p), peA
m patterns equivalent if they agree up to translation

AN By (p) ~ AN B,(q) <= p*ANB,(0) = g AN B,(0)
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order beyond periodicity

L finite local complexity

pattern counting and finite local complexity

count patterns
N&(N) = [{p~ AN B p € Al
m interested in (exponential) growth of N5(A) with B

A finite local complexity (FLC) if N5(N) is finite for every ball B

m only finitely many “local configurations”

m examples: Meyer sets, cut-and-project sets
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order beyond periodicity

— repetitivity

repetitivity

we are interested in A with “many equivalent patterns”

A is repetitive if Vr 3R = R(r):
Every R-ball contains an equivalent copy of every r-pattern.

m For given r, one is interested in the smallest R(r)
u The above condition means: VraR : Vx € RIVp € A3p’ € A:

B/(p') C Br(x),  ANB(p) ~ AN B(p)

m A repetitive = A has FLC
» FLC does not imply repetitivity: Z \ {0}
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order beyond periodicity

— repetitivity

repetitivity function r — R(r)

m periodic point sets are repetitive, e.g. R(r) =r+1 for A = Z.
» slow growth of R(r) with r implies periodicity

Theorem (Lagarias—Pleasants 02)

Let A be non-empty and uniformly discrete. Assume that there
exist r > 0 and R(r) < %r such that every R-ball contains an
equivalent copy of every r-pattern. Then N is periodic.
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order beyond periodicity
L

'—repetitivity

Assume w.l.o.g. 0 € A and define, with the above r,

P, ={peA|ANB(p) ~ANB(0)}

] (B,/g,(p))pep, covers R¢:
repetitivity: Vx € R93p’ € P, such that B,(p') C Br(x).
Hence d(x,p') < R—r < r/3.

= in particular P, N B,3(x) # @ for all x € RY

= P, N By, /3(0) contains d linearly independent vectors:
Let x1,...,xk € P N By,/3(0) be linearly independent. Every
r/3-ball which intersects (xi,...,xx) only in 0 contains some
linearly independent xx11 € P,.



order beyond periodicity

Lrepetitivity

x € P, N By, 3(0) is a period, i.e., px € A for every p € .
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order beyond periodicity

Lrepetitivity

x € P, N By, 3(0) is a period, i.e., px € A for every p € .

For g € P, we have
1) p€ AN B,(0) = pqg € A by definition of P,
) peNNB,3(q) = px e

= g 'p € AN B,3(0) by definition of P,
» hence g~ tpx € AN B,(0) by i)
= hence px € A by definition of P,

The lemma follows since (B,/3(q))qep covers A. O
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order beyond periodicity

—examples

Beatty sequences (Morse—Hedlund 38)

For irrational « € (0, 1) define
b, = [(n+1)a| — |na| € {0,1}
repetitivity properties of A, = {n € Z| b, = 1}

m for every r there exists finite R(r)

m Let g : Ry — R, be any continuous non-decreasing function.
Then there is « such that for infinitely many r € N the
sequence A, cannot satisfy

R(r) < &(r)
m Any A, arises naturally from a cut-and-project construction.
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order beyond periodicity

—examples

Fibonacci substitution

m letters: a, b, substitution rule: a — ab, b — a
u (right-infinite) Fibonacci chain: start with a!

a, ab, aba, abaab, abaababa, abaababaabaab, . ..

m Ol-sequence by a+— 1, b+— Q.
11
M=(10)

= 1.618034 7= = —0.618034...

= substitution matrix:

m eigenvalues of M:

1+45
T=—)
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order beyond periodicity

—examples

letter frequencies

m n-fold substitution: no letters M"e;

n __ fn+1 fn
M _( fn fn—l )

» Fibonacci numbers: (f,)nen, = 0,1,1,2,3,5,8,13,21,44,. ..

T _ 7_/" n
fo=fh1+fho= 5 = round ( /)
T—T T—T
m relative frequency (hp(a))nen of a converges:
f f 1
ho(a) = — = .2 (5 )

fn-l—l + fn N fn+2 T

m irrational limit, hence Fibonacci chain not periodic!
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order beyond periodicity

—examples

Ammann—Beenker substitution

isosceles triangle (side lengths 1 and v/2)
45°-rhombus (side lengths 1)

!

X7
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order beyond periodicity
L

‘—examples

inflation has fix point!
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L examples

non-periodic tiling of the plane, non-periodic vertex point set
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order beyond periodicity

—examples

pinwheel tiling

triangle of side lengths 1, 2, NG

r\

V.
A~ AN ~ «d

m discovered by Conway and Radin 94
m triangle orientations dense in S*

m hence not FLC w.r.t. translations
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order beyond periodicity
L

‘—examples

some larger patch ...

Federation Square Melbourne, Australia (Paul Bourke)
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order beyond periodicity

—examples

linearly repetitive examples

» study lineary repetitive point sets: R(r) = O(r) as r — oo
m there is an abundance of such point sets:

Theorem (Solomyak 97)

Let T be a substitution tiling with primitive substitution matrix. If
T has finite local complexity, then T is linearly repetitive.

