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order beyond periodicity

motivation

motivation

every lattice Λ ⊂ Rd is

uniformly discrete: ∃r > 0 ∀x ∈ Rd : |Λ ∩ Br (x)| ≤ 1

relatively dense: ∃R > 0: ΛBR(0) = Rd

periodic with d linearly independent periods

“pure point diffractive”

we are interested in “ordered” point sets which generalise lattices

I: order beyond periodicity

II: cut-and-project sets: geometry and combinatorics

III: cut-and-project sets: diffraction and harmonic analysis
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order beyond periodicity

motivation

some classes of point sets

Here uniformly discrete point sets Λ. Then uniformly in x

|Λ ∩ Bs(x)| = O(vol(Bs)) (s →∞)

Λ Delone ⇐⇒ Λ relatively dense, uniformly discrete
examples: lattice, random distortion of lattice, tilings, . . .

Λ Meyer ⇐⇒ Λ relatively dense, ΛΛ−1 uniformly discrete

cut-and-project sets (certain projected subsets of a lattice)

Meyer sets are highly structured

ΛΛ−1 uniformly discrete: finitely many “local configurations”

any Meyer set is a subset of a cut-and-project set (Meyer 72)

diffraction of Delone sets: Bragg peaks of high intensity
Meyer, if relatively dense (Lenz–Strungaru 14)
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order beyond periodicity

finite local complexity

patterns in uniformly discrete point sets

consider (centered ball) patterns:

r -pattern of Λ centered in p ∈ Λ

Λ ∩ Br (p), p ∈ Λ

patterns equivalent if they agree up to translation

Λ ∩ Br (p) ∼ Λ ∩ Br (q)⇐⇒ p−1Λ ∩ Br (0) = q−1Λ ∩ Br (0)
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order beyond periodicity

finite local complexity

pattern counting and finite local complexity

count patterns

N∗B(Λ) = |{p−1Λ ∩ B | p ∈ Λ}|

interested in (exponential) growth of N∗B(Λ) with B

Definition

Λ finite local complexity (FLC) if N∗B(Λ) is finite for every ball B

only finitely many “local configurations”

examples: Meyer sets, cut-and-project sets
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order beyond periodicity

repetitivity

repetitivity

we are interested in Λ with “many equivalent patterns”

Definition

Λ is repetitive if ∀r ∃R = R(r):
Every R-ball contains an equivalent copy of every r -pattern.

For given r , one is interested in the smallest R(r)

The above condition means: ∀r∃R : ∀x ∈ Rd ∀p ∈ Λ∃p′ ∈ Λ:

Br (p′) ⊂ BR(x), Λ ∩ Br (p′) ∼ Λ ∩ Br (p)

Λ repetitive =⇒ Λ has FLC

FLC does not imply repetitivity: Z \ {0}
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order beyond periodicity

repetitivity

repetitivity function r 7→ R(r)

periodic point sets are repetitive, e.g. R(r) = r + 1 for Λ = Z.

slow growth of R(r) with r implies periodicity

Theorem (Lagarias–Pleasants 02)

Let Λ be non-empty and uniformly discrete. Assume that there
exist r > 0 and R(r) < 4

3 r such that every R-ball contains an
equivalent copy of every r -pattern. Then Λ is periodic.
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order beyond periodicity

repetitivity

Assume w.l.o.g. 0 ∈ Λ and define, with the above r ,

Pr = {p ∈ Λ |Λ ∩ Br (p) ∼ Λ ∩ Br (0)}

(
Br/3(p)

)
p∈Pr

covers Rd :

repetitivity: ∀x ∈ Rd ∃p′ ∈ Pr such that Br (p′) ⊂ BR(x).
Hence d(x , p′) ≤ R − r < r/3.

in particular Pr ∩ Br/3(x) 6= ∅ for all x ∈ Rd

Pr ∩ B2r/3(0) contains d linearly independent vectors:
Let x1, . . . , xk ∈ Pr ∩ B2r/3(0) be linearly independent. Every
r/3-ball which intersects 〈x1, . . . , xk〉 only in 0 contains some
linearly independent xk+1 ∈ Pr .
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order beyond periodicity

repetitivity

Lemma

x ∈ Pr ∩ B2r/3(0) is a period, i.e., px ∈ Λ for every p ∈ Λ.

Proof.

