Combinatorial properties in cut-and-project sets: order beyond periodicity

Christoph Richard, FAU Erlangen-Nürnberg Seminaire Lotharingien de Combinatoire, March 2015

motivation

every lattice $\Lambda \subset \mathbb{R}^{d}$ is

- uniformly discrete: $\exists r>0 \forall x \in \mathbb{R}^{d}:\left|\Lambda \cap B_{r}(x)\right| \leq 1$
- relatively dense: $\exists R>0: \wedge B_{R}(0)=\mathbb{R}^{d}$
- periodic with d linearly independent periods
- "pure point diffractive"
we are interested in "ordered" point sets which generalise lattices
- I: order beyond periodicity
- II: cut-and-project sets: geometry and combinatorics
- III: cut-and-project sets: diffraction and harmonic analysis

some classes of point sets

- Here uniformly discrete point sets Λ. Then uniformly in x

$$
\left|\Lambda \cap B_{s}(x)\right|=O\left(\operatorname{vol}\left(B_{s}\right)\right) \quad(s \rightarrow \infty)
$$

$■ \Lambda$ Delone $\Longleftrightarrow \Lambda$ relatively dense, uniformly discrete examples: lattice, random distortion of lattice, tilings, ...
$■ \Lambda$ Meyer $\Longleftrightarrow \Lambda$ relatively dense, $\Lambda \Lambda^{-1}$ uniformly discrete

- cut-and-project sets (certain projected subsets of a lattice)

Meyer sets are highly structured

- $\Lambda \Lambda^{-1}$ uniformly discrete: finitely many "local configurations"
- any Meyer set is a subset of a cut-and-project set (Meyer 72)
- diffraction of Delone sets: Bragg peaks of high intensity Meyer, if relatively dense (Lenz-Strungaru 14)

patterns in uniformly discrete point sets

consider (centered ball) patterns:

- r-pattern of Λ centered in $p \in \Lambda$

$$
\Lambda \cap B_{r}(p), \quad p \in \Lambda
$$

- patterns equivalent if they agree up to translation

$$
\Lambda \cap B_{r}(p) \sim \Lambda \cap B_{r}(q) \Longleftrightarrow p^{-1} \Lambda \cap B_{r}(0)=q^{-1} \Lambda \cap B_{r}(0)
$$

pattern counting and finite local complexity

count patterns

$$
N_{B}^{*}(\Lambda)=\left|\left\{p^{-1} \Lambda \cap B \mid p \in \Lambda\right\}\right|
$$

- interested in (exponential) growth of $N_{B}^{*}(\Lambda)$ with B

Definition

Λ finite local complexity (FLC) if $N_{B}^{*}(\Lambda)$ is finite for every ball B

- only finitely many "local configurations"
- examples: Meyer sets, cut-and-project sets

repetitivity

we are interested in Λ with "many equivalent patterns"

Definition

Λ is repetitive if $\forall r \exists R=R(r)$:
Every R-ball contains an equivalent copy of every r-pattern.

- For given r, one is interested in the smallest $R(r)$
- The above condition means: $\forall r \exists R: \forall x \in \mathbb{R}^{d} \forall p \in \Lambda \exists p^{\prime} \in \Lambda$:

$$
B_{r}\left(p^{\prime}\right) \subset B_{R}(x), \quad \Lambda \cap B_{r}\left(p^{\prime}\right) \sim \Lambda \cap B_{r}(p)
$$

- Λ repetitive $\Longrightarrow \Lambda$ has FLC
- FLC does not imply repetitivity: $\mathbb{Z} \backslash\{0\}$

repetitivity function $r \mapsto R(r)$

- periodic point sets are repetitive, e.g. $R(r)=r+1$ for $\Lambda=\mathbb{Z}$.
- slow growth of $R(r)$ with r implies periodicity

Theorem (Lagarias-Pleasants 02)

Let Λ be non-empty and uniformly discrete. Assume that there exist $r>0$ and $R(r)<\frac{4}{3} r$ such that every R-ball contains an equivalent copy of every r-pattern. Then Λ is periodic.

