Combinatorial properties in cut-and-project sets: order beyond periodicity

Christoph Richard, FAU Erlangen-Nürnberg Seminaire Lotharingien de Combinatoire, March 2015

motivation

every lattice $\Lambda \subset \mathbb{R}^d$ is

- uniformly discrete: $\exists r > 0 \ \forall x \in \mathbb{R}^d : |\Lambda \cap B_r(x)| \le 1$
- relatively dense: $\exists R > 0$: $\Lambda B_R(0) = \mathbb{R}^d$
- periodic with d linearly independent periods
- "pure point diffractive"

we are interested in "ordered" point sets which generalise lattices

- I: order beyond periodicity
- II: cut-and-project sets: geometry and combinatorics
- III: cut-and-project sets: diffraction and harmonic analysis

some classes of point sets

• Here uniformly discrete point sets Λ . Then uniformly in x

 $|\Lambda \cap B_s(x)| = O(\operatorname{vol}(B_s)) \qquad (s \to \infty)$

- Λ Meyer $\iff \Lambda$ relatively dense, $\Lambda\Lambda^{-1}$ uniformly discrete
- cut-and-project sets (certain projected subsets of a lattice)

Meyer sets are highly structured

- ΛΛ⁻¹ uniformly discrete: finitely many "local configurations"
- any Meyer set is a subset of a cut-and-project set (Meyer 72)
- diffraction of Delone sets: Bragg peaks of high intensity Meyer, if relatively dense (Lenz-Strungaru 14)

patterns in uniformly discrete point sets

consider (centered ball) patterns:

• *r*-pattern of Λ centered in $p \in \Lambda$

$$\Lambda \cap B_r(p), \qquad p \in \Lambda$$

patterns equivalent if they agree up to translation

 $\Lambda \cap B_r(p) \sim \Lambda \cap B_r(q) \Longleftrightarrow p^{-1}\Lambda \cap B_r(0) = q^{-1}\Lambda \cap B_r(0)$

pattern counting and finite local complexity

count patterns

$$N^*_B(\Lambda) = |\{p^{-1}\Lambda \cap B \mid p \in \Lambda\}|$$

• interested in (exponential) growth of $N_B^*(\Lambda)$ with B

Definition

A finite local complexity (FLC) if $N_B^*(\Lambda)$ is finite for every ball B

- only finitely many "local configurations"
- examples: Meyer sets, cut-and-project sets

repetitivity

we are interested in Λ with "many equivalent patterns"

Definition

A is repetitive if $\forall r \exists R = R(r)$: Every R-ball contains an equivalent copy of every r-pattern.

- For given r, one is interested in the smallest R(r)
- The above condition means: $\forall r \exists R : \forall x \in \mathbb{R}^d \ \forall p \in \Lambda \ \exists p' \in \Lambda$:

$$B_r(p') \subset B_R(x), \qquad \Lambda \cap B_r(p') \sim \Lambda \cap B_r(p)$$

- Λ repetitive $\Longrightarrow \Lambda$ has FLC
- FLC does not imply repetitivity: $\mathbb{Z} \setminus \{0\}$

repetitivity function $r \mapsto R(r)$

periodic point sets are repetitive, e.g. R(r) = r + 1 for $\Lambda = \mathbb{Z}$.

slow growth of R(r) with r implies periodicity

Theorem (Lagarias–Pleasants 02)

Let Λ be non-empty and uniformly discrete. Assume that there exist r > 0 and $R(r) < \frac{4}{3}r$ such that every *R*-ball contains an equivalent copy of every *r*-pattern. Then Λ is periodic.

Assume w.l.o.g. $0 \in \Lambda$ and define, with the above *r*,

$$P_r = \{p \in \Lambda \,|\, \Lambda \cap B_r(p) \sim \Lambda \cap B_r(0)\}$$

• $(B_{r/3}(p))_{p \in P_r}$ covers \mathbb{R}^d : repetitivity: $\forall x \in \mathbb{R}^d \exists p' \in P_r$ such that $B_r(p') \subset B_R(x)$. Hence $d(x, p') \leq R - r < r/3$.

• in particular $P_r \cap B_{r/3}(x) \neq \varnothing$ for all $x \in \mathbb{R}^d$

■ $P_r \cap B_{2r/3}(0)$ contains *d* linearly independent vectors: Let $x_1, \ldots, x_k \in P_r \cap B_{2r/3}(0)$ be linearly independent. Every r/3-ball which intersects $\langle x_1, \ldots, x_k \rangle$ only in 0 contains some linearly independent $x_{k+1} \in P_r$.