For q ∈ Pr we have

i) p ∈ Λ ∩ Br (0)⇒ pq ∈ Λ by definition of Pr

ii) p ∈ Λ ∩ Br/3(q)⇒ px ∈ Λ:

q−1p ∈ Λ ∩ Br/3(0) by definition of Pr

hence q−1px ∈ Λ ∩ Br (0) by i)
hence px ∈ Λ by definition of Pr

The lemma follows since
(
Br/3(q)

)
q∈Pr

covers Λ.
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order beyond periodicity

repetitivity
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order beyond periodicity

examples

Beatty sequences (Morse–Hedlund 38)

For irrational α ∈ (0, 1) define

bn = b(n + 1)αc − bnαc ∈ {0, 1}

repetitivity properties of Λα = {n ∈ Z | bn = 1}

for every r there exists finite R(r)

Let g : R+ → R+ be any continuous non-decreasing function.
Then there is α such that for infinitely many r ∈ N the
sequence Λα cannot satisfy

R(r) ≤ g(r)

Any Λα arises naturally from a cut-and-project construction.
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order beyond periodicity

examples

Fibonacci substitution

letters: a, b, substitution rule: a→ ab, b → a

(right-infinite) Fibonacci chain: start with a!

a, ab, aba, abaab, abaababa, abaababaabaab, . . .

01-sequence by a 7→ 1, b 7→ 0.

substitution matrix:

M =

(
1 1
1 0

)
eigenvalues of M:

τ =
1 +
√

5

2
= 1.618034 τ ′ =

1−
√

5

2
= −0.618034 . . .
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order beyond periodicity

examples

letter frequencies

n-fold substitution: no letters Mne1

Mn =

(
fn+1 fn

fn fn−1

)
Fibonacci numbers: (fn)n∈N0 = 0, 1, 1, 2, 3, 5, 8, 13, 21, 44, . . .

fn = fn−1 + fn−2 =
τn − τ ′n

τ − τ ′
= round

(
τn

τ − τ ′

)
relative frequency (hn(a))n∈N of a converges:

hn(a) =
fn+1

fn+1 + fn
=

fn+1

fn+2
→ 1

τ
(n→∞)

irrational limit, hence Fibonacci chain not periodic!
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order beyond periodicity

examples

Ammann–Beenker substitution

isosceles triangle (side lengths 1 and
√

2)
45◦-rhombus (side lengths 1)

↓ ↓
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order beyond periodicity

examples

inflation has fix point!
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order beyond periodicity

examples

Ammann–Beenker tiling

non-periodic tiling of the plane, non-periodic vertex point set
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order beyond periodicity

examples

pinwheel tiling

triangle of side lengths 1, 2,
√

5

discovered by Conway and Radin 94

triangle orientations dense in S1

hence not FLC w.r.t. translations
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order beyond periodicity

examples

some larger patch ...

Federation Square Melbourne, Australia (Paul Bourke)

17 / 30



order beyond periodicity

examples

linearly repetitive examples

study lineary repetitive point sets: R(r) = O(r) as r →∞
there is an abundance of such point sets:

Theorem (Solomyak 97)

Let T be a substitution tiling with primitive substitution matrix. If
T has finite local complexity, then T is linearly repetitive.

Here FLC and repetitivity are defined on “tile configurations”.
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order beyond periodicity

uniform pattern frequencies

pattern frequencies

box decompositions (Lagarias–Pleasants 03)

box B =
d

×
i=1

[ai , bi ), vol(B) > 0

box decomposition (Bi )i of B

B =
⋃
i

Bi , Bi ∩ Bj = ∅ (i 6= j)

B(U) set of squarish U-boxes, i.e., bi − ai ∈ [U, 2U]

Every box in B(W ) admits decomposition in boxes from
B(U), if W ≥ U

B =
⋃

U>0 B(U) set of squarish boxes
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order beyond periodicity

uniform pattern frequencies

pattern counting function

wΛ(B) = |Λ ∩ B|

boundedness: ∃C∀B ∈ B
wΛ(B) ≤ Cvol(B)

additivity: for every box decomposition (Bi )i of B

wΛ(B) =
∑
i

wΛ(Bi )

covariance: ∀x ∈ Rd∀B ∈ B
wxΛ(xB) = wΛ(B)

invariance: ∀B,B ′ ∈ B
Λ ∩ B = Λ ∩ B ′ =⇒ wΛ(B) = wΛ(B ′)
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order beyond periodicity

uniform pattern frequencies

pattern frequencies

upper and lower frequencies on squarish U-boxes

f +(U) = sup

{
wΛ(B)

vol(B)
|B ∈ B(U)

}
f −(U) = inf

{
wΛ(B)

vol(B)
|B ∈ B(U)

}
finite due to boundedness

behaviour for U →∞?
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order beyond periodicity

uniform pattern frequencies

Theorem (Lagarias–Pleasants 03)

i) f +(U) decreases to a finite limit f as U →∞.

ii) If Λ is linearly repetitive, then

lim
U→∞

f −(U) = lim
U→∞

f +(U) = f

iii) If Λ is linearly repetitive, then for every box sequence (Bn)n∈N
in B of diverging inradius

lim
n→∞

wΛ(Bn)

vol(Bn)
= f ,

and this convergence is uniform in the center of the boxes.

note: same result for arbitrary pattern frequencies
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order beyond periodicity

uniform pattern frequencies

proof of i)

Fix W ≥ U, choose B ∈ B(W ) and a box decomposition
(Bi )i of B with boxes from B(U).