Assume w.l.o.g. $0 \in \Lambda$ and define, with the above r,

$$
P_{r}=\left\{p \in \Lambda \mid \Lambda \cap B_{r}(p) \sim \Lambda \cap B_{r}(0)\right\}
$$

- $\left(B_{r / 3}(p)\right)_{p \in P_{r}}$ covers \mathbb{R}^{d} : repetitivity: $\forall x \in \mathbb{R}^{d} \exists p^{\prime} \in P_{r}$ such that $B_{r}\left(p^{\prime}\right) \subset B_{R}(x)$. Hence $d\left(x, p^{\prime}\right) \leq R-r<r / 3$.
- in particular $P_{r} \cap B_{r / 3}(x) \neq \varnothing$ for all $x \in \mathbb{R}^{d}$
- $P_{r} \cap B_{2 r / 3}(0)$ contains d linearly independent vectors:

Let $x_{1}, \ldots, x_{k} \in P_{r} \cap B_{2 r / 3}(0)$ be linearly independent. Every $r / 3$-ball which intersects $\left\langle x_{1}, \ldots, x_{k}\right\rangle$ only in 0 contains some linearly independent $x_{k+1} \in P_{r}$.

Lemma

$x \in P_{r} \cap B_{2 r / 3}(0)$ is a period, i.e., $p x \in \Lambda$ for every $p \in \Lambda$.

Proof

For $q \in P_{r}$ we have

```
p\in\Lambda\cap Br(0)=>pq\in\Lambda by definition of Pr
p\in\Lambda\cap Br/3 (q) =>px\in\Lambda:
a
# hence q}\mp@subsup{q}{}{-1}px\in\Lambda\cap\mp@subsup{B}{r}{\prime}(0)\mathrm{ by i)
- hence px }\\Lambda\mathrm{ by definition of }\mp@subsup{P}{r}{
```

The lemma follows since $\left(B_{r / 3}(q)\right)_{q \in p_{r}}$ covers Λ.

Lemma

$x \in P_{r} \cap B_{2 r / 3}(0)$ is a period, i.e., $p x \in \Lambda$ for every $p \in \Lambda$.

Proof.

For $q \in P_{r}$ we have
i) $p \in \Lambda \cap B_{r}(0) \Rightarrow p q \in \Lambda$ by definition of P_{r}
ii) $p \in \Lambda \cap B_{r / 3}(q) \Rightarrow p x \in \Lambda$:

- $q^{-1} p \in \Lambda \cap B_{r / 3}(0)$ by definition of P_{r}
- hence $q^{-1} p x \in \Lambda \cap B_{r}(0)$ by $\left.i\right)$
- hence $p x \in \wedge$ by definition of P_{r}

The lemma follows since $\left(B_{r / 3}(q)\right)_{q \in P_{r}}$ covers Λ.

Beatty sequences (Morse-Hedlund 38)

For irrational $\alpha \in(0,1)$ define

$$
b_{n}=\lfloor(n+1) \alpha\rfloor-\lfloor n \alpha\rfloor \in\{0,1\}
$$

repetitivity properties of $\Lambda_{\alpha}=\left\{n \in \mathbb{Z} \mid b_{n}=1\right\}$

- for every r there exists finite $R(r)$
- Let $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be any continuous non-decreasing function. Then there is α such that for infinitely many $r \in \mathbb{N}$ the sequence Λ_{α} cannot satisfy

$$
R(r) \leq g(r)
$$

- Any Λ_{α} arises naturally from a cut-and-project construction.

Fibonacci substitution

- letters: a, b, substitution rule: $a \rightarrow a b, b \rightarrow a$
- (right-infinite) Fibonacci chain: start with a !

$$
a, a b, a b a, a b a a b, a b a a b a b a, a b a a b a b a a b a a b, \ldots
$$

- 01-sequence by $a \mapsto 1, b \mapsto 0$.
- substitution matrix:

$$
M=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

- eigenvalues of M :

$$
\tau=\frac{1+\sqrt{5}}{2}=1.618034 \quad \tau^{\prime}=\frac{1-\sqrt{5}}{2}=-0.618034 \ldots
$$

letter frequencies

■ n-fold substitution: no letters $M^{n} e_{1}$

$$
M^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right)
$$

- Fibonacci numbers: $\left(f_{n}\right)_{n \in \mathbb{N}_{0}}=0,1,1,2,3,5,8,13,21,44, \ldots$

$$
f_{n}=f_{n-1}+f_{n-2}=\frac{\tau^{n}-\tau^{\prime n}}{\tau-\tau^{\prime}}=\operatorname{round}\left(\frac{\tau^{n}}{\tau-\tau^{\prime}}\right)
$$