Here FLC and repetitivity are defined on “tile configurations”.
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order beyond periodicity

‘—uniform pattern frequencies

pattern frequencies

box decompositions (Lagarias—Pleasants 03)

d

m box B = X]aj, b;), vol(B) > 0
i=1

» box decomposition (B;); of B

B=JB, BNB =2 (i#))

m B(U) set of squarish U-boxes, i.e., bj — a; € [U, 2U]

» Every box in B(W) admits decomposition in boxes from
B(U), if W>U

u B =JysoB(U) set of squarish boxes
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order beyond periodicity

‘—uniform pattern frequencies

pattern counting function

wa(B) = |AN B

m boundedness: ACVB € B
wa(B) < Cvol(B)
= additivity: for every box decomposition (B;); of B

wa(B) = Z wa(B)

m covariance: Vx € RYYB € B
win(XB) = wa(B)
= invariance: VB,B' € B
ANB =ANB = wp(B) = wa(B)
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order beyond periodicity

‘—uniform pattern frequencies

pattern frequencies

m upper and lower frequencies on squarish U-boxes

f+(U):sup{V E ng B(U)}
f‘(U):inf{\t‘z\EB;|BeB(U)}

finite due to boundedness

m behaviour for U — 00?

21/30



order beyond periodicity
L

‘—uniform pattern frequencies

Theorem (Lagarias—Pleasants 03)

1) fT(U) decreases to a finite limit f as U — oo.
i) If N is linearly repetitive, then

lim £~(U)= lim fH(U)=f

U—oo

i) If N is linearly repetitive, then for every box sequence (Bp)nen
in B of diverging inradius

im wn(Bn) _
n—o0 vol(B,)

)

and this convergence is uniform in the center of the boxes.

note: same result for arbitrary pattern frequencies
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order beyond periodicity

‘—uniform pattern frequencies

proof of i)

» Fix W > U, choose B € B(W) and a box decomposition
(Bj)i of B with boxes from B(U).

m Then by additivity

wa(B) Z wa(Bj)  vol(B;) < FHU)

vol(B) 4~ vol(B;) vol(B) ~

i
» As B € B(W) was arbitrary, we conclude
0 < fH(W) < fH(U),

and the claim follows by monotonicity.

23/30



order beyond periodicity

‘—uniform pattern frequencies

proof of ii) a la Damanik—Lenz 01

m indirect proof: assume
liminf f~ lim £+ =f
im in (V) < im (V)

m Then there are many big boxes with small frequencies:
There is ¢ > 0 and By, € B(Ux) such that Uy — oo and

WA(BUk) <f_¢
vol(By,) —

Due to linear repetitivity, such boxes will reduce the limiting value
of the upper frequency f!
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order beyond periodicity

‘—uniform pattern frequencies

proof of ii)

m Choose constant K of linear repetitivity and take arbitrary
B € B(3KUy).

m By partitioning each side of B into 3 parts of equal length, B
can be decomposed into 3¢ equivaler)t smaller boxes, each
belonging to B(KUy). Denote by B() € B(KUy) the box
which does not touch the boundary of B.

u By linear repetitivity, there exists x € RY such that
By = xBy, < B") and x(AN By,) = AN By.

m Using B € B(3KUx) and By € B(Ux), we may estimate

vol(By) - ud 1

vol(B) ~ (2-3KUk)d (6K)9
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order beyond periodicity

‘—uniform pattern frequencies

proof of ii)

Choose a box decomposition (B;)7_, of B, with B; € B(Uj) for
i€{l1,...,n} and estimate

wA(B)  ~~wa(Bi) | wa(Bo)  ~~wa(Bi) | wa(Bu,)
vol(B) Z vol(B) + vol(BO) B ; vol(B) vol(g)

< Zf+ (U) VOI(B ) (- )val((if’))

VOl( B()) _ S
vol(B) ~ (6K)?

< FH(U) + (F = F1(UK)
_c
(6K)?
Since B € B(3KUjy) was arbitrary, we have

FH3KU) < FH(Uy) —e/(6K)“,

< FH(Uk) -

a contradiction for k — oo.
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order beyond periodicity

‘—uniform pattern frequencies

proof of iii)

Let (Bn)nen any box sequence in B of diverging inradius. Since
B, € B(U,) for some Up, we have the estimate

< W/\(Bn)

f~(U,) < wol(B,) < FH(U,).

Since U, — oo as n — oo, this yields the claimed uniform
convergence.
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order beyond periodicity

‘—uniform pattern frequencies

from boxes to balls

The above result also holds for sequences of balls (Dj,)nen of
diverging radius.

u tile n—ball D, by \/n—boxes B\"ﬁ, some of which may protude
the boundary of D,

= with additivity we get

wa(D,) Z W/\(Bf/E) . VOl(Bi/E)
vol(D,) ~ vol(B/ ) vol(Dn)

m result follows from uniform convergence on boxes

i

m boundary boxes are asymptotic irrelevant since

vol(D, 0D,)

vol(Dy) —0 (n— o0)
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order beyond periodicity

Ldynamica\ systems

outlook: point set dynamical systems

dynamical system naturally associated to point set
= identify A with Dirac measure Zpé/\
m vague topology on collection of uniformly discrete point sets
m compact hull X5 = {xA|x € R9}
m topological dynamical system, continuous translation action

Let N be FLC Delone. Then
u A repetitive <= X minimal.

m A\ has uniform pattern frequencies <= Xy uniquely ergodic.

Analogous result for Delone sets of infinite local complexity!
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order beyond periodicity

Ldynamica\ systems
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