Then by additivity

wΛ(B)

vol(B)
=
∑
i

wΛ(Bi )

vol(Bi )
· vol(Bi )

vol(B)
≤ f +(U)

As B ∈ B(W ) was arbitrary, we conclude

0 ≤ f +(W ) ≤ f +(U),

and the claim follows by monotonicity.
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order beyond periodicity

uniform pattern frequencies

proof of ii) a la Damanik–Lenz 01

indirect proof: assume

lim inf
U

f −(U) < lim
U

f +(U) = f

Then there are many big boxes with small frequencies:
There is ε > 0 and BUk

∈ B(Uk) such that Uk →∞ and

wΛ(BUk
)

vol(BUk
)
≤ f − ε

Due to linear repetitivity, such boxes will reduce the limiting value
of the upper frequency f !
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order beyond periodicity

uniform pattern frequencies

proof of ii)

Choose constant K of linear repetitivity and take arbitrary
B ∈ B(3KUk).

By partitioning each side of B into 3 parts of equal length, B
can be decomposed into 3d equivalent smaller boxes, each
belonging to B(KUk). Denote by B(i) ∈ B(KUk) the box
which does not touch the boundary of B.

By linear repetitivity, there exists x ∈ Rd such that
B0 = xBUk

⊂ B(i) and x(Λ ∩ BUk
) = Λ ∩ B0.

Using B ∈ B(3KUk) and B0 ∈ B(Uk), we may estimate

vol(B0)

vol(B)
≥

Ud
k

(2 · 3KUk)d
=

1

(6K )d
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order beyond periodicity

uniform pattern frequencies

proof of ii)

Choose a box decomposition (Bi )
n
i=0 of B, with Bi ∈ B(Uk) for

i ∈ {1, . . . , n} and estimate

wΛ(B)

vol(B)
=

n∑
i=1

wΛ(Bi )

vol(B)
+

wΛ(B0)

vol(B)
=

n∑
i=1

wΛ(Bi )

vol(B)
+

wΛ(BUk
)

vol(B)

≤
n∑

i=1

f +(Uk)
vol(Bi )

vol(B)
+ (f − ε)

vol(B0)

vol(B)

≤ f +(Uk) +
(
f − f +(Uk)

) vol(B0)

vol(B)
− ε

(6K )d

≤ f +(Uk)− ε

(6K )d

Since B ∈ B(3KUk) was arbitrary, we have

f +(3KUk) ≤ f +(Uk)− ε/(6K )d ,

a contradiction for k →∞.
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order beyond periodicity

uniform pattern frequencies

proof of iii)

Let (Bn)n∈N any box sequence in B of diverging inradius. Since
Bn ∈ B(Un) for some Un, we have the estimate

f −(Un) ≤ wΛ(Bn)

vol(Bn)
≤ f +(Un).

Since Un →∞ as n→∞, this yields the claimed uniform
convergence.
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order beyond periodicity

uniform pattern frequencies

from boxes to balls

The above result also holds for sequences of balls (Dn)n∈N of
diverging radius.

tile n–ball Dn by
√

n–boxes B i√
n
, some of which may protude

the boundary of Dn

with additivity we get

wΛ(Dn)

vol(Dn)
=
∑
i

wΛ(B i√
n
)

vol(B i√
n
)
·
vol(B i√

n
)

vol(Dn)

result follows from uniform convergence on boxes

boundary boxes are asymptotic irrelevant since

vol(D√n∂Dn)

vol(Dn)
→ 0 (n→∞)
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order beyond periodicity

dynamical systems

outlook: point set dynamical systems

dynamical system naturally associated to point set

identify Λ with Dirac measure
∑

p∈Λ δp

vague topology on collection of uniformly discrete point sets

compact hull XΛ = {xΛ | x ∈ Rd}
topological dynamical system, continuous translation action

Proposition

Let Λ be FLC Delone. Then

Λ repetitive ⇐⇒ XΛ minimal.

Λ has uniform pattern frequencies ⇐⇒ XΛ uniquely ergodic.

Analogous result for Delone sets of infinite local complexity!
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order beyond periodicity

dynamical systems
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D. Frettlöh and C. Richard, Dynamical properties of almost
repetitive Delone sets, Discrete and Cont. Dynamical Systems A 34
(2014), 533–558.

30 / 30


	motivation
	finite local complexity
	repetitivity
	examples
	uniform pattern frequencies
	dynamical systems