- relative frequency $\left(h_{n}(a)\right)_{n \in \mathbb{N}}$ of a converges:

$$
h_{n}(a)=\frac{f_{n+1}}{f_{n+1}+f_{n}}=\frac{f_{n+1}}{f_{n+2}} \rightarrow \frac{1}{\tau} \quad(n \rightarrow \infty)
$$

- irrational limit, hence Fibonacci chain not periodic!

Ammann-Beenker substitution

isosceles triangle (side lengths 1 and $\sqrt{2}$)
45°-rhombus (side lengths 1)

\downarrow

inflation has fix point!

Ammann-Beenker tiling

non-periodic tiling of the plane, non-periodic vertex point set

pinwheel tiling

triangle of side lengths $1,2, \sqrt{5}$

- discovered by Conway and Radin 94
- triangle orientations dense in \mathbb{S}^{1}
- hence not FLC w.r.t. translations

some larger patch ...

Federation Square Melbourne, Australia (Paul Bourke)

linearly repetitive examples

- study lineary repetitive point sets: $R(r)=O(r)$ as $r \rightarrow \infty$
- there is an abundance of such point sets:

Theorem (Solomyak 97)

Let \mathcal{T} be a substitution tiling with primitive substitution matrix. If \mathcal{T} has finite local complexity, then \mathcal{T} is linearly repetitive.

Here FLC and repetitivity are defined on "tile configurations".

pattern frequencies

box decompositions (Lagarias-Pleasants 03)

- box $B=\underset{i=1}{\underset{~}{X}}\left[a_{i}, b_{i}\right), \operatorname{vol}(B)>0$

■ box decomposition $\left(B_{i}\right)_{i}$ of B

$$
B=\bigcup_{i} B_{i}, \quad B_{i} \cap B_{j}=\varnothing \quad(i \neq j)
$$

- $\mathcal{B}(U)$ set of squarish U-boxes, i.e., $b_{i}-a_{i} \in[U, 2 U]$
- Every box in $\mathcal{B}(W)$ admits decomposition in boxes from $\mathcal{B}(U)$, if $W \geq U$
- $\mathcal{B}=\bigcup_{U>0} \mathcal{B}(U)$ set of squarish boxes

pattern counting function

$$
w_{\wedge}(B)=|\Lambda \cap B|
$$

- boundedness: $\exists C \forall B \in \mathcal{B}$

$$
w_{\Lambda}(B) \leq C \operatorname{vol}(B)
$$

- additivity: for every box decomposition $\left(B_{i}\right)_{i}$ of B

$$
w_{\wedge}(B)=\sum_{i} w_{\Lambda}\left(B_{i}\right)
$$

- covariance: $\forall x \in \mathbb{R}^{d} \forall B \in \mathcal{B}$

$$
w_{x \Lambda}(x B)=w_{\Lambda}(B)
$$

- invariance: $\forall B, B^{\prime} \in \mathcal{B}$

$$
\wedge \cap B=\wedge \cap B^{\prime} \Longrightarrow w_{\Lambda}(B)=w_{\wedge}\left(B^{\prime}\right)
$$

pattern frequencies

- upper and lower frequencies on squarish U-boxes

$$
\begin{aligned}
& f^{+}(U)=\sup \left\{\left.\frac{w_{\Lambda}(B)}{\operatorname{vol}(B)} \right\rvert\, B \in \mathcal{B}(U)\right\} \\
& f^{-}(U)=\inf \left\{\left.\frac{w_{\Lambda}(B)}{\operatorname{vol}(B)} \right\rvert\, B \in \mathcal{B}(U)\right\}
\end{aligned}
$$

finite due to boundedness

- behaviour for $U \rightarrow \infty$?