Lemma

$x \in P_r \cap B_{2r/3}(0)$ is a period, i.e., $px \in \Lambda$ for every $p \in \Lambda$.

Proof.

For $q \in P_r$ we have i) $p \in \Lambda \cap B_r(0) \Rightarrow pq \in \Lambda$ by definition of P_r ii) $p \in \Lambda \cap B_{r/3}(q) \Rightarrow px \in \Lambda$: $q^{-1}p \in \Lambda \cap B_{r/3}(0)$ by definition of P_r hence $q^{-1}px \in \Lambda \cap B_r(0)$ by i) hence $px \in \Lambda$ by definition of P_r The lemma follows since $(B_{r/3}(q))_{r \in P_r}$ covers Λ .

Lemma

 $x \in P_r \cap B_{2r/3}(0)$ is a period, i.e., $px \in \Lambda$ for every $p \in \Lambda$.

Proof.

For $q \in P_r$ we have i) $p \in \Lambda \cap B_r(0) \Rightarrow pq \in \Lambda$ by definition of P_r ii) $p \in \Lambda \cap B_{r/3}(q) \Rightarrow px \in \Lambda$: $q^{-1}p \in \Lambda \cap B_{r/3}(0)$ by definition of P_r hence $q^{-1}px \in \Lambda \cap B_r(0)$ by ihence $px \in \Lambda$ by definition of P_r

The lemma follows since $(B_{r/3}(q))_{q\in P_r}$ covers Λ .

Beatty sequences (Morse-Hedlund 38)

For irrational $lpha \in (0,1)$ define

$$b_n = \lfloor (n+1)lpha
floor - \lfloor nlpha
floor \in \{0,1\}$$

repetitivity properties of $\Lambda_{\alpha} = \{n \in \mathbb{Z} \mid b_n = 1\}$

- for every r there exists finite R(r)
- Let g : ℝ₊ → ℝ₊ be any continuous non-decreasing function. Then there is α such that for infinitely many r ∈ N the sequence Λ_α cannot satisfy

$$R(r) \leq g(r)$$

Any Λ_{α} arises naturally from a cut-and-project construction.

Fibonacci substitution

- letters: a, b, substitution rule: $a \rightarrow ab$, $b \rightarrow a$
- (right-infinite) Fibonacci chain: start with a!

- 01-sequence by $a \mapsto 1$, $b \mapsto 0$.
- substitution matrix:

$$M = \left(\begin{array}{rrr} 1 & 1 \\ 1 & 0 \end{array}\right)$$

eigenvalues of M:

$$au = rac{1+\sqrt{5}}{2} = 1.618034 \qquad au' = rac{1-\sqrt{5}}{2} = -0.618034\ldots$$

letter frequencies

• *n*-fold substitution: no letters $M^n e_1$

$$M^n = \left(\begin{array}{cc} f_{n+1} & f_n \\ f_n & f_{n-1} \end{array}\right)$$

Fibonacci numbers: $(f_n)_{n \in \mathbb{N}_0} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 44, \dots$

$$f_n = f_{n-1} + f_{n-2} = \frac{\tau^n - {\tau'}^n}{\tau - \tau'} = \operatorname{round}\left(\frac{\tau^n}{\tau - \tau'}\right)$$

■ relative frequency $(h_n(a))_{n \in \mathbb{N}}$ of *a* converges:

$$h_n(a) = rac{f_{n+1}}{f_{n+1} + f_n} = rac{f_{n+1}}{f_{n+2}} o rac{1}{ au} \qquad (n o \infty)$$

irrational limit, hence Fibonacci chain not periodic!

Ammann-Beenker substitution

isosceles triangle (side lengths 1 and $\sqrt{2}$) 45°-rhombus (side lengths 1)

inflation has fix point!

Ammann–Beenker tiling

non-periodic tiling of the plane, non-periodic vertex point set

pinwheel tiling

triangle of side lengths 1, 2, $\sqrt{5}$

- discovered by Conway and Radin 94
- triangle orientations dense in S¹
- hence not FLC w.r.t. translations

some larger patch ...

Federation Square Melbourne, Australia (Paul Bourke)

linearly repetitive examples

study lineary repetitive point sets: R(r) = O(r) as $r \to \infty$

there is an abundance of such point sets:

Theorem (Solomyak 97)

Let T be a substitution tiling with primitive substitution matrix. If T has finite local complexity, then T is linearly repetitive.