Theorem (Lagarias-Pleasants 03)

i) $f^{+}(U)$ decreases to a finite limit f as $U \rightarrow \infty$.
ii) If \wedge is linearly repetitive, then

$$
\lim _{U \rightarrow \infty} f^{-}(U)=\lim _{U \rightarrow \infty} f^{+}(U)=f
$$

iii) If \wedge is linearly repetitive, then for every box sequence $\left(B_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{B} of diverging inradius

$$
\lim _{n \rightarrow \infty} \frac{w_{\Lambda}\left(B_{n}\right)}{\operatorname{vol}\left(B_{n}\right)}=f
$$

and this convergence is uniform in the center of the boxes.
note: same result for arbitrary pattern frequencies

proof of i)

- Fix $W \geq U$, choose $B \in \mathcal{B}(W)$ and a box decomposition $\left(B_{i}\right)_{i}$ of B with boxes from $\mathcal{B}(U)$.
- Then by additivity

$$
\frac{w_{\Lambda}(B)}{\operatorname{vol}(B)}=\sum_{i} \frac{w_{\Lambda}\left(B_{i}\right)}{\operatorname{vol}\left(B_{i}\right)} \cdot \frac{\operatorname{vol}\left(B_{i}\right)}{\operatorname{vol}(B)} \leq f^{+}(U)
$$

- As $B \in \mathcal{B}(W)$ was arbitrary, we conclude

$$
0 \leq f^{+}(W) \leq f^{+}(U)
$$

and the claim follows by monotonicity.

proof of ii) a la Damanik-Lenz 01

- indirect proof: assume

$$
\liminf _{U} f^{-}(U)<\lim _{U} f^{+}(U)=f
$$

- Then there are many big boxes with small frequencies: There is $\varepsilon>0$ and $B U_{k} \in \mathcal{B}\left(U_{k}\right)$ such that $U_{k} \rightarrow \infty$ and

$$
\frac{w_{\Lambda}\left(B_{U_{k}}\right)}{\operatorname{vol}\left(B_{U_{k}}\right)} \leq f-\varepsilon
$$

Due to linear repetitivity, such boxes will reduce the limiting value of the upper frequency f !

proof of ii)

- Choose constant K of linear repetitivity and take arbitrary $B \in \mathcal{B}\left(3 K U_{k}\right)$.
- By partitioning each side of B into 3 parts of equal length, B can be decomposed into 3^{d} equivalent smaller boxes, each belonging to $\mathcal{B}\left(K U_{k}\right)$. Denote by $B^{(i)} \in \mathcal{B}\left(K U_{k}\right)$ the box which does not touch the boundary of B.
- By linear repetitivity, there exists $x \in \mathbb{R}^{d}$ such that $B_{0}=x B_{U_{k}} \subset B^{(i)}$ and $x\left(\Lambda \cap B_{U_{k}}\right)=\Lambda \cap B_{0}$.
- Using $B \in \mathcal{B}\left(3 K U_{k}\right)$ and $B_{0} \in \mathcal{B}\left(U_{k}\right)$, we may estimate

$$
\frac{\operatorname{vol}\left(B_{0}\right)}{\operatorname{vol}(B)} \geq \frac{U_{k}^{d}}{\left(2 \cdot 3 K U_{k}\right)^{d}}=\frac{1}{(6 K)^{d}}
$$

proof of ii)

Choose a box decomposition $\left(B_{i}\right)_{i=0}^{n}$ of B, with $B_{i} \in \mathcal{B}\left(U_{k}\right)$ for $i \in\{1, \ldots, n\}$ and estimate

$$
\begin{aligned}
\frac{w_{\Lambda}(B)}{\operatorname{vol}(B)} & =\sum_{i=1}^{n} \frac{w_{\Lambda}\left(B_{i}\right)}{\operatorname{vol}(B)}+\frac{w_{\Lambda}\left(B_{0}\right)}{\operatorname{vol}(B)}=\sum_{i=1}^{n} \frac{w_{\Lambda}\left(B_{i}\right)}{\operatorname{vol}(B)}+\frac{w_{\Lambda}\left(B_{U_{k}}\right)}{\operatorname{vol}(B)} \\
& \leq \sum_{i=1}^{n} f^{+}\left(U_{k}\right) \frac{\operatorname{vol}\left(B_{i}\right)}{\operatorname{vol}(B)}+(f-\varepsilon) \frac{\operatorname{vol}\left(B_{0}\right)}{\operatorname{vol}(B)} \\
& \leq f^{+}\left(U_{k}\right)+\left(f-f^{+}\left(U_{k}\right)\right) \frac{\operatorname{vol}\left(B_{0}\right)}{\operatorname{vol}(B)}-\frac{\varepsilon}{(6 K)^{d}} \\
& \leq f^{+}\left(U_{k}\right)-\frac{\varepsilon}{(6 K)^{d}}
\end{aligned}
$$

Since $B \in \mathcal{B}\left(3 K U_{k}\right)$ was arbitrary, we have

$$
f^{+}\left(3 K U_{k}\right) \leq f^{+}\left(U_{k}\right)-\varepsilon /(6 K)^{d}
$$

a contradiction for $k \rightarrow \infty$.

proof of iii)

Let $\left(B_{n}\right)_{n \in \mathbb{N}}$ any box sequence in \mathcal{B} of diverging inradius. Since $B_{n} \in \mathcal{B}\left(U_{n}\right)$ for some U_{n}, we have the estimate

$$
f^{-}\left(U_{n}\right) \leq \frac{w_{\Lambda}\left(B_{n}\right)}{\operatorname{vol}\left(B_{n}\right)} \leq f^{+}\left(U_{n}\right)
$$

Since $U_{n} \rightarrow \infty$ as $n \rightarrow \infty$, this yields the claimed uniform convergence.

from boxes to balls

The above result also holds for sequences of balls $\left(D_{n}\right)_{n \in \mathbb{N}}$ of diverging radius.

- tile n-ball D_{n} by \sqrt{n}-boxes $B_{\sqrt{n}}^{i}$, some of which may protude the boundary of D_{n}
- with additivity we get

$$
\frac{w_{\Lambda}\left(D_{n}\right)}{\operatorname{vol}\left(D_{n}\right)}=\sum_{i} \frac{w_{\Lambda}\left(B_{\sqrt{n}}^{i}\right)}{\operatorname{vol}\left(B_{\sqrt{n}}^{i}\right)} \cdot \frac{\operatorname{vol}\left(B_{\sqrt{n}}^{i}\right)}{\operatorname{vol}\left(D_{n}\right)}
$$

- result follows from uniform convergence on boxes
- boundary boxes are asymptotic irrelevant since

$$
\frac{\operatorname{vol}\left(D_{\sqrt{n}} \partial D_{n}\right)}{\operatorname{vol}\left(D_{n}\right)} \rightarrow 0 \quad(n \rightarrow \infty)
$$

outlook: point set dynamical systems

dynamical system naturally associated to point set

- identify Λ with Dirac measure $\sum_{p \in \Lambda} \delta_{p}$
- vague topology on collection of uniformly discrete point sets
- compact hull $\mathbb{X}_{\Lambda}=\overline{\left\{x \Lambda \mid x \in \mathbb{R}^{d}\right\}}$
- topological dynamical system, continuous translation action

Proposition

Let \wedge be FLC Delone. Then

- \wedge repetitive $\Longleftrightarrow \mathbb{X}_{\Lambda}$ minimal.
- \wedge has uniform pattern frequencies $\Longleftrightarrow \mathbb{X}_{\Lambda}$ uniquely ergodic.

Analogous result for Delone sets of infinite local complexity!

references

- J.C. Lagarias and P.A.B. Pleasants, Local complexity of Delone sets and crystallinity, Canad. Math. Bull. 45 (2002), 634-652.
- J.C. Lagarias and P.A.B. Pleasants, Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems 23 (2003), 831-867.
- D. Damanik and D. Lenz, Linear repetitivity. I. Uniform subadditive ergodic theorems and applications, Discrete Comput. Geom. 26 (2001), 411-428.
- P. Müller and C. Richard, Ergodic properties of randomly coloured point sets, Canad. J. Math. 65 (2013), 349-402.
- D. Frettlöh and C. Richard, Dynamical properties of almost repetitive Delone sets, Discrete and Cont. Dynamical Systems A 34 (2014), 533-558.