Here FLC and repetitivity are defined on "tile configurations".

pattern frequencies

box decompositions (Lagarias-Pleasants 03)

$$\bullet \text{ box } B = \underset{i=1}{\overset{d}{\times}} [a_i, b_i), \text{ vol}(B) > 0$$

• box decomposition $(B_i)_i$ of B

$$B = \bigcup_{i} B_{i}, \qquad B_{i} \cap B_{j} = \varnothing \quad (i \neq j)$$

• $\mathcal{B}(U)$ set of squarish *U*-boxes, i.e., $b_i - a_i \in [U, 2U]$

Every box in $\mathcal{B}(W)$ admits decomposition in boxes from $\mathcal{B}(U)$, if $W \ge U$

$$\blacksquare \ \mathcal{B} = \bigcup_{U>0} \mathcal{B}(U) \text{ set of squarish boxes}$$

pattern counting function

 $w_{\Lambda}(B) = |\Lambda \cap B|$

• boundedness: $\exists C \forall B \in \mathcal{B}$

$$w_{\Lambda}(B) \leq C \operatorname{vol}(B)$$

• additivity: for every box decomposition $(B_i)_i$ of B

$$w_{\Lambda}(B) = \sum_{i} w_{\Lambda}(B_i)$$

• covariance: $\forall x \in \mathbb{R}^d \forall B \in \mathcal{B}$

$$w_{x\Lambda}(xB) = w_{\Lambda}(B)$$

• invariance: $\forall B, B' \in \mathcal{B}$

$$\Lambda \cap B = \Lambda \cap B' \Longrightarrow w_{\Lambda}(B) = w_{\Lambda}(B')$$

pattern frequencies

■ upper and lower frequencies on squarish *U*-boxes

$$egin{aligned} f^+(U) &= \sup\left\{rac{w_\Lambda(B)}{\operatorname{vol}(B)} \,|\, B \in \mathcal{B}(U)
ight\} \ f^-(U) &= \inf\left\{rac{w_\Lambda(B)}{\operatorname{vol}(B)} \,|\, B \in \mathcal{B}(U)
ight\} \end{aligned}$$

finite due to boundedness

• behaviour for $U \to \infty$?

Theorem (Lagarias–Pleasants 03)

i) $f^+(U)$ decreases to a finite limit f as $U \to \infty$. ii) If Λ is linearly repetitive, then

$$\lim_{U\to\infty} f^-(U) = \lim_{U\to\infty} f^+(U) = f$$

iii) If Λ is linearly repetitive, then for every box sequence $(B_n)_{n \in \mathbb{N}}$ in \mathcal{B} of diverging inradius

$$\lim_{n\to\infty}\frac{w_{\Lambda}(B_n)}{\operatorname{vol}(B_n)}=f,$$

and this convergence is uniform in the center of the boxes.

note: same result for arbitrary pattern frequencies

proof of i)

- Fix $W \ge U$, choose $B \in \mathcal{B}(W)$ and a box decomposition $(B_i)_i$ of B with boxes from $\mathcal{B}(U)$.
- Then by additivity

$$\frac{w_{\Lambda}(B)}{\operatorname{vol}(B)} = \sum_{i} \frac{w_{\Lambda}(B_{i})}{\operatorname{vol}(B_{i})} \cdot \frac{\operatorname{vol}(B_{i})}{\operatorname{vol}(B)} \leq f^{+}(U)$$

• As $B \in \mathcal{B}(W)$ was arbitrary, we conclude

$$0 \leq f^+(W) \leq f^+(U),$$

and the claim follows by monotonicity.

proof of ii) a la Damanik-Lenz 01

indirect proof: assume

$$\liminf_{U} f^{-}(U) < \lim_{U} f^{+}(U) = f$$

Then there are many big boxes with small frequencies: There is $\varepsilon > 0$ and $B_{U_k} \in \mathcal{B}(U_k)$ such that $U_k \to \infty$ and

$$\frac{w_{\Lambda}(B_{U_k})}{\operatorname{vol}(B_{U_k})} \leq f - \varepsilon$$

Due to linear repetitivity, such boxes will reduce the limiting value of the upper frequency f!

proof of ii)

- Choose constant K of linear repetitivity and take arbitrary $B \in \mathcal{B}(3KU_k)$.
- By partitioning each side of B into 3 parts of equal length, B can be decomposed into 3^d equivalent smaller boxes, each belonging to $\mathcal{B}(KU_k)$. Denote by $B^{(i)} \in \mathcal{B}(KU_k)$ the box which does not touch the boundary of B.
- By linear repetitivity, there exists $x \in \mathbb{R}^d$ such that $B_0 = xB_{U_k} \subset B^{(i)}$ and $x(\Lambda \cap B_{U_k}) = \Lambda \cap B_0$.
- Using $B \in \mathcal{B}(3KU_k)$ and $B_0 \in \mathcal{B}(U_k)$, we may estimate

$$\frac{\operatorname{vol}(B_0)}{\operatorname{vol}(B)} \geq \frac{U_k^d}{(2 \cdot 3KU_k)^d} = \frac{1}{(6K)^d}$$

proof of ii)

Choose a box decomposition $(B_i)_{i=0}^n$ of B, with $B_i \in \mathcal{B}(U_k)$ for $i \in \{1, \ldots, n\}$ and estimate

$$\frac{w_{\Lambda}(B)}{\operatorname{vol}(B)} = \sum_{i=1}^{n} \frac{w_{\Lambda}(B_i)}{\operatorname{vol}(B)} + \frac{w_{\Lambda}(B_0)}{\operatorname{vol}(B)} = \sum_{i=1}^{n} \frac{w_{\Lambda}(B_i)}{\operatorname{vol}(B)} + \frac{w_{\Lambda}(B_{U_k})}{\operatorname{vol}(B)}$$
$$\leq \sum_{i=1}^{n} f^+(U_k) \frac{\operatorname{vol}(B_i)}{\operatorname{vol}(B)} + (f - \varepsilon) \frac{\operatorname{vol}(B_0)}{\operatorname{vol}(B)}$$
$$\leq f^+(U_k) + (f - f^+(U_k)) \frac{\operatorname{vol}(B_0)}{\operatorname{vol}(B)} - \frac{\varepsilon}{(6K)^d}$$
$$\leq f^+(U_k) - \frac{\varepsilon}{(6K)^d}$$

Since $B \in \mathcal{B}(3KU_k)$ was arbitrary, we have

$$f^+(3KU_k) \leq f^+(U_k) - \varepsilon/(6K)^d$$
,

a contradiction for $k \to \infty$.

proof of iii)

Let $(B_n)_{n \in \mathbb{N}}$ any box sequence in \mathcal{B} of diverging inradius. Since $B_n \in \mathcal{B}(U_n)$ for some U_n , we have the estimate

$$f^-(U_n) \leq \frac{w_{\Lambda}(B_n)}{\operatorname{vol}(B_n)} \leq f^+(U_n).$$

Since $U_n \to \infty$ as $n \to \infty$, this yields the claimed uniform convergence.

from boxes to balls

The above result also holds for sequences of balls $(D_n)_{n\in\mathbb{N}}$ of diverging radius.

- tile *n*-ball D_n by \sqrt{n} -boxes $B_{\sqrt{n}}^i$, some of which may protude the boundary of D_n
- with additivity we get

$$\frac{w_{\Lambda}(D_n)}{\operatorname{vol}(D_n)} = \sum_{i} \frac{w_{\Lambda}(B_{\sqrt{n}}^i)}{\operatorname{vol}(B_{\sqrt{n}}^i)} \cdot \frac{\operatorname{vol}(B_{\sqrt{n}}^i)}{\operatorname{vol}(D_n)}$$

- result follows from uniform convergence on boxes
- boundary boxes are asymptotic irrelevant since

$$\frac{\operatorname{vol}(D_{\sqrt{n}}\partial D_n)}{\operatorname{vol}(D_n)} \to 0 \qquad (n \to \infty)$$

outlook: point set dynamical systems

dynamical system naturally associated to point set

- identify Λ with Dirac measure $\sum_{p \in \Lambda} \delta_p$
- vague topology on collection of uniformly discrete point sets
- compact hull $\mathbb{X}_{\Lambda} = \overline{\{x\Lambda \mid x \in \mathbb{R}^d\}}$
- topological dynamical system, continuous translation action

Proposition

Let Λ be FLC Delone. Then

- Λ repetitive $\iff \mathbb{X}_{\Lambda}$ minimal.
- Λ has uniform pattern frequencies $\iff \mathbb{X}_{\Lambda}$ uniquely ergodic.

Analogous result for Delone sets of infinite local complexity!

references

- J.C. Lagarias and P.A.B. Pleasants, *Local complexity of Delone sets and crystallinity*, Canad. Math. Bull. 45 (2002), 634–652.
- J.C. Lagarias and P.A.B. Pleasants, *Repetitive Delone sets and quasicrystals*, Ergodic Theory Dynam. Systems 23 (2003), 831–867.
- D. Damanik and D. Lenz, *Linear repetitivity. I. Uniform subadditive ergodic theorems and applications*, Discrete Comput. Geom. 26 (2001), 411–428.
- P. Müller and C. Richard, Ergodic properties of randomly coloured point sets, Canad. J. Math. 65 (2013), 349–402.
- D. Frettlöh and C. Richard, *Dynamical properties of almost repetitive Delone sets*, Discrete and Cont. Dynamical Systems A 34 (2014), 533–558